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Preface

This lecture gives an introduction to the theory of Galois representatibognsists of the following
three main parts.

¢ In a long introduction we introduce the necessary terminology, give agttlskprincipal ex-
amples (e.g. cyclotomic character, Galois representations attached to elliptes,cabelian
varieties and modular forms) and introduce L-functions.

e The next chapter is on general representation theory. Among othes{hiregBrauer-Nesbitt
theorem is proved and fields of definition of Galois representations aressisd.

e The third chapter is devoted to the local theory of Galois representatieansanf-adic and a
mod/ Galois representation there are huge differences between the loegertation ap #
¢ and the one at. We define and discuss conductors for Artin representations/-autic
and mod/ representations away frofhh We also introduce Weil-Deligne representations that
serve to classify these. Moreover, also the local representatibisatiscussed in so far that
fundamental characters are introduced. The goal of this chapter isahisg formulation of
Serre’'s modularity conjecture.

e A planned fourth chapter on complex Galois representations could nesbead due to time
constraints. It was planned to focus on theimensional case. This can be used to sketch
a proof of Chebotarev’s density theorem. Finally, it would have been toiatiscuss how
the Mellin transformation and its inverse allows to move between modular formthaind_-
functions. Consequences for Artin’s conjecture could also havelbeerentioned.

(These notes should be reworked. G.W.)



Contents

1 Introduction 4
1.1 Representations of a profinite qrbup .......................... 4
1.2 Galoisrepresentations. . . . . . . . . .. e e 6
1.3 Principal examples of Galois representations . . . . . . .. ... ... ..... 12
1.4 L-functions . . . . . . . . . e 71

2 General representation theory 20
2.1 Simple and semi-simpleringsandmodules . . . .. .. .. ... ... ....... 21
2.2 Scalarextensions . . . . . . ... e 27
2.3 Splittingfields . . . . . . . . . e 30
2.4 Charactertheory. . . . . . . . . . e 34
2.5 Definability of Galois representations . . . . . .. .. .. ... ... ....... 37

‘3 Local theorJ 42
3.1 Conduct(£r ........................................ 2 4
3.2 Weil-Deligne representations . . . . . . . . . . . . .. e 60
‘3.3 Serre’s conjectdre .................................... 65



Chapter 1

Introduction

In this chapter we will
o define Galois representations,
e introduce basic properties, such as the representation being unramified,
e give some of the motivating geometric examples and

e define L-functions.

1.1 Representations of a profinite group

Definition 1.1.1 Let G be a profinite group and let be a topological field. By am-dimensional
representation off we mean a continuous homomorphism of groups

p: G — GL, (k).

Example 1.1.2 (1) If G is a finite group with the discrete topology akdare the complex numbers,
then we are in the context of the standard theory of representationstefdimups.

(2) More concretelyZ/NZ — GL1(C), 1 — (y = e?™/N,

(3) For afinite groupG theregular representatida defined by the natural left-action on the group
algebraC[G].
(4) We have the augmentation exact sequence
g—1

0—-Is—C[G] — C—0

with the aumentation idedl; = (¢ — 1) < C[G].

The left action of7 on I gives rise to theugmentation representation

4
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(5) LetM be anyC[G]-module. Therty also acts orEndc (M) by (g.0)(m) = g.(o(g~t.m)) for
g € G,m € Mando € Endc(M). This representation is called thadjoint representation
of M. Thinking about this representation in terms of matrigeacts by conjugation. Hence, the
augmentation representation can be restricted to the matrices of race

We always consideF; with the discrete topology.

Definition 1.1.3 Letp be ann-dimensional representation 6f overk.

(a) The representatiop is called

an Artin representatioif £ C C (topological subfield),

anl-adic representatioif k C Q,

e amod! representatioif £ C F;.
(b) The representatiop is called

e abelianif p(G) is an abelian group,

e dihedralif p(G) is a dihedral group, etc.

Definition 1.1.4 Two n-dimensional representations and p» of G over k are calledequivalentif
there exists som&/ € GL, (k) such that for ally € G

p1(g) = Mpa(g)M ™",

Proposition 1.1.5 Let G be a profinite groupk a topological field an¢g : G — GL,, (k) a represen-
tation. The image aof is finite in any of the three cases:

(a) pis an Artin representation,
(b) pis a modl representation,
(c) G is a prop-group andp is anl-adic representation with # p.
Proof. Exercise 1. 0

Proposition 1.1.6 Let k& be a local field with complete discrete valuation ridy maximal ideaim
and residue field™ = O/m of characteristicl. LetG be a profinite group ang : G — GL, (k) a
representation. Then there exists a representation

p1: G — GL,(0)

such that
inclusion

G 25 GL,(0) =25 GL, (k)

is equivalent tg.
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Proof. Exercise 2. O

Definition 1.1.7 Assume the set-up of Proposition 1/1.6. The composition

natural projection
il it iy

7: G2 GL,(0) GL,(F)

is calleda mod! reduction ofp.

Remark 1.1.8 The reduction depends on the choicepfLater we will see (Brauer-Nesbitt theorem)
that the semi-simplification @fis independent of this choice.

1.2 Galois representations
We assume infinite Galois theory. A good reference is [Neukirch], Sebtign

Definition 1.2.1 Let K be a field. We denote Ity the absolute Galois group df, i.e. the Galois
group of a separable closure 6f.

Letk be a topological field. A representation@fx overk is called aGalois representation

If K is a global field (e.g. a number field), then a representatio&' gfis called aglobal Galois
representatianif K is a local field, then we speak of@cal Galois representation

Remark 1.2.2 One often hears aboutadic Galois representatiorisr evenelladic ones) as com-
pared top-adic Galois representationis that case, what people usually mean the following: Let

Gk — GL, (k)

be ann-dimensional Galois representation witki a finite extension o, and % a finite extension
of Q;. The situationl # p is referred to ag-adic, and the situatioh = p asp-adic.

The behaviour is fundamentally different! Wild inertia (to be explained in ars¢avhich is a
pro-p group, has a finite image in the first case (by Proposition 1.1.5), but itheeu@ a very large
image in the second case. We will go into that in the chapter on local Galoieseptations in a bit
more detail.

Before we can go on, we need to recall some algebraic number theonstafey the finite
situation. LetK be a number field angla prime. Then we can complet€ atp (with respect to the
non-archimedean absolute value attacheg ¢o by completing the ring of integers & atp in the
sense of commutative algebra) to obté&ip, a finite extension of),,, where(p) = ZnNyp is the rational
prime number lying undey. Thenk, is a local field with a non-archimedean absolute vdlug,
discrete valuation ring

Ok, =Op={z € K| |2 |<1}

and valuation ideal
p={reK,| |z|<1}.
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We shall also write for p. In the sequel we need and assume that the absolute|valugcorrectly
normalized For the residue fields, we shall use the notation

F(p) = F(Kp) := Op/p.

The residue field can also be seen as the quotient of the ring of integ&ryp.
Now we move on to discuss finite Galois extensions. LK be a finite Galois extension of
number fields an@3/p/p prime ideals in these fields. Tliecomposition group éf is defined as

D(B/p) = {0 € Gal(L/K)|o () = P}

It is naturally isomorphic to the local Galois group

D(B/p) = Gal(Lp/Ky).

Indeed, recall thal is dense inLy and K in K. An automorphisny € D(B/p) can be uniquely
extended by continuity to an automorphism in the local Galois group. To go totiheerse direction,
one just restricts the automorphismito

Whenever we have a Galois extension of local fields/ K, we can consider the reduction
mod P of all field automorphisms irGal(Lsy/K,), since each of them fixes the valuation rings.
The reduction map

m(Ly/Kp) = w(B/p) : Gal(Lep/Kp) — Gal(F(B)/F(p))

is surjective. To see the surjectivity, we considgf as K,[X|/(f(X)) with f an irreducible polyno-
mial (monic and with coefficients if¥,) of degree equal t@Ly; : K,|. Let us fix a rootr of f. An
element in the Galois group is uniquely given by the image,dfe. the Galois group consists of the
elementsrg with o3(a) = 3. The factorization off modyp is of the formg(X')¢ and the reductior
of ais a root ofg. An elemeniz € Gal(F(3)/F(p)) is uniquely given by the image(a@), which is
of the form3 with 3 a root of f. Hence o3 reduces t@, showing the surjectivity.

A canonical generator dkal(F(*B)/F(p)) is given by the (arithmeticfrobenius endomorphism
(or Frobenius elemettrob(Ly/K,) = Frob(/p) which is defined ag — z7 with ¢ = #F(p) =
N(p). The integetN (p) is called thenorm ofp. The kernel of the reduction map is called thertia
group!(Ly/Ky) = 1(B/p), so that we have the exact sequence

m(Lop /Kp)
_—

0 — I(Lyp/Kyp) — Gal(Lgp/Ky) Gal(F(B)/F(p)) — 0.

The field extensiotLsy / K, (or the prime}3 abovep) is unramifiedif and only if I(Ly/K,) is trivial,

i.e. if and only if the reduction map(Ls/K}) is an isomorphism. The inertia grodpLy/K,) has
a uniquep-Sylow groupP(Lg/K,) = P(B/p), which is called thewild inertia group The field
extensionLy/ K, (or the primep abovep) is tamely ramifiedf P(Ly/K,) is trivial; otherwise, itis
calledwildly ramified
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Now we investigate what happens if we change the pfinlging above a fixed in the Galois
extensionZ/ K. One knows that any other prime is of the foerti3) with o € Gal(L/K). Then we
clearly have

D(o(P)/p) =00 D(P/p)oo"

and, consequently, similar statements fof.q3/ K,,) and P(Lg/Kp). Hence, if the extensioh /K
is unramified (or tamely ramified) at of@, then so it is at alb(]3), whence we say that/K is
unramified (or tamely ramified) at the 'small’ ideal

Supposel /K is unramified ap, so that the reduction map(*3/p) is an isomorphism. We can
thus consideFrob(Ly/K,) as an element ab (/p). We have

Frob(o(9)/p) = o o Frob(P/p) oo™ !,

so that the Frobenius elements of the primes lying pvirm a conjugacy class ival(L/K). We
will often write Frob,, for either this conjugacy class or any element in it.

Our next goal is to pass to infinite Galois extensions. For that it is ofteulusefake anem-
bedding point of vievon primes. We fix once and for all algebraic closu@and@p for all p. The
field Q, also has an absolute vallie | which is chosen such that the restriction| of| to any finite
extension ofQ,, contained ir@p gives the standard absolute value on that field.

Let K ¢ Q be a number field (even if we do not write the inclusion into our figgdve often
mean it). A primep lying abovep is the same as an embeddingfdfinto @p. Indeed, we can see
the completionk’, as a subfield o@p; and given an embedding: K <— @p we obtain an ideal
p as the inverse image undeof the valuation ideal o@p. This allows us to generalize the above
discussion and it also enables us to v@/yandc on an equal footing. The role of the 'choice of a
prime above’ is now played by embeddings.

Let againK be a number field (insid®) and fix an embedding, : K — @p. Consider an
embedding : Q — @p extending.,. It corresponds to choices of prime ideals abpvier every
extensionk C L C Q which are compatible with intersection. We also obtain an embedding of
absolute Galois groups

Gal(Q,/Ky,) — Gal(Q/K), o+ oo

Note that this definition makes sense, sifité is a normal extension. If we have two such embed-
dings:; and.,, then the two embeddings of Galois groups are conjugatedoggl, just as in the case
of finite primes.
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Let K, C Ly C M§3 be finite degree subfields @p. We obtain a projective system of short
exact sequences:

(Mg /Ky)

I(Mg/Ky) Gal(Mg/Kp) Gal(F(P)/F(p)) ——=0

W(LEB /Kp)

0 I(Ly/K) Gal(Lyy/ ;) Gal(F()/E(p) —— 0.

The projective limit over compact sets is exact, hence, we obtain the eqatrsce
0— Ix, — Gk, e, Gr@p) — 0,

wherel, = I, is the projective limit over the inertia groups. With the same reasoning we obtain
that the projective limitPk, = P, over the wild inertia groups is equal to the (necessarily unique)
prop Sylow group off;,. We again call, and Py, theinertia (group)respectively thevild inertia
(group) of K, (or of p). By Frob, we denote the Frobenius elemental(F, /F(p)).

We can see complex conjugation as a variant of this. Suppose there is addintor,, of K
intoR. Then for any embedding : Q — C extendingr,., the map

771 o (complex conjugation i€ /R) o

defines an element @fx. It is calleda complex conjugatianAgain, all complex conjugations are
conjugate.

Now we come to the very important definition of unramified and tamely ramified Gapissen-
tations. We start with the local case.

Definition 1.2.3 Let K, be a finite extension @@, and letk be any topological field. Consider a
local Galois representatiop : Gk, — GL, (k). Itis called

e unramifiedif p(Ix, ) = 0,
o tamely ramifiedf p(Px,) = 0.

Let p be a representation as in the definition and/ldte thek-vector space underlying it, i.e. such
thatp : G, — GL,(k) = GL(V). Denote byV'%» the sub-vector spadé’!’=») of V consisting of
the elements fixed by, . We obtain the unramified representation

p'r i Gi, — GL(V'%) = GLy, (k)

for somem < n. Clearly,p is unramified if and only ifp = p’%» .
Evaluating an unramified representation at the Frobenius element makessiane any preimage
underrg, of Frobg, is uniquely determined up to a trivially acting element fréj) .
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Definition 1.2.4 Thecharacteristic polynomial of Frobenius ofs defined as
®(p)(X) := charpoly(p'*» (Froby, )) = det(X — Frobg, | V') € k[X].

Very often one sees a slightly different version, namely

®(p)(X) := det(1 — X Froby, | V%) € k[X].

We have the relation

B(p)(X) = X" B(p)(X V).

Now we treat the global situation.

Definition 1.2.5 Let K be a number field (insid®), and k any topological field. Consider a global
Galois representatiop : Gx — GL,, (k). Letp be a prime ofK corresponding to an embedding
tp : K < Q,. Choose any embedding Q — Q, extending,, giving rise to an embedding 6f,
into Gx. The Galois representatiomis calledunramified (respectively, tamely ramified)saif the
restriction ofp to G, is unramified (respectively, tamely ramified).

We also define theharacteristic polynomial of Frobeniusgaas

Bp(p) = B(play, ) € kIX]
and
Bp(p) == D(pley, ) € KIX].
Note that these properties do not depend on the choic€of the statement on the characteristic

polynomial we use that conjugate matrices have the same characteristic polynomia

Definition 1.2.6 Letp be as in the previous definition with= 1, 2. Thenp is calledoddif the image
of all complex conjugations has determinast.

| have seen different definitions of odd representations:.for 2, and | am not sure which one is
the 'correct’ one.

The Frobenius elements play a very special role in the theory. Their imagesnine the Galois
representation uniquely. This is a consequence of Chebotareviydinemrem.
Recall that the norm of an ideal is denoteda&) = #[F(p).

Definition 1.2.7 Let K be a number field and a set of primes oK.

(a) TheDirichlet density ofS is defined as

Zpes N(P)fs

d(S):= lim —/]/]———,
( ) s—1,5>1 ZpN(p)*S

if the limit exists.
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(b) Thenatural density of is defined as

oy TR ESIN(G) <z}
o) = R TN <)

if the limit exists.

The existence of the natural density implies the existence of the Dirichleityldng the converse
does not hold in general.

Theorem 1.2.8 (Chebotarev’s density theorem)et L/ K be a finite Galois extension of number
fields with Galois grougz = Gal(L/K). Leto € G be any element. We use the notatjehto
denote the conjugacy class®in G. Define the set of primes

Pryk (o) = {p|[Froby] = [o]}.

The Dirichlet density of this set is

#(o]

d(Pp k(o)) = G

In other words, the Frobenius elements are uniformly distributed overdh@ugacy classes of the
Galois group.

We will at least give a precise sketch of the proof later this lecture and Welso present
important applications. Here we provide a first one concerning Galoisseptations.

Corollary 1.2.9 Let K be a number fieldk a topological field and : Gx — GL,, (k) a global
Galois representation that ramifies at most at finitely many primés.ofhen the set

{p(Froby)|p unramified}

is a dense subset of the image- x ).

In other words, the Frobenius elements topologically generate the imageedbalois repre-
sentation. Hence, the Galois representation is uniquely determined by tigesnod the Frobenius
elements.

Proof. Recall that in a profinite grou@’ a subsetX C G is dense irG if and only if the image of
X under all natural projections — G, is equal toG;.

We apply this withG = p(Gk) and X the set of Frobenius images. All the finite quotients
of GG correspond to finite Galois extensions and, consequently, Chebatdensity theorem (Theo-
rem 1.2.8) implies that the image &f in any finite quotient is all of it. O
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1.3 Principal examples of Galois representations

Cyclotomic character

Let K be a field of characteristitand K a separable closure. Let

pim(K) = K [m] = ker (?X Eim N fx)

be them-torsion points ofK , i.e. them-th roots of unity. By choosing eompatible system of roots
of unity (;» we obtain the isomorphism of projective systems

]J—)Cln

Z/I"Z i (K)

1—1 xa!

1'_><ln71

Z/i"17, s 1 (K,

giving rise to an isomorphism
2y = lim e (K) = Ty(K™).

n

The object on the right is called tlieadic Tate module ol . Note thatG x acts compatibly on all
objects on the right.
We can hence define a Galois representation:

o |x—o(x) —
xi: Gk g Aut(Ty(K ™)) = 7 = GL1(Z;) — GL1(Qy).

It is called thel-adic cyclotomic character (ove). Alternatively, one can let
V(K™):=Q oz TI(K"),
yielding an isomorphisn); = V}(FX).

The standard example is witki = Q.

Proposition 1.3.1 Let ; be the cyclotomic character ové}. It is a 1-dimensional global Galois
representation, which is unramified at all primes# [ and is characterized there by

x1(Froby,) = p.

More generally, we have

o(¢) =
forall ¢ € (KX), all n and allo € Gg. In particular, the image of any complex conjugation is
equal to—1.

Proof. Exercise 3. O
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Abelian varieties

Let K be afield and4 an abelian variety of dimensignover K. Let
A(EK)[m] = ker (A(K) 2228, A(K))
be them-torsion points ofA(K). One defines the-adic Tate module ofl by

Ti(4) = lim A(K)[I"]

with respect to the projective system
A" — A(K)[I"™ Y], Pw—1-P.

If 1 is not the characteristic dt, then, as is well known, one can compatibly identifgK)[1"] with
(Z/1"7,)%, yielding an isomorphism
Ti(A) = (Za)™.

One often puts
Vi(A) = T)(A) @z, Q = (Q)%.

The absolute Galois groufix acts on7;(A) and onV;(A), since it compatibly acts on all the
A(K)[I™]. This yields theGalois representation attached ttx

pa:Gg — Athl(Vi(F)) = Gng(@l).

Theorem 1.3.2 Let K be a nhumber field. Then, is unramified at all primeg of K at which A has
good reduction.

We will not prove this theorem in this course. Here is a more precise theforere special case
of elliptic curves.

Theorem 1.3.3Let K be a number field and’ an elliptic curve overK. Letp be a prime ofK at
which E has good reduction. Thesy; is unramified ap and we have

Qp(pE) = X? - apX + N(p)

and
Bp(pp) =1 — apX + N(p) X*

whereay,, € Z such that
#EE(Pp)) = N(p) +1—ap = Py(pp)(1).

Furthermore, the determinant pf; is equal to the cyclotomic character &f.
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Modular forms

The great importance of modular forms for modern number theory is due ta¢héhat one may
attach a2-dimensional representation of the Galois group of the rationals to eastahised cuspidal
eigenform. The following theorem is due to Shimura %o« 2 and due to Deligne fok > 2.

Theorem 1.3.4Letk > 2, N > 1, a prime not dividingV, ande : (Z/NZ)* — C* a character.
Then to any normalised eigenforfne Si(NV,e; C) with f = > -, an(f)g" one can attach a
Galois representation of the rationals

py : Gg — GL2(Qy)
such that
(i) pyisirreducible (to be explained later),
(i) pyisodd,
(iii) for all primes p t NI the representatiop is unramified ap and
©,(ps)(X) = X2 —ap(f)X +e(p)p* .
By reduction and semi-simplification one obtains the following consequence.

Theorem 1.3.5Letk > 2, N > 1, [ a prime not dividingV, ande : (Z/NZ)* — EX a character.
Then to any normalised eigenforfne Sy (NN, ¢; C) with f = > -, a,(f)¢" and to any prime
ideal of the ring of integers 0@, = Q(a(f) : n € N) with residue characteristi¢, one can attach

a modi Galois representation
Py : Gg — GLao(F))

such that
(i) pyis semi-simple,
(i) p;is odd,
(iii) for all primes p { Ni the representatiop is unramified ap and
& (p)(X) = X — ap(f)X +e(p)p*~"  mod P.
There is also a weight one version of these theorems due to Deligne ard Ser

Theorem 1.3.6Let N > 1 ande : (Z/NZ)* — C* acharacter.
Then to any normalised eigenforfne Si(N,e; C) with f = > -, an(f)g" one can attach a
Galois representation of the rationals

ps : Go — GL2(C)

such that
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(i) psis odd,

(ii) forall primesp t N the representatiop; is unramified ap and
®p(ps)(X) = X? — ap(f)X + €(p).

Now we will sketch the construction of these Galois representations. Latiee icourse we may
go into more details.

Let f = > 51 ang" € Sk(I'1(V)) be a Hecke eigenform. Lét be the sub-algebra inside
Endc(Sk(I'1(N))) generated by all Hecke operatdfs with (n, N) = 1. It is an Artin Q-algebra
and hence decomposes as the direct product over the localizations atisarideals:

T%H’]I‘m.
m

Recall that

m = ker(T Tnian, C)

is such a maximal ideal. The residue filldm is equal to the coefficient fiel@; := Q(a,|(n, N) =
1), as one easily sees. If one assumes fhiata newform, thefT,, = Q;. We shall do that from now
on.

From the Eichler-Shimura theorem it follows that the Iocalizaﬁf};gr(Fl(N), Q[X,Y]k—2)mis
aT., = Qy-vector space of dimensidh This we will explain now. We compute its dimension after
tensoring it overQ with C:

C X H;?)ar(rl(N)v Q[Xa Y]k—Q)m = H H%)ar(rl(N)a (C[Xa Y]k—Q)a(ﬁi)v
0:Qp—C

with m = ker(C ®q T Tnitn, C) (this is not so difficult to check). Hence, it suffices to show that
the C-dimension offl}, (T'y(N), C[X, Y]i—2)o(w) is €qual to2. This is an easy consequence of the

par

Eichler-Shimura isomorphism
HL (T1(N),CIX, Y]i—2)o(m) = Sk(T1(N))m @ Sk(T1(N)) -

From theg-expansion pairing it follows that the dimension$f(I'; (NV))w is equal to the dimension
of (C ®q T) gy, Which is1 for a newform.
The Galois representation comes frorg-action onQ; ®g H!,.(T'1 (N), Q[X, Y]i_2)m- Since

par

Q @0 Qr =[] Qs

Al

we obtain for every | I a map

G — GL2(Qf,n) — GL2(Q).
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We shall not explain the properties of this representation here, as it @s/tme much material for this
introduction. Nevertheless, we shall try to motivate why there is a Galois action
One needs to get geometry into the business. UsingHh#te upper half plane, is simply con-
nected and, sincE; (IV) acts with finite stabilizers on it (falV > 4 even with trivial stabilizers), one
can identify
HY(T1(N), Q[X, Y]j—2) = H'(Y1(N), QLX, Y]i—2),

where Q[ X, Y];_o is the locally constant sheaf dri (V) (seen as a Riemann surface) which in
small enough neighbourhoods looks likgX, Y]._o. Formally, this sheaf can be obtained as the
direct image sheafr,Q[X,Y]y_2) '™, wherer : H — Y1(NV) is the natural projection and now
Q[X, Y]r—2 stands for the constant sheafHwith a suitabld’; (V)-action (we do not go into details
here). By a suitable extension to the cusps one finds an isomorphism

H! (T1(N),Q[X, Y]i_2) = HY (X1 (N),Q[X, Y]p_2).

par

It is very important to note that the Hecke operators respect this isomorphis
In general, one now has the comparison theorem

Q ® H'(X1(N)(C), QX, Y]i—2)m = [ [ H& (X1 (N)g ©0 Q, QX Yk—2)m,
All
with a suitable étale sheaf and the decomposiiorvg [, Tm = Tm, = [],; Q5. On the right
hand side, one finds the desir@g-action.
If & = 2, there is a slightly more down to earth description, which avoids the use ofcétade
mology. We explain this version now. L&t = X;(/N)(C) the modular curve as a Riemann surface.
Consider the exact sequence of sheaves:

x x—x™ %
0— pnx - Oy —— Oy — 0.

We explain. Exactness of a sequence of sheaves is tested on the sttksy dnn-th root of a
non-zero holomorphic function in some small enough neighbourhood &yalpossible, giving the
surjectivity. We defing:,, x as the kernel. We claim that it is a locally constant sheaf, which in small
enough neighbourhoods looks likg, then-th roots of unity. This is very easy to see: thxh power

of a functiong : U — C with U C X open and connected is identicallyf and only if ¢(z) = ¢ for
some( € Cwith (" =1 and allz € X. We now pass to the long exact sequence in cohomology

0 — p(C) — C* 2255 € — HY(X, pn,x) — HY(X, 0%) 222 HY(X, 0%),
usingOx (X) = C, sinceX is connected. We obtain
HY(X, ftn,x) & ker (HY(X, 0%) 2255 HY(X, 0%)).
SinceM is locally constant, one finds

HY (X, ftnx) = HL (DU(N), 1) 2 HL, (D1 (N), Z /),

par par
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subject to some identification between th¢h roots of unity andZ/nZ.
Next, we identifyker (H' (X, 0%) 2225 H! (X, 0%)) with Jac(X)(C)[n]. One has an isomor-
phism
Pic(X) = HY(X, 0%)
(see e.g. Liu's book on 'Arithmetic Geometry’), under which— z™ on the right becomes multipli-
cation byn on the left. All together, we now have

H.,. (T (N), Z/nZ) = ker (Pic(X) 2222 Pic(X)).

par

Elements in thex-torsion ofPic(X') are necessarily of degréewhence

H! (T1(N),Z/nZ) = Pic(X)[n] = Pic®(X)[n] = Jac(X)[n].

par

Recall that, so far, we have takéhoverC (a Riemann surface), so thatc(X) is a complex abelian
variety. But, every torsion point is defined over the algebraic numbédrsnee we finally get

HY, (T1(N), Z/nZ) = Jac(Xo)(@)n],

which carries a naturalg-action. Now we replace everywhere by and pass to the projective
limit:

Hpor(TL(N), Zy) = Ty(Jac(Xq))
and

Hpr (T1(N), Q1) = Vi(Jac(Xq))-

par

Of course, these identifications are compatible with the Hecke action, so ¢hadeed get &g-
action as desired.

1.4 L-functions

We will not go into detail on L-functions in this introduction and will mainly restrcirselves to
L-functions of Artin representations.

Definition 1.4.1 Letk be a topological field. Lei be a number field and
p: Grg — GL,(k)

a global Galois representation. Suppose tﬁwg(p) € Q[X],eq.ffk =Q cC.
Thepartial L-function ofp is defined as the (formaBuler product

1
L(p,s) = -
ea= s owe

If £ = C, i.e.ifpis an Artin representation, we define thdunction of p as

L(p,s) :H;



18 CHAPTER 1. INTRODUCTION

Exercise 4 illustrates the factors appearing in the L-functions. Theatareice of the factors of
the L-function of an-adic representation at ramified primes will be discussed in the chapter on the
local theory. It involves Weil-Deligne representations; more precisetgraified primes away frorh
one also needs to restrict to the part where the monodromy operator is zero

Example 1.4.2 (1) LetK be a number field and : Gx — GL,,(C) be the trivial Galois represen-
tation (i.e.1(g) = 1 for all g € G). Then

‘C(L 3) = CK(S)v
the Dedekind:-function of K. This is a special case of (3).

(2) LetL/K be a Galois extension of number fields with Galois grétip= Gal(L/K). Then we
have
Cels) = Cre(s) [T £(p, )57,
p#1
where the product runs over all irreducible representationg:ofThis is nearly a formal conse-
guence of the representation theory of finite groups. If time allows, wemilke it in the chapter
on complex Galois representations.

(3) Letx : Gg — C* be al-dimensional global Galois representation. Thé(y, s) converges
absolutely forRe(s) > 1 and satisfies the identity

L= WL

= 1= x(p)p~—*

Hence, the L-function is equal to the Dirichlet seriesyofThese statements are proved in Exer-

cise 5.

(4) Let £ be an elliptic curve ovef). Its L-function coincides with the L-functiofpg, s), if one
adds the correct factors at the ramified primes.

We now apply Exercise 4 to the Galois representatigns= H', (E, Q) for i = 0,1,2 with
¢ = Frob,,.

For ¢ = 0 we havel,, = Q, with the trivial Galois action, sinceZ has a single connected
component. Thus, we obtain

o0 X,r oo XT
— — T
m —eXp(;T) —eXp(;TI‘(FI‘Opr/O)T).
For i = 2, we note thakrob;, acts as multiplication by” on V3, due to the twisting of Poincaré
duality. This gives

r

1 —le = exp (Z (pf) ) = exp ( Z TI‘(FI“Ob; |V2)§)

r=1 r=1
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The most interesting caseis= 1. One hasV; = Vy(E). Writing #E(F,) = p + 1 — ay,
Theorem 1.3.3 yields

[e.@] X,r.
= exp ( Z Tr(Froby, |V1)7)

r=1

1
1—apX + pX?

Now we use theefshetz fixed point formula
2

#E(Fpr) = (—1)'( Tr(Froby [;))

i=0
in order to compute the zeta-function Bf
oo Xr
Z(E,X) = exp (Zl#E(Fpr) , )
oo 2 ' X
= exp ( Z(—l)Z(Tr(Frob;H/;))T)
r=1 :=0
- - X"\ (-1
= H (exp (Z (Tr(Frob;7 \VZ)) 7))
=0 r=1
=X+ pX?
(1-X)(1-pX)
Hence, the number of point E(F,-) for all r is encoded in%! Thus, computing

the number of points oF over finite extensions df, reduces to computing the zeta-function
Z(E,X), and hence to computing,. Moreover, after Wiles we know th& comes from a
modular formf with a,, = a,(f). So, it suffices to compuf on f.

(5) Letf be a newform of the forfa_? | a,¢™ onT'o(N). Its L-function is defined as

[e.9]

Lf.5) =D 0

n=1

If one adds the correct factors at the ramified primes, one has the identity
L(fs) = L(py;s)-
This example will be treated in more detail in the chapter on complex Galoiegeptations.
We finish this introductory chapter by stating a famous conjecture of Emil Artin.
Conjecture 1.4.3 (Artin Conjecture) Let K be a number field and
p: G — GL,(C)

a non-trivial Artin representation.
ThenL(p, s) admits an analytic continuation to the whole complex plane.

It is known that there always is a meromorphic continuation. The conjewiillfee discussed in
more detail in the chapter on complex Galois representations.



Chapter 2

General representation theory

Throughout this chapter, | try to stick to the following conventions:

e Ris aring, sometimes commutative, sometimes not.

K/ are fields.

k-algebras are usually calletl

Simple modules are callesl

A-modules are usually calldd and R-modulesM .

We will, however, always explain the symbols appearing. | am writing these binly to remind
myself of my own notation.

Definition 2.0.4 Let R be a ring. We define theentre ofR as
Z(R):={reR|rt=trvVte R}.

Let R be a commutative ring. AR-algebra is a ring homomorphisi® — A such that the image
of R is contained in the centr&(A) of A.
A k-algebra A is calledcentralif Z(A) = k.

Let R be a commutative ring. Whenever we have a group representation
p:G— GL(V),

whereV is a finitely generated?-module, we can make it into an algebra representation, i.e. an
R-algebra homomorphism
R[G] — Endgr(V).

This allows us to se& as anR[G]-module. This is the point of view that we are going to adopt
throughout this chapter.

20
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2.1 Simple and semi-simple rings and modules
We start by introducing some definitions.

Definition 2.1.1 Let R be a ring. AnR-module)M is said to befaithful if the onlyr € R such that
rm=0forallme Misr =0.

Definition 2.1.2 Let R be a ring.
(a) TheringR is calledsimpleif it does not have any two-sided ideals excgptand R.
(b) TheJacobson radicalac(R) of R is defined as the intersection of all maximal left idealgof
(c) TheringR is calledsemi-simplef Jac(R) = (0).
We also have the corresponding definitions for modules.
Definition 2.1.3 Let R be a ring andM a left R-module.
(a) M is calledsimpleor irreducibleif it does not have any lef-submodules excepd) and M.
(b) M is calledsemi-simplglor completely reduciblgif it is the direct sum of simple modules.

(c) M is calledindecomposablé any direct sum decompositiolf = N @ P implies thatP = (0)
or M = (0).

Remark 2.1.4 In terms of matrices, a representation
G — GL, (k)

with % a field is irreducible if and only if the matrices cannot be conjugated into atriwial block

form like this

0]

o] [o] ...
with only zeros below the boxed diagonal. If all e are0, a representation of the above form is
semi-simple.

Definition 2.1.5 Let R be a ring. It is called adivision ring if all elements different frond are
invertible.

Remark 2.1.6 Division rings are simple rings, since all left ideals different frgf) are the whole
ring.

Without proof we mention two classical theorems, which we will only need atpace.
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Definition 2.1.7 Let R be a ring. TheGrothendieck groug(R) is defined as the free abelian group
on the set of finitely generated simple [Bfimodules.

Theorem 2.1.8 (Jordan-Holder) Letk be afield,A a k-algebra andl” an A-module which is a finite
dimensionak-vector space (or, more generally, should be anR-module that is both Artinian and
Noetherian).

ThenV has a composition series, i.e. a descending chain of submodules

V=Wm2Vi2V2--2V,2(0)

such that all subquotients; /V;, are simpleA-modules.

Any two composition series have the same composition factors (i.e. sulnggjotielence, the
Grothendieck group can also be defined as the free abelian group ortlod finitely generated left
R-modules, modulo the relatiori — A — B for all short exact sequencés— A —V — B — 0.

Proof. (See [CurtisReiner], Theorems 13.4 and 13.7.) The proof is not difacultdoes not need
anything of what will be developed during this lecture. Omitted. O

Theorem 2.1.9 (Krull-Schmidt) Letk be afield,A a k-algebra andl” an A-module which is a finite
dimensionalk-vector space (or more generally should be ankR-module such that all submodules
of V' are both Artinian and Noetherian). Then any decomposition

n
V=D
=1
into indecomposable modules has the same lengthd is unique up to permutation.

Proof. (See [CurtisReiner], Theorem 14.5.) The proof is not difficult andsdu# need anything
of what will be developed during this lecture. Omitted. |

Theorem 2.1.10 (Schur’'s Lemma)Let R be a ring.

(a) LetS be a simpleR-module. TherD = Endg(S) is a division ring, i.e. every non-zero element
is invertible.

(b) LetS,T be simpleR-modules. Then

D ifT=S8,

0 otherwise

1

HOmR(S, T)

with D the division ringEndz(.5).

Proof. (a) All non-zero endomorphisms are isomorphisms, since the kernel anichtge are
non-trivial submodules.
(b) Clear. O
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Proposition 2.1.11 Let R be a ring.
(a) LetM be aleftR-module. The following conditions are equivalent:

(i) M is semi-simple.
(i) M is the sum of simple modules.

(i) Every submoduleV of M is a direct summand.
(b) Every submodule and every quotient of a semi-simple module issgapie.

Proof. Exercise 7. O

We can and will often consideR as a left R-module in the natural way. Then we have the
translation table:

o Leftideals = left modules.

e Minimal left ideals = simple left modules.
Lemma 2.1.12 Let R be a ring. Then we have the bijection

{m C R maximal left ideal$ «— {M simple R-modules up to isomorphist
me— R/m
ker(¢) <= M,

where inM we choose any non-zero elemerdnd definep, : R —— M.

Proof. This is very easy. The maps are clearly inverses to each other andexies¢hat they are
well-defined. U

Let us recall for the following proposition that an ideabf some ring is calleahilpotentif there
is an integer such than™ = (0).

Proposition 2.1.13 Let R be a ring andk a field.
(a) The Jacobson radicalac(R) is a two-sided ideal, which contains all nilpotent two-sided ideals.

(b) Suppose thak is a finite dimensionat-algebra. Therac(R) is the maximal nilpotent two-sided
ideal.

(c) Suppose thak is a finite dimensionat-algebra. TherR is semi-simple as a leR-module if and
only if R is semi-simple.

Proof. Exercise 8. O

Corollary 2.1.14 Let R be a semi-simple ring. Every lefit-module is semi-simple.
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Proof. By Proposition 2.1.11 quotients of semi-simple modules are semi-simple. It is cigar th
free modules are semi-simple, as direct sums of semi-simple modules are. Nfficétssto represent
a givenR-moduleM as the quotient of a free module. O

Remark 2.1.15 Let R be a ring. The simplé&-modules are equal to the simpl&/ Jac(R)-modules.

Indeed, letM be a simpleR-module. The kernel of the map of Lemma 2.1.12 is a maximal
ideal, and hence contains the Jacobson radi€at(R). Thus, the Jacobson radical acts trivially
on M. Conversely, everg/ Jac(R)-module is anR-module.

A very important example of a semi-simple ring is provided by Maschke’s émeor

Theorem 2.1.16 (Maschke)Let i be a field and= a finite group. Then the group algebfdG] is
semi-simple if and only if the order 6f is coprime to the characteristic @f.

Proof. This proof is quite easy. Omitted. O

Lemma 2.1.17 Let K/k be a field extension and a finite dimensionak-algebra. Consider the
natural embeddingi Lind LNy e ® A. The natural map

A/ Jac(A) — K ® A/ Jac(K ®j A)
is an injection. In particular, ifK’ ®; A is a semi-simplé{-algebra, thenA is already semi-simple.

Proof. We use Proposition 2.1.13 and show that(K ®; A) N A = Jac(A). The intersec-
tion Jac(K ®; A) N A is clearly nilpotent, whence we have the inclusiani.” The other one is
obtained from the fact that the image of any nilpotent ideal under the hatmaedding lies in a
nilpotent ideal, whencéac(A) lands inJac(K ®; A) N A. The final statement follows directly from
Proposition 2.1.13. O

Lemma 2.1.18 Let D be a finite dimensional division algebra over a fiéld
(a) Mat,. (D) is the direct sum of-copies ofD" (column vector) as a leftlat, (D)-module.
(b) D" is a simpleMat, (D)-module.
(c) Mat, (D) is a simplek-algebra with centreZ (D).
(d) Mat,(Mats(D)) = Mat,s(D).
Proof. Exercise 9. 0

This lemma illustrates the following propositions.

Proposition 2.1.19 Let R be a semi-simple ring. It has only a finite number of non-isomorphic mini-
mal left idealsay, ..., a;. Let
Ri=> L
a=a;
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be the sum over all minimal left ideadswhich are isomorphic ta;. ThenR; is a two-sided ideal
of R. EachR; is also a simple ring. Moreover, we have a ring isomorphism

R= ﬁRi.
i=1

If ¢; is the unitinR;, thenl = e + - - - + e5. Thee; form a complete set of orthogonal idempotents.
If M is any R-module, then

S S
M =P RM=EPeM
=1 =1
and e; M is the submodule oM which consists of the sum of all its simple submodules that are
isomorphic toa;.
Proof. (See|[Lang], Theorems 4.3 and 4.4.) Omitted. O

Corollary 2.1.20 (a) Every simple submodule of a semi-simple rigs isomorphic to one of the
minimal left ideals ofR.

(b) A simple ring has exactly one simple module up to isomorphism. O

Proposition 2.1.21 Let R be a simple ring. Then as aR-module,R is a finite direct sum of simple
left ideals. There are no two-sided ideals exdepnd R. Any two simple left ideals are isomorphic
as left R-modules via right multiplication by a suitable elemenfin

Proof. (See [Lang], Theorem 5.2.) Omitted. O

Lemma 2.1.22 Letk be a field and/ a finite dimensionak-vector space. LeR be a subalgebra of
Endg (V).
ThenR is semi-simple if and only ¥ is a semi-simplé?-module.

Proof. Exercise 10. O

Proposition 2.1.23 Let R be any ring (not necessarily commutative) avida left R-module. Then
Endr(M™) = Mat,,(Endr(M)).

More generally: Let)/ be an arbitrary semi-simpl&-module, say, of the forf/ = &, S;™
with S; pairwise non-isomorphi@&-modules. Then

Endg(M @Mat (Endg(S;)).

Proof. (See[Kersten], Satz 1.1.13.) Here is the basic idea from which evegameasily recon-
struct the proof. We associate a matrixifat,,(Endg(M)) to f € Endgr(M™). The entry at(i, )
of the matrix is defined as

injection into:-th factor rojection fromj-th factor
) Mn L Mn proj 7

M M.

The final statement follows from Schur’s lemma (Theorem 2/1.10). O
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Definition 2.1.24 Let R be a ring. Theopposite ringR°PP is defined as the ring having the same
elements ast with order of multiplication reversed, i.&°P? = {7|r € R} and7s := sr.

Lemma 2.1.25(a) LetR be aring. The ringR°PP is isomorphic as a ring t&nd z(R) via mapping
r to right multiplicationr, : R — R with 7,.(s) = sr.

(b) LetD be a division algebra. The opposite Mfat,, (D) is isomorphic taMat,,(D°PP) via trans-
posing the matrices.

Proof. Exercise 11. O

Theorem 2.1.26 (Wedderburn) Let k& be a field. Letd be a simpléek-algebra. As a leftA-module
A = S” with the unique simple lefl-module S for some integer > 1. Let D be the division
algebraD = End4(S). Then

A 2 Mat, (D°PP).

Proof. By Lemmal 2.1.25, the oppositd°P? is isomorphic toEnd4(A). This, however, is
the direct sum of, say; copies of the simple lefid-module S. By Proposition 2.1.23A°PP =~
Mat, (End 4(5)) follows. But, by Schur's Lemma 2.1.1@nd4(S) = D for some division alge-
braD. Further, again by Lemma 2.1.24is isomorphic td\at, (D°PP), establishing the proposition.

O

Corollary 2.1.27 Let A be a semi-simple finite dimensional algebra over a fieldhenA is of the
form[[;_, Mat,(D;) with D; division algebras.

Proof. This follows directly from Theorem 2.1.26 and Proposition 2.1.19. |

Corollary 2.1.28 Let A be a simple algebra over a field Then its centréZ(A) is a field K, and we
can considerd as aK-algebra. As such it is central simple.

Proof. Theorem 2.1.26 reduces the statement to Lemma 2.1.18, since the centrevisiam di
algebra is a field. O

Theorem 2.1.29 (Skolem-Noether)Let k be a field,A and B finite dimensional simplé-algebras

and f,g : B — A two k-algebra homomorphisms. If the centre &fis equal tok, then there is a
unitw in A such that for allb € B

Proof. (Seel[Kersten], Satz 8.2.) Omitted. O

Corollary 2.1.30 Let A be a semi-simplg-algebra and) € Auty(A) an automorphism that is trivial
on the centre ofA. Theng is inner.
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Proof. By Skolem-Noether (Theorem 2.1.29) any automorphism of a central sirtgsbra is
inner. LetA = [ A; with A; simple. Lete; be the element ofl that is the identity of4,. All the e;
lie in the centre ofA and hence are left unchanged under the applicatiagn ®hus,¢ descends to an
automorphism of4;. Now A; can be considered as an algebra over its centre, as such it is a central
simple algebra. Hence, every restrictionfofk inner, and, consequently, sodis O

Corollary 2.1.31 Letk be afield and- > 1 an integer. Then every automorphism\ddit,. (k) comes
from conjugation by an invertible matrix. O

2.2 Scalar extensions

Definition 2.2.1 Let K /k be a field extensiory a finite dimensionak-algebra and” an A-module.
Thescalar extension oft by K is defined as thd(-algebraAx := K ®; A and the one oV as
the Ax-moduleVy = K ®;, V. In terms of the representatiod — Endy(V'), this gives rise to
A — Endg (Vi ).

Remark 2.2.2 Let G be a (profinite) groupk a field andV; and V; two k[G]-modules. Théensor
product representatiasf V; and V5 is defined ad/ @, Vo with thek|[G]-action given byy(vy @ ve) =
g1 & gua.

In terms of representations &fG]-algebras we obtain &-algebra homomorphism

KIG) 2299, kG x G) = KG) @ KIG) — Endy (Vi @ V).
If V5 is al-dimensional representation, then the tensor product representatizailésd atwist.

Proposition 2.2.3 Let A be a finite dimensional semi-simglealgebra. Then for any finite separable
extensionk'/k, the K-algebraK ®; A = A is semi-simple.

Proof. (See[Lang], Theorem XVI1.6.2.) By Lemma 2.1/17 we may assumeRhatis a Galois
extension and we let = Gal(K/k). We will show thatV := Jac(K ® A) is zero.

We letG act onK ®; Abyo(z ® a) = o(z) ® a. We see thab N = N foranyo € G, asN
is maximal nilpotent by Proposition 2.1.13. Le N be any element. It can be written in the form
z =y "x; ®a; with {a1, ..., a,} forming a basis ofA andz; € K. Now we use the trac@r g/, to
make an element iflac(A). Lety € K be any element. We have

Tr(yz) = TrK/k(Z YT ® a;) = Z Z o(yxi) @ a;

i oceG i
= ZTrK/k(ya:i) ®a;=1® ZTrK/k(ymi)ai.
i i

This element is still inV, but also in4, and hence idac(A) by Lemma 2.1.17. It follows that it is
equal to), whencelr g /1, (yx;) = 0 for all i and ally. Since by separabilityr x /; is a non-degenerate
bilinear form, it follows that:; = 0 for all 7, whencez = 0, as desired. O



28 CHAPTER 2. GENERAL REPRESENTATION THEORY

If Ais ak-algebra and</k a field extension, then
K ®j, Mat,,(A) = Mat, (K ® A)
(see Exercise 13).

Theorem 2.2.4 Let R be a commutative ring, let and B be R-algebras and lel/ and W be A-
module. Suppose thét is flat overR and V' a finitely presentedi-module. Then the natural map

B ®p Homy(V,W) — Hompg,a(B ®rV,B@r W)
is an R-isomorphism.

Proof. (See [Karpilovsky], Theorem 3.5.2.) Omitted. O

Lemma 2.2.5 Let k be a field andA a k-algebra. LetK/k be a field extension. L&V be a simple
Ax-module. Then there exists a simplemoduleV” such thati¥” occurs as a composition factor of
Vi.

Proof. We know thatl} occurs as a composition factor dfi.. Let V; be a composition series
of A. Then a composition series dfx is obtained by taking the composition factors of evary) x .
O

Lemma 2.2.6 Let k be a field,A a k-algebra andV; and V5 two A-modules of finité-dimension.

Let K/k be a field extension. If; andV; have a common composition factor, then sq Up) x and
(Vo) k. Conversely, iftV}) x and(V;) i are semi-simple and have a common composition factor, then
so doV; and V5.

Proof. (See [[CurtisReiner], 29.6.) Suppose first thatand V, have a common composition
factor S, i.e. a simple module occuring in the composition series. Then all the composittonsfaf
Sk occur in the composition series of bath ) x and(V2) k.

Conversely, if(V1)x and (V2)x are semi-simple and have a common composition factor, then
by Schur’s lemmdiomy, ((V1)k, (V2) k) is non-zero. Note thdt; andV; are also semi-simple by
Lemma 2.1.17. From Theorem 2.2.4 it follows tikim 4 (17, V2) is also non-zero, implying thaf;
andVs, have a common composition factor. O

We now come to the concept of Galois conjugate modules.

Definition 2.2.7 Let K /k be a Galois extension and a k-algebra.

(a) The Galois grouggy = Gal(K/k) acts on the set ofl x.-modules from the left as follows:

LetW be anAx-module. Forany € Gal(K/k) we let? W be theA x-module whose underlying
K-vector space is equal td” equipped with thed i-action

(z®a).ow:= (67 (z) @ a).oqw

forall x € K and alla € A.
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(b) Given anAx-modulelV, the decomposition groupyy (K/k) = Dy is defined as the stabilizer
of W, i.e. as the subgroup consisting of thasez G such that”WW = W. For some reason,
[Karpilovsky] calls this the inertia group.

Remark 2.2.8 (i) Itis easy to check that the action is indeed a left action.
(ii) If W is simple, then so i8IV

(iii) If o € Gal(K/k)andV is an A-module, we define the isomorphism kefector spaces)

zQui—o(x) Qv
Sy

o: Vi Vi.

It is easy to check that for a submodui#é C Vi the mapo defines an isomorphism of -
modules fronf W to o(W).

(iv) Suppose thalV is a matrix representation ofli, i.e. Ax — Endg (W) = Mat,(K). Then
the matrix representation fot1¥ is obtained from the one 6 by applyingo—! to the matrix
entries.

Lemma 2.2.9 Letk be a field andA a k-algebra. LetK /k be a Galois extension. L&t be a simple
A-module. If the simplel x-moduleWW occurs in the composition series Bf; with multiplicity e,
then so doeSW for all o € Gal(K/k).

Proof. Note that’ Vi = Vi asAx-modules. Thu§ W, which naturally occurs in the decompo-
sition series of V, is isomorphic to a composition factor df. The statement on the multiplicities
follows also. O

Lemma 2.2.10 Let K /k be a finite Galois extension. Denote By, the moduldl” considered as an
A-module (rather than as ad i-module). Then there is an isomorphism4f-modules

Wk @ w
oeGal(K/k)
Proof. We give the mapiz ® v — (..., 7.,0,...) = (...,0 Yz)v,...). Itis an Ag-
module homomorphism. That it is an isomorphism can be reduced to the isonmorghis, K =
[1seccax/w 7K which is easily checked. ]

Proposition 2.2.11 Let K'/k be a finite Galois extension. L&t be indecomposable and I8t be an
indecomposable direct summandigf. Then there exists an integesuch that

Vg = ()",

g

whereo runs through a system of coset representative$a K’ /k) /Dy .
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Proof. (See [Karpilovsky], Theorem 13.4.5.) The proof is based on the un&ggeof a decompo-
sition into indecomposables (Krull-Schmidt theorem, Thearem 2.1.9). Decsmifointo different
indecomposables

Vk=2Vi"eV,? e -V

with V7 = W. We obtain
VIEH = (Va2 (W) e (W) - @ (V)Y

asA-modules. As a consequend®; ) 4 = V* for somes. Lemma 2.2.10 yields

Viz(War= P W,
oceGal(K/k)

whence for every there iso; € Gal(K/k) such thatl; = V4. From Lemma 2.2/9%, = n; =: ¢
for all i follows. We now rewrite the first displayed equation:

Vk 2Wea (W) a--- @ (TrW)e.
By assumption, all thé& W are different. Lemma 2.2.9 implies that all the Galois conjugates occur.
This finishes the proof. O

Corollary 2.2.12 LetV be simple and letV’ be a simple composition factor bf;. Then there exists

an integere such that
Vi = ()",

whereo runs through a system of coset representative$a K’ /k) /Dy .

Proof. SinceV is simple, it is a simplé3 := A/ Jac(A)-module. Note thaBx = Ak /(K ®x
Jac(A)) (using thatK /k is flat) is also semi-simple (Proposition 2.2.3). Proposition 2.2.11 implies
thatVg = ( D, "W)e with some indecomposable, and due to the semi-simplicity, hence siBiple,
moduleWW. We note thatV is also a simpled x-module. The isomorphism is also an isomorphism
of Ax-modules, sincéd @ Jac(A) C Jac(Ax) acts trivially. 0

We draw the attention to Exercise 14.

2.3 Splitting fields

We draw the attention to Exercise 15.

Definition 2.3.1 Let R be aring andl” C R be a subring. We define tleentralizer ofl" in R as
Zr(T):={reR|rt=trVteT}.

For important properties of the centralizer see Exercise 15. We includelkhveing proposition,
although it will not be needed for the subsequent proofs.
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Proposition 2.3.2 Let k be a field and considéet-algebrasA, A’, B, B’ such thatB C A and B’ C
A’. Then

Zag,a'(B @y B') = ZA(B) @ Za(B').

Proof. Exercise 16. O

Proposition 2.3.3 Arbitrary scalar extension of a central simple algebra is central simple.

Proof. (See/[Kersten], Satz 5.10.) Omitted. O

Proposition 2.3.4 Let k£ be a field andA a finite dimensional central simplealgebra. LetB C A
be a simple subalgebra wittim; B = n. Then there is &-algebra homomorphism

ZA(B) Rk Matn(k) =~ A ®, BPP,
Proof. (See [Kersten], Korollar 8.4 (i).) Omitted. O

Theorem 2.3.5 Let & be a field andD a division algebraD overk. Let K be a subfield oD.
ThenD is splitby K, i.e. D = Mat, (K) for somer > 1, if and only if K’ is a maximal subfield.
In that casey is equal to[K : k] and is called thendex of D.

Proof. This is a direct consequence of Proposition 2.3.4. For, we obtain isomorgh
Zp(K) @ Mat, (k) = D @, KPP = Dy

If K is a maximal subfield, thefi, (K) = K by Exercise 15. I is properly contained in a maximal
subfield, thenZp (K) properly containd., and is hence not a field. O

Lemma 2.3.6 Let &k be a field andD a finite dimensional division algebra ovér Suppose that any
maximal subfield oD is equal tok. ThenD = k.

In particular, there is no finite dimensional division algebra over an algatally closed field
other than the field: itself.

Proof. Letd € D be any element. Inside dp considerk(d), i.e. the smallest ring containirig
andd. This ring is commutative, asis in the centre of) (by the definition of &-algebra). Sd:(d)
is a field extension of and thus equal té. O

Corollary 2.3.7 Let D be a division algebra over a fieltl All its maximal subfields are isomorphic.

Proof. This follows from Theorem 2.3.5. O

Corollary 2.3.8 (Wedderburn) A finite division ring is a finite field.
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Proof. (See [Bourbaki], 11.1.) LeD be a finite division ring with centré and let K be a
maximal subfield ofD. By Corollary 2.3.7 and basic algebra, every other maximal subfield is of the
formzKz~!. As every element ob is contained in some maximal subfield, it follows that

D* = U K>z~
reDX

Notice that forz’ = xt with t € K we haver’ K*z'~! = 2 K*2~!. The number of distinct K ¥ z~*

is, thus, at most equal to the number of element®ify K*. Moreover, the number of elements of
zK*z~1 is always equal to the number of elementsidf. Consequently, all distinct/X >z~ are
pairwise disjoint. Since they all contain the unit element, the number of distiii¢tz—! has to be
one. O

Corollary 2.3.9 (Wedderburn) Let k be either an algebraically closed or a finite field. Létbe a
finite dimensional semi-simplealgebra. TherA is the direct product of matrix algebras.

Proof. By Lemma 2.3.6 and Corollary 2.3.8 we know that the only finite dimensional divisio
algebras ovek are fields. Hence, the corollary is a consequence of Corollary 2.1.27. O

Definition 2.3.10 Letk be a field andA a k-algebra.

(&) An irreducibleA-moduleV is calledabsolutely irreducibléor geometrically irreduciblgif for
every extensiofk /k the moduld/x = K ®; V' is anirreducibleAx = K ®; A-module.

(b) A field extensiolk’/k is called asplitting field of A if every irreducibleA x--module is absolutely
irreducible.

Theorem 2.3.11 An irreducible A-moduleV is absolutely irreducible if and only if
Ends (V) =k,
i.e. the onlyA-endomorphisms df” are left multiplications by an element bf

Proof. Since the statement is about endomorphism rings, by Exercise 6 we mayestssil is a
faithful module. This implies thatl is a simple ring withl” the only simple module (Lemma 2.1.22).

Let us now first assume th&t is an absolutely irreducible-module. LetD = End4 (V) and
let K be a field splitting fieldD. By Theorem 2.1.26 we know that = Mat,(D°PP) and that
V = (D°PP)", For theK-dimensions we obtain

n = dlmK VK =T dlmk D°PP,
Using Exercise 13 we have

Mat, (K ®j D°?P) 2 K ®; Mat, (D°?P) = K @ A = Ay = Mat, (K).
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The K-dimension is thus

n? = r? dimy, D.

Comparing with the above yieldim;, D = (dim;, D)?, whencedim;, D = 1.

Now we assume conversely tHand 4(V') = D = k. ThenA = Mat,, (k) for some integen >
1. Hence, under this isomorphisii is isomorphic to the simple modulg®, which is absolutely
irreducible by Lemma 2.1.18 (a). O

Corollary 2.3.12 Let A be a simplé:-algebra. Its simple module is absolutely irreducible if and only
if A=~ Mat, (k) for somer.

Proof. This follows from Theorem 2.3.11 and Wedderburn’s Thedrem 2.1.2&hstatesd =
Mat,.(D°PP) with D = End 4(.S) with S the only simpleA-module. O

Proposition 2.3.13 Let k be a field and letD be a finite dimensional divisiok-algebra. Then any
maximal subfield oD is a separable extension bf

Proof. (See [Kersten], Theorem 10.2.) Omitted. O

Corollary 2.3.14 Let k be a field andA a finite dimensionak-algebra. There is a finite separable
splitting field ofA.

Proof. Let S; be the finitely many simplel-modules andD; = End4(S;) the corresponding
division algebras. For each;, let K; be the field provided by Theorem 2.3.5 such that)x, =
Mats, (K;). The fieldK; is finite and separable (by Proposition 2.3.13), hence the compésifeall
the K is also a finite separable extensiorkof

As the statement is about simple modules, we can work With= A/ Jac(A). SinceK is
separableByx = Ak /(K ®j Jac(A)) is also semi-simple by Proposition 2.2.3. We h#ve- [[, B;
and eachB; is of the formMat,, (D;*") by Wedderburn's Theorem 2.1.26. Consequently,

By = H(BZ)K = HMatm((D?pp)K) = HMatm (Mat,, (K)) = HMatn&' (K)
by Lemma 2.1.18 (d). Hence, every simple moduleBgf is absolutely simple. Since the simple
modules ofBx are the same as thosedf (asK ®; Jac(A) C Jac(Ag) acts trivially), the corollary
follows. o

Remark 2.3.15 We should mention that the theory we are exposing is about the Braugw,gudnich,
however, we do not wish to define.

At the end of this section, we draw the reader’s attention to Exercise 1hiainwa simple but not
absolutely simple module should be exhibited.
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2.4 Character theory

Definition 2.4.1 Let A be ak-algebra andl” an A-module of finitek-dimension. After choosing a
basis, every elemente A acts onV via a matrix, so it makes sense to speak of its trace.
Thecharacter ol is defined as the map

A—k, a— Try(a).

If K/k is a field extension antl” an Ax-module, then we will often also consider the character
of W as anA-module, i.e.
A— A S K.

We use the same notation.

Remark 2.4.2 (i) If B C Ais a spanning set ofl as aK-vector space (e.g. a basis), any charac-
ter x is uniquely determined by the value@®) for b € B, asy is a vector space homomorphism.

The standard application of this concerns group algeb#as: £[G]. Any charactery is deter-
mined byy(g) for g € G. The usual use of the word 'character’ is in this sense.

Another important application is to the situation of a field extengioi and anA x-modulelV,
affording a character : Ax — K. Itis uniquely determined by its values dr(via the natural
embeddingd — Ag). This will be very important in the sequel, in particular, for applications
to the definability of Galois representations.

(i) In certain cases, it makes sense and it is very useful not to contfidanatural matrix action
from the definition. For instance, |€2 be a division quaterniok-algebra, which is split ovek'.
Then the:-dimension of the simpl®-moduleD is 4, but, splitting the algebrd) x = Maty(K)
has the consequence that; has a2-dimensional simpléd-module. Its trace and determinant
are called theeduced trace/determinarithey are half (resp. the square root) of the other trace
(resp. determinant).

Proposition 2.4.3 Let k be a field of characteristi6, A a k-algebra andV/, V'’ two semi-simpled-
modules of finité:-dimension. If the characters &f and V'’ are the same (i.e. ifry (a) = Try/(a)
for all a € A), thenV and V"’ are isomorphic asA-modules.

Proof. (See [Bourbaki], p. 136.) Since the statement is about semi-simple moddesaw
assume thatl is a semi-simple algebra. Letting it act 8@ V/ me may further assume, using
Corollary 2.1.27, that we have

A= [[Mat,, (Endx(S))
=1
with the simpleA-modulesS; occuring in one of” or V',

The only question is whether the multiplicities n” with which a given simple modulg, say

S = Sy, appears i” andV’ are equal. For that we just take the elemenrt A which is the identity
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on S and0 elsewhere. We havéry (¢) = n - dim S and similarly forV’, from which the result is
clear, using thak has characteristi@, asn - dim S = n’ - dim S follows. O

Theorem 2.4.4 (Burnside-Frobenius-Schur)Let A be a finite dimensionat-algebra. The char-
acters of the simpled-modules arek-linearly independent, it is a splitting field ofA or & is of
characteristicO.

Proof. (See [CurtisReiner], 27.8.) Since all the modules in question are simple a\dlaid{ )
acts trivially, we may assume thdtis semi-simple. By Corollary 2.1.27 we have

A= [ End(S) = [ [ Mat,, (D{"P)
=1 =1
with D; = End4(S;) for the simpleA-moduless;.
Assume first thak is a splitting field. Then the decomposition becomes

A= ﬁ Mat,, (k).

=1
The characters of the simple modulgs= k" are now obviously linearly independent, sincedn
we can choose elements that are zero in all matrix algebras except are,wdnput a singlé on the

diagonal.
Now assume that is of characteristi®). Let K be a splitting field ofA. LetS; for: =1,...,r
be the simpled-modules, andV; for j = 1, ..., s the simpleA x-modules. Hence, there are integers

a; ; such that
() K = EPW;)*.
J
From Lemma 2.2.6 it follows thatS;) x and(S;/) x do not have any composition factor in common
if i # ¢'; hence for a givery there is a singleé =: i; with a;, ; # 0. Leto; be the character
of S; and7; the character ofV;. Note that any character; : A — End(S;) I kis equal to
A — A — Endg((S) k) I K. It follows thato; = Zj a; j7j. If we now have

0= Zbiaia

then we obtain

0= > biaim =) biaj.;7,
j j

i

implying b; = 0 for all ¢, as desired. O

Corollary 2.4.5 Absolutely irreducible modules are uniquely characterized by their diara.

Proof. (See [CurtisReiner], 30.15.) L&y andS; be absolutely irreducible modules. Replacing
A by its image inEndg (S1 @ S2) if necessary, we may and do assume thista splitting field ofA.
By Theorem 2.4.4, the corresponding charactersdireearly independent and hence different. O
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This corollary, for example, tells us that simple modules are uniquely deterrynénir charac-
ters, when the field is algebraically closed. The most complete result atanaioters is the following
theorem by Brauer and Nesbitt, where the assumption of the simplicity is diopurreover, it also
works when the field over which the algebra is defined is not the splitting fielth¢ proof we will
see that it is no loss of generality to pass to the splitting field).

The Brauer-Nesbitt theorem says that the composition factors of a magul@iguely character-
ized by the character of the module. This is, of course, best possibéechidracteristic polynomial
does not see the difference between a diagonal matrix and a matrix withntleedsagonal and some
non-zero entries above the diagonal.

Theorem 2.4.6 (Brauer-Nesbitt) Letk be any field andi a k-algebra. LetM, N be twoA-modules
which are finite-dimensional a@s-vector spaces. If for alb. € A, the characteristic polynomials on

M and N are equal, then\/ and N have the same composition factors, i.e. define the same element
in the Grothendieck group.

Proof. (See [CurtisReiner], 30.16.) For this question we may and do assumd tkad semi-
simple finite dimensionat-algebra: if necessary, replagé and NV by the direct sum of its compo-
sition factors; this does not change the characteristic polynomials; aretakrary, replacé by its
image inEndy (M & N).

Assume that the action of on M and N has the same characteristic polynomials, but #iaand
N are not isomorphic. By splitting off common composition factors, we also asthehé/ and NV
do not have any composition factor in common. We want to show/thand N are zero.

Let K be a Galois splitting field ofi of finite degree ovek. By Proposition 2.2/3, alsd  is
semi-simple. The characteristic polynomials of the action of ary Ax on My and Ni are the
same. We again split off all common composition factors, in order to assumé/fthaand Ny do
not have any factor in common. We have decompositions into sigtglenodules: My = @, S;*
and Ng = QB]. ij". Leto; andT; be the characters corresponding to the simple modijlend7},
respectively. As the characteristic polynomials are the same, we haveuhltyeq

E €;0; = E ijj.
i J

By Theorem 2.4.4, it follows that; and f; are all0 in K. If the characteristic of is zero, the proof
is finished. Assume now that the characteristié @& p, then we obtain | e; andp | f; for all 4, j.

We now crucially use that we know that the characteristic polynomials arethe and not only
the traces. The above yields the existencedaf-modules)M; and N; such thatMx = M? and
Nk = NP. It follows that the characteristic polynomials of tHgc-action onM; and N; are the
same, since taking-th roots is unique. By Theorem 2.4.4 we again conclude ifat~ A% and
N; = N¥. Since the degree of the polynomials is dividedpig each step, we obtain a contradiction.

O

Remark 2.4.7 There are different formulations of Theorem 24.6:
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() The statement on the characteristic polynomials can also be formulatedriara fancy way.
An A-moduleV is determined by the traces of the action4bn all exterior powersl\i V for
i =1,...,d, whered is the dimension o¥. For 2-dimensional representation this just means
'by the trace and the determinant’.

(ii) In[CurtisReiner], the statement of Brauer-Nesbitt involves chégdstic roots (i.e. the roots of
the characteristic polynomial) instead of characteristic polynomials. Butoofse, a monic
polynomial is uniquely determined by and uniquely determines its roots.

(iii) Due to Remark 2.4.2 (i), it suffices to test a basis.

To say it very clearly again: By Corollary 2.4.5, the absolutely simple-modules are uniquely
determined by the values of their characters at elements(and byg € G in caseA = k[G]).
By Theorem 2.4.6, the composition factors of dny-modulelV” are uniquely determined by the
characteristic polynomials at € A (respectively, ay € G in caseA = k[G]).

(iv) Letk be afieldG a group andV a k[G]-module of finité:-dimensiond. If k is of characteristi®
or if d is smaller than the characteristic @f, then by Theorem 2.4.6 the traces of powers of
generators of7 uniquely characteriz&’.

For this one uses that
2 2 d d
X1_|_..._|_ Xd; 5(1_|_..._|_ Xda-'w X1+...+ Xd

generate the space of symmetric functions in the variakles. . , X4, under the above assump-
tions.

Corollary 2.4.8 Up to semi-simplification, reductions bhdic representations are unique, i.e. their
images in the Grotendieck group over the finite field are unique.

Proof. The characteristic polynomials of the reduction are the reduction of thexctesistic
polynomials. By Brauer-Nesbitt (Theorem 2.4.6) the characteristic poljale determine the module
over the finite field uniquely. O

There is also an alternative proof for this corollary, which | found inrdicla by Serre. This proof
really makes use that the representation is a reduction.

Remark 2.4.9 This would be a good place to recall class functions, orthogonality of dtars,
character tables, etc. We just refer to the literature.

2.5 Definability of Galois representations

In this section we use the theory developed so far in order to determinedivem representation
p: G — GL,(K) over which fieldK c K it can be minimally defined (after suitable conjugation).
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Here is the situation we are looking at in the beginning of the section. Webeta field,A a
k-algebra and< a separable extension kf(not necessarily Galois). L&V be a simpled x-module
of finite K-dimension.

Definition 2.5.1 We let
p:A— Ag — Endg (W)

be the representation belonging @ (considered as arl-module) and we let
x=Tr(p): A— K

be its character.

The fieldk(p) is defined as the extension/ofinside some fixed algebraic closure) that is gener-
ated by all the coefficients of all characteristic polynomialg.of

The fieldk(x) is the extension of that is generated by all the values pf

Lemma 2.5.2 Assume thaf{/k is Galois and thatK is a splitting field ofA. Then the following
statements are equivalent:

(i) Dw = Gal(K/k)
(i) k= k(p)
(i) k= k(x)

Proof. (i) = (i1): If Dy = Gal(K/k), thenW = ?W for all o € Gal(K/k). Consequently, the
characteristic polynomials fdl” and®W are the same at all € A. As the second one is obtained
from the first by applying to the coefficients, it follows that the characteristic polynomial is invariant
underGal(K/k). Consequently, all its coefficients lie in

(17) = (4i7): Trivial.

(131) = (i): As the characters diV and? 1V are conjugate by and all their values are ih, the
characters are the same. By Corollary 2.4.5 all simplemodules are uniquely determined by their
characters ai € A, sinceK is a splitting field ofA. ConsequentlylV is isomorphic to” W for all
o€ Gal(K/k). O

Lemma 2.5.3 If in Lemma 2.5.2 we do not assume any more fkias a splitting field of4, then the
equivalence between (i) and (ii) stays correct.

Proof. It suffices to use the Brauer-Nesbitt theorem, Thearem 2.4.6, to canfriloih & = k(p)
thatW and? W are isomorphic. |

Corollary 2.5.4 Let K/k be a separable extensiod,a k-algebra,V a simpleA-module and?” any
simple A x-module occuring in the decomposition seried/gf.

(a) Assume thak is a splitting field ofA andk = k(x) or
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(b) assume that = k(p).
Then there is an integersuch thatV = We.

Proof. For a Galois extension, this follows from Lemmas 2.5.2/and 2.5.3 and Corol2u3/22
The general case is a consequence. O

Corollary 2.5.5 Suppose thak/k is finite Galois. We have(p) = KPW and alsok(y) = KPw if
K is a splitting field.

Proof. We only write out the proof fork a splitting field. LetH be the subgroup such that
k(p) = K. We haver € Dy < °W = W < o(charpoly(a)) = charpoly(a) Va. This is further
equivalent tar fixing k(p) and hence te € H. We used Corollary 2.4.5. IK is not a splitting field,
the first statement follows from Brauer-Nesbitt, Theorem 2.4.6. O

Corollary 2.5.6 Suppose thak(/k is finite Galois. We have
[k(p) : K#Dw = [K : k]

and
[k(x) : k]#Dw = [K : k]
if K is a splitting field

Proof. This is immediate from Corollary 2.5.5. O

Corollary 2.5.7 LetV be a simple module and suppose thatontains the values of. Let K be a
separable splitting field. The exponenin Vi = W€ (see Corollary 2.5.4) is equal to the index of
the division algebraD := End4(V'), i.e. to the square root afim;, D. By Theorem 2.3/, is hence
equal to[L : k], whereL is any maximal subfield dp.

Proof. We have

K ®r D = K ®, Enda(V) = Endg, (Vi) = Enda, (W¢) = Mat, (Enda, (W)) = Mat(K),

using Proposition 2.1.23 and Theorems 2.2.4'and 2.3.11. Fhdispension ofD is €. |
Definition 2.5.8 Let K'/k be a field extensiord a k-algebra and

p: Ax — Mat, (K)
be a representation. We say thais realizable ovek if p is equivalent to a representation

1 Ag — Mat, (K)

such that for alla € A the imagep; (a) lies in Mat,, (k).
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Remark 2.5.9 If the representation is Ax — Endx (W), thenp is realizable over: if and only if
there exists am-moduleV such thatl/x is isomorphic tol as A x-modules.
Indeed W = K™ andV = k"™ for the samen.

Corollary 2.5.10 LetW be an absolutely simplé - -module in the above set-up. Suppbdge= W*.
It is obviously necessary thatcontains the values of for W to be realizable ovek.
Suppose that contains the values of. Then the following statements are equivalent:

(i) W is realizable ovek.
(i) e=1.
(iii) V is absolutely simple ad;-module.

Proof. We have already observed the first equivalence in the preceding reriaiek second
equivalence follows from Theorem 2.3.11 and Corollary 2.5¥:= End4 (V) hask-dimension
e = 1 if and only if V' is absolutely simple. O

Corollary 2.5.11 Supposé: contains the values of. ThenWV is realizable over an extensian of &
if and only if " splits D = End (V).

Proof. This follows directly by applying Corollary 2.5.10 with in the place of. O

Definition 2.5.12 Let p be a representation ovér. TheSchur index ofp is defined as the minimum
of [K : k(x)] whereK runs through the extentions bfx) over whichp is realizable.

Corollary 2.5.13 The Schur index is less than or equal 16 : k(x)], whereF' is any maximal
subfield contained i with D = Endy, ., (V) for any simpleA;,,-moduleV” such thatV’ is in the
composition series df .

Proof. We know thatD is split by any maximal subfield of D. Hence,Vy = X/ for some
simple Ap-module X. However, X is absolutely simple, sinc® is split by ' (see the proof of
Corollary 2.3.14). Consequently,= 1 and X = W. O

Corollary 2.5.14 Let K be a topological field and let : G — GL,,(K) be a group representation.
(@) If K =T, thenp can be realized oveF,(x).
(b) If n =2, thenp can be realized over an extension of degted K ().

Proof. This follows from Corollary 2.5.13. For (a) we use that there is no finite cammutative
division algebra. In (b), the algebiia can only be a quaternion algebra, since after splitting it is a
2 x 2-matrix algebra. Its maximal subfield has degree at rdost m

Remark 2.5.15 (i) A theorem of Witt-Fein state8(End4(V)) = k(x).
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(i) In Corollary 2.5.13 the inequality is in fact an equality. This follows from the fiaett an
algebraD cannot be split by fields that have a smaller degree than the biggestisubfi



Chapter 3

Local theory

3.1 Conductor

The point of view on conductors adopted in [Neukirch] and in [Sercalleields] is to treat all char-
acters of some finite Galois group at once, using that the set of the tdraratall irreducible repre-
sentations of a finite group (over a characteristic zero field) uniquelyrdietes the group. This point
of view is very elegant and leads, for instance, to the 'Flhrerdiskrinemgmoduktformel’, which is
quite famous, probably mostly due to its long name.

We, however, will be mainly interested in representations with coefficientlidsfiof characteris-
tic £ and also irn¢-adic representations which typically have infinite images. These two reésaah
us to adopt the point of view of considering individual characters rdtten the set of all characters
at once.

As a consequence, many of the proof in [SerreLocalFields] do ndt without change. | have
not worked out in how far one can replace characteristic zero repiason theory in Serre’s proofs
by Brauer’'s modular representation theory. Instead, | wrote some girtieés myself, in particular,
those for computing the conductor of an induced representation anccthibdaconductor exponents
are integers. However, the largest part of this section is still quite closerte’Streatment, as will be
obvious to the reader.

Ramification groups

For this section leL./ K be a finite Galois extension of local fields (complete with respect to a discrete
valuationvg, with valuation ringO g, maximal ideal (valuation ideajx = (7x ), perfect residue
field Fx = Ok /pk such thab i (K) = Z, and similarly forL). We have

UL‘K = eL/KUK
with ey, /i the ramification index. We pyt; /i = [Fr, : Fx]. We writeG for Gal(L/K).

42
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Definition 3.1.1 Lets > —1 be a real number. The-th ramification group (in lower numberingg
defined as
Gs=G(L/K)s ={o € Gal(L/K)|v(0a —a) > s+ 1¥a € O }.

In terms of absolute values, and hence of distances, the definition meagh|y speaking, that
o € G, if oa stays as close to as indicated by.

Example 3.1.2 We look at some particular cases:
(i) If s=—1,thenitis clearthatG_; = Gal(L/K).
(i) If s =0, thenitis easy to see thél, is the inertia group of the extensidry K.

(iii) If s =1, thenG; is the wild inertia group. This will become clear in a moment.

Lemma 3.1.3 TheG; are normal subgroups @ = Gal(L/K).

Proof. Leto € G5 andr € G. Then we have, using thatdoes not change the valuation of an
element:

vL(T_laTa —a)= ’UL<7'_1(0'7'CL —71a)) =vr(o(ra) — 7(a)).

As 7O, = Oy, the lemma follows. O

Interpretation of the G,

Lemma 3.1.4 Let L/K be as above, but assume thatK is totally ramified, i.ec; /x = [L : K].
Then(’)K[wL] =Q0y.

Proof. It turns out that the characteristic polynomial (n [ X]) of 71, is an Eisenstein polynomial
and hence irreducible. For details, see Serre: Corps Locaux, p. 30. O

Proposition 3.1.5 Let ./ K any finite Galois extension of local fields. Then there is O such
thatOK[l’] =0Or.

Proof. (Note that we insisted that the residue fidkisandF i are perfect. For this proof we only
need that the extensidfy, /Fx is separable.) Let be any uniformiser of, i.e. (7) = (7). Write
€=¢€r/K andf = fL/K-

Claim:If x € Op, suchthatf;, = Fx(z), then{z’x*|j =0,...,f—1,i=0,...,e—1} generate
Or, asOk-module. (We denote hy the image ofr modulo3;.)

Everyy € O /O, = OL/(7°) has a representative of the following form:

y=c¢cot 7Y

= €0+ mr(er +mLY2)

:50+7TL€1+7T%€2+"'+7TL_ €e—1-
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with ¢; in a system of representatives©f, /(7)) = F;, andy; € Or. All ¢; can be uniquely written
asFg-linear combinations of®, z', ..., z/~!. Hence, the set in the claim generat®s/mx Oy as
Ok -module. The claim is now a direct consequence of Nakayama'’s lemma.

Now we want to choose a goad For this we choose any € Oy, such thaff;, = Fx(y). Let
m € Fg[X] be the minimal polynomial of and choose any liftn € Ok [X] of m. If v, (m(y)) = 1,
then choose: := y. If not, then letr := y + 71. In both cases we hawe, (m(xz)) = 1. For in the
second case, we can use the Taylor expansion

m(z) = m(y +m) = m(y) + 7om'(y) + 7} 2

for somez € Oy. Note thatm/(y) is a unit, since its reduction is non-zerolin, asm is separable.
Thus,vr,(m(z)) = 1. Choosing the uniformiser = m(x), the proposition now follows from the
claim with z andr. |

Definition 3.1.6 Suppos&®;, = Ok |[z]. Foro € G let
ir/k(0) =ig(o) =vp(ox — ).
Lemma 3.1.7 Leto € G. We have
c€Gssig(o)>s+ 1.
Hence G, = {0 € Glig(o) > s + 1}.

Proof. The implication = is clear. For the other one, we only need to note thatts trivially
onOp/(np)** = Oklx]/(rp)sT ifand only if oz — 2 € (7)) HL. O

Proposition 3.1.8 For all integerss > 0 the map

s s am
Go/Gepr — U Uty W—LL

is an injective group homomorphism. Hetééo) =0O; and Uf) =1+7;0rfors > 1.

Proof. It is easily checked that the map is well defined and a group homomorphismmay/e
assume thak /K is totally ramified. By Lemma 3.1.4;;, generate®);, asOx-module. Hence,

0 €Gs < iglo) =vp(omp —mp) > s+ 1.

Supposer € G, such that% € USH). Thenon, = mp, + 7T2+2y for somey € Or. Thus,
o € Gs41, proving the injectivity. O

Corollary 3.1.9 We have
Go/G1 — (Ff, %)

and
Gs/Gsy1— (Fr,+).
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Proof. By Proposition 3.1.8, it suffices to prove that

U jul) = 05 /(1 +701) — (Op /)"

and
s s s s I+niy—
U uet) — 14+ 700L) /(1 + 77 0p) /2 0 /ny
are isomorphisms. This is straight forward. O
Corollary 3.1.10 Galois extensions of local fields are solvable. O

Corollary 3.1.11 Assume thal( is a finite extension a@,,. The wild inertia group of./ K is equal
to Gl.

Proof. Fors > 1 all the quotients,/Gs41 arep-groups. However, the order 6f,/G; divides
p" — 1, for somer, and is hence coprime g establishing tha€’; is ap-Sylow of Gy. In fact, it is
the uniquep-Sylow due to the fact tha¥; is a normal subgroup af. |

Change of field
It is easy to pass to subextensions:
Proposition 3.1.12 Let L’ be a field such thak/L’'/K. Then for alls > —1
Gs(L/K)NG(L/L') = Gs(L/L).
Moreover,
ic(0) = ir(0)
forc € H=Gal(L/L') C Gal(L/K).
Proof. This follows from the definition. O

The corresponding statement for quotients is wrong. Our next aim is tio ewdrhow the num-
bering changes when passing fraito G/ H (assuming that’/K is Galois).

Proposition 3.1.13 Let L/ L’/ K be finite Galois extensions. We have

erpipr(0) = ig(or)
TEH

with H = Gal(L/L'), 0 € G(L'/K) ando € G(L/K) any element restriction to’.

Proof. Letx € O, andy € Oy such thalO, = Ok[x] andOp, = Ok|y]. Define the following
two polynomials:

e g(X) € Ok[X]:9g(x)=y
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e f(X) € Op/[X]is the minimal polynomial of: over L', hence f(X) = [[,cy(X — 7).

Now letos ando’ as in the statement. We first apptyto the coefficients of . Then all coefficients
of (o f)(X) — f(X) are inOy, and theirL-valuation is at least;, (¢'y — y), as this is the lowest non-
zero valuation of an element ¢1;,. Consequently,

vi(o'y —y) < op((of)(@) = f(2)) = vi((af)(2)).

We shall now also establish this inequality in the opposite direction. For this radtg(tki) —y
Op/[X] hasz as a zero. Consequently, it is divisible fyi.e.

for someh € O/[X]. We now applys again to the coefficients on both sides and obtain

(09)(X) —oy = g(X) — oy = (o) (X)(ch)(X).
Plugging inx yields:
y—o'y=(of)(x)- (ch)(x),
whence
vp(o'y —y) > v ((of)(2)),

so that we have equality.
To finish the proof, we note that

(of)(@) = [] (@~ o7a),

TeH
so that
vr((of)(z)) = Z vp(oTe — ).
TeH
Finally,
UL(U/?J —y) = €L/L/UL'(U/?J —Y),
completing the proof. O

Definition 3.1.14 Let L/ K be a finite Galois extension of local fields. We define the piecewise con-
stant (step) function:
1
« :|—1,00) — (0,1}, s+— ——,
L/K [ ) ( ] (GO : Gs)

ifi <s<i+1withi € Z>_,. Further, we define thelerbrand function

MLk : [_1700) - [_1700)7 S H/ QL/K('LL)dU,
0

It is customary to writgys for #G, which we shall also do.
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Note thatoy, /x (s) = 3 ifi <s<i4+1lwithie Z>_;.

Remark 3.1.15 The Herbrand functiom = 7, i satisfies the following properties:
() 7(0)=0

(i) n(—r)=—-rfor—-1<r<o0.

(iii) 7'(s) = 2 = =l for s ¢ Z.

(iv) nis strictly increasing and continuous.
(V) n(s) = g%(gl +g2+ g+ (s — LsJ)gM) for s > 0.

Proposition 3.1.16 Letd(s) = —1 + -3 comin{iz (o), s + 1}. Them, x(s) = 6(s).

Proof. The functionf is continuous and piecewise linear. We shall compare it wigtt 0 and
establish that the slopes of all linear pieces coincide, yielding equality. We ha

s+1 if o € Gy

min{iz /x(0),s +1} = q _
ipg(o) ifodGs.

Consequently,

1 L 1
0(0) = -1+ — Z min{iy /g (0), 1} = -1+ — Z 1=0=mn5/k(0).
90 i 90 Jeco

Fors € Z, sayi < s < i+ 1, we now compute the slope 6fat s:

0'(s) = gl#{a €G|s+1<ig/k(o)} (slopes ar® or 1)
0
1
:g—#{UEG|i—|—2<iL/K(0)} ([s] =i+1)
0
gi+1 ’
= = S).
% 77L/K( )
The proposition follows. O

Lemma 3.1.17 Let L/L’/ K be finite Galois extensions and ldt= Gal(L/L’). Leto’ € G(L'/K)
and leto € G(L/K) restricting too’ such thati;, /x (o) is maximal (among the restricting too”).
Then we have

noypin/x(0) = 1) =ip g(o’) — 1.

Proof. We have forr € H:

’LL/K(O'T) :mln{ZL/K(T),ZL/K(O')} (311)
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For,ifir k(7) <ip/k (o), then
iLg(oT) =vp(ote —x) =vp((07 —2) + o(T0 — 7)) = i K (7).
If, on the other handi; /x(7) > ir x(0), theno, 7 € Gixe(o)-1r whenceir, g (07) > ir k(o)
and, thusj /i (07) = ir k(o) due to the maximality of (o), establishing Equation 3.1.1.
Using Proposition 3.1.13, we now obtain
. 1 .
ZL//K(O'/): ZZL/K(UT

eL/L/ rell eL/L’

Z min{ir,/r(7),ir/K(0)}.

Noting thate;, 7, = # Ho, iL/K(T) = ir,/(7) and substracting yields

ip k(o) —1=—1+ Z min{ip (7). ip/x(0)} = npyp(in/x (o) — 1),

eL/L *
by appealing to Proposition 3.1/16. O
We now obtain the behaviour of ramification groups (in lower numberingywvgaessing to quo-

tients.

Theorem 3.1.18 (Herbrand) Let L/ L’/ K be finite Galois extensions and lgt= Gal(L/L’). Then
forall s € [-1,00) we have
Gs(L/K)H/H = G(L'/K)
witht = g1/ (s).
Proof. Leto € G(L'/K). Then we have the equivalences:
o € GsH/H < 30 € G 0| =0',0 € Gs
S doeG:olp=0igk(0)—1>s
< 0y ip (o) —=1) > np(s),
sinceny,/; is srictly increasing. In the last equivaleneges chosen as in Lemma 3.1/17, so that we
further obtain:
o' € GsH/H < ipg(o’) =1 > n1/1(s)
so e GnL/L,(S)(L’/K),
finishing the proof. O

Next we want to change the numbering of the ramification groups so thatthbering behaves
well with respect to taking quotients (it will, however, not be compatible with gkinbgroups any
more). We need some preparations.

Proposition 3.1.19Let L /L' / K be finite Galois extensions of local fields. Then we have

Ne/k = N /K °NL/L -
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Proof. This is a simple computation starting from the formula in Herbrand’s theorem:

(G/H) ~ GH/H =~ G,/(GsN H) = Gy/H,.

NL/L’ (s)

Thus ﬁG = #(G/H),ZL/L, (s)- Using the multiplicativity of the ramification index, we obtain

Lo, = () (P Ly (D

€L/K €L/’ CL /K #Hs B €L/’ er /K

(G/H)WL/L/ ))

Instead of comparingy, /i With 1k o 0,/ directly, we will again compute the slopes of the
two and establish that both functions take the same valuaaimely0. The latter is clear, ag0) = 0
for all fields. For the following computation notg /i = #Gb.

, G, 1
Mk (8) = iGo = L #G's
_ #H, #(G/H)y, 0
~#Hy  #(G/H),

= TIIL/LI(S) ‘ 77/L’/K(77L/L’(S))
= (77L’/K o UL/L’)/(S)
by the chain rule. This finishes the proof. O

Definition 3.1.20 The inverse function ofy, x is calledyy k.

Corollary 3.1.21 We have)y  x = ¥/ o ¥ k-

Proof. Bothv; i andyy /1, 091, /i are inverse functions tgy, /. Hence, they are equal. O

Definition 3.1.22 For t > —1 we define theamification groups (in upper numberings
GUL/K) =Gy, -
(Then: Ge/x (s (L/K) Gs(L/K).)

Corollary 3.1.23 The upper numbering is compatible with forming quotients, i.eLfak’/ K finite
Galois extensions an = Gal(L/L’) we have
GYL/L)H/H = G*(L'/K)
forall t > —1.
Proof. We have
G'(L/K)H/H =Gy, ,H/H = (G/H)
= (G/H)
= (G/H)

nL/L/(wL/K(t))

WL/L'W’L/L' (wL’/K( )

su ety = (G/H),

proving the statement. O
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Remark 3.1.24 (a) If L/K is unramified, themy, /i (s) = s andy, /x (s) = s.

For,Ll=gy=g1=....
(b) We haveiy(L/K) = G°(L/K) and L/K is unramified if and only itz°(L/K) = 0.

(c) L/K is tamely ramified= G1 =0 < G, =0Vs >0 < Gt =0Vt > 0.

Definition 3.1.25 We say that is ajump for the lower numbering G;_. # G, for all e > 0. We
make a similar definition for the upper numbering.

Example: cyclotomic fields

Forr > 1 we letK, := Q,(¢r), where(, is a primitive p"-th root of unity. Recall that the-th
cyclotomic polynomial, i.e. the minimal polynomial gf, is equal to

Oy(X)=XP P4 XP 24 X 41,

Thep”-th cyclotomic polynomial is

p"—1
Opr(X) =0, (X7 )= [[ (X-¢)
1=1,(i,p)=1
Consequently,
p"—1 '

We note further that witlfi, p) = 1
(1=Gr) =1 =G A+ G+ Gt + G )

and that(1 + (pr + (2 + -+ + ¢, ) is a unit, since reduction modulo the maximal idealFof is
equal toi, which is a unit inF¥,,. From this one obtains that

POk = (1— CPT)p“l(p—l)j

i.e. thatl — ¢,- is a uniformiser ofK, and thatk, /Q, is totally ramified. Passing to the relative
situation, we have

{(p - 1)p7"_1 ift =0,
eKT/Kt = 1 r—1 r— .
o =p ™t if >0,

We will now computeG; (K, /Q,), i.e. the ramification groups in lower numbering. leete
G := G(K,/Qp). Theno is uniquely determined by an integer< ¢ < p” — 1, (¢, p) = 1 such that

oCpr = Ciw = O'i(gpr)'
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We have

Gs={oeGllo(1—=¢r) —(1=(r)) 2 s+1}
= {0 € Glo(a({r) — Gr) =2 s+ 1}
={o; € G]v(q;r — Gr) > s+ 1},

wherev = vk, . Leti be given as above and lebe the unique (it # 1) positive integer such that=
1+ gp' with (¢, p) = 1. This is equivalent te; being an element dbal( K, /K;) — Gal(K, /K1),
since(’ = Gy ;’:q = (,t. We compute further:

V(G = Gr) = o(1 = ¢ = 0(1 = ¢ = v(1 - (¢%0))

prft
pt ifr—t>1,
- eK'r/K'r—t -

oo ifr==t
This means the following for # i = 1 + gp® with (¢, p) = 1:
oi € Gy & v(0iGr — (pr) = pt >s54+1.

Finally, we obtain

(G(K,/Q,) ifs=0

G(K,/K;) ifo<s<p-1
G(K,/Ks) ifp—1<s<p?-1

GK,/K;) ifpl—1<s<p —1

0 if pr=t—1<s.

Thus, the jumps for the lower numbering occubap — 1, p(p — 1), p*(p — 1),....
Next we discuss the upper numbering. For that we computeny, /g, (s). We haven(0) = 0
and forpt=! — 1 < s < pt — 1 with¢t > 1:

1
= %(gl + g2+ + g5+ (5= Ls])gre)
1

= W((p —Dgi+p(p—Dgp+-- 4020 = Dgpr—2+ (s — "+ 1)gpe—1)

=(t-—1+(—pt+1)

n(s)

r—t

N
(p—1)pr—t
(s+1) —pt!

=({t—-1)+ ol
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We usedy,: = # Gal(K, /K1) = p" =1, whencey,:p'(p — 1) = p" ! (p — 1). One obtains:

Ss=p—1<9yPp1l)=p—-1
2) =p? —1

1
ns)=2es=p* -1
3 3)=p*—1

(
ss=p>—1c Y
ns)=r—les=p 1-leyr-1)=p -1
Thus, we see that! = Gal(K,/K;). Since the jumps in the lower numbering occupat1, p? — 1,

etc., the jumps for the upper numbering are precisely the natural numbers.

Conductor

Definition 3.1.26 Let K be a local field (complete with respect to a discrete valuation with perfect
residue class field). Let/K a (possibly infinite) Galois extension. For> —1 we define the
ramification groups in upper numberiag

GY(L/K)= lim GY(L'/K),
L)L /K

where thel’ /K are finite Galois.
Definition 3.1.27 Let K be a local field of residue characteristic> 0 and let
p:Gr — GL(V)

be a Galois representation, wheveis a finite dimensionak’-vector space for a field’ of character-
istic different fromp.

(i) Theconductor exponent(p) is defined as

o0
n(p):/ codimp (VPG LKD) gy,
-1

(i) We will see in Corollary 3.1.41 thai(p) always is a non-negative integer. TbenductorN (p)
is defined a$’;<(p), with p - the valuation ideal ofs.

(iii) The Swan exponeriw(p) (also calledwild exponentis defined as

sw(p)—/o codimp (VPG LKD)y qy,

(Draw a little graph ot:odim - (VP(G*(E/K)))
Remark 3.1.28 (i) n(p) = codimp VP(Go(L/K) 4 sw(p).

(i) If V isirreducible, thercodimp VA(G(L/K)) = dimp V.
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One-dimensional representations

It is directly clear that the conductor ofladimensional faithful representation is thavhere the first
(and only) jump in the upper filtration occurs.

Proposition 3.1.29 Let K be a local field of residue characteristicand consider a non-trivial -
dimensional Galois representation

p:Gg — F*.
Thensw(p) is the minimak: > 0 such thatp(G*(K/K)) = 1.

Proof. This is immediate fromy(G*) = 1 < V*(E*) = V with V = F. Herep(G*) C F* acts
onV = F by multiplication. O

In order to let the ramification groups in upper numbering occur in a diffexet-up, we recall the
principal result from local class field theory.

Theorem 3.1.30Let L/ K be a Galois extension of local fields (with finite residue fields). There is a
group homomorphism, theorm residue symbair Artin map ( , L/ K), such that

(LL/K)
_—

1— NpjgLl* — K* G(L/K)™ — 1

is an exact sequence of groups. Maoreover, the norm residue symalpsUﬁg) ontoG™(L* /K).

We will need the following result.

Theorem 3.1.31 (Hasse-Arf)Let L./ K be a finite abelian extension of local fields.Af # Gg1
for s € Z, thenny /k(s) € Z. In other words, the jumps in the upper ramification groups occur at
integers.

Proof. For cyclotomic fields we computed this explicitly. The same computation workstiihto
ramified extensions of other local base fields, using Lubin-Tate thedrg. d€tails are beyond the
scope of this text. O

Corollary 3.1.32 Let K be a local field of residue characteristjc and consider a non-trivial -
dimensional Galois representation
p:Gg — F*

with finite image.
Thensw(p) is the minimal integer: > 0 such thatUI(g) € ker ((,L/K)), whereL is such that
G = ker(p).

Proof. This follows by combining Hasse-Arf, Proposition 3.1.29 with the principabtbem of
local class field theory. O

We also give an infinite version of Hasse-Arf.
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Corollary 3.1.33 Let L/ K be a (possibly infinite) abelian extension of a local fiéld Then the
jumps in the upper ramification groups occur at integers, i.&4f “(L/K) # G*t¢(L/K) for all
e > 0, thenu € Z.

Proof. For L/ K finite, the statement follows from Hasse-Arf's theorem, sinee 7y, /x (s) with
s ajump in the lower filtration.

Now let L/ K be arbitrary and assume that the jumgoes not occur at an integer. Then there are
v andu” such that < v/ < u < u” < s+ 1 forones € Z. Since for all finite Galoid.’/ K insideL
the jumps occur at integers, we have

GY(L'/K) = G¥ (L'/K).

Consequently, passing to the projective limit yie@$ (L/K) = G*"(L/K), a contradiction. O

Induced representations

We first recall the definition of induced representations.

Definition 3.1.34 Let H < G be a subgroup and” an R[H ]-representation, wher& is any com-
mutative unitary ring. Thénduction fromH to G of V' (more correctly, thecoinductior) is defined
as

Indf; (V') = Hompgm (R[G], V)

with the natural leftG-action: (g.f)(h) = f(hg) forg,h € G.

Remark 3.1.35 We have(Indg(V))G =~ VH by sending a functioif to its value atl.

In terms of Galois representation induction works as follows.\Lée a Galois representation of
the field L (local or global field) with coefficients in the field, i.e.V is an F'[G]-module. Take a
subfieldK of L; thenGy, is a subgroup of7 ;. We then put

Ind} (V) = Homp(g,|(F[Gk],V),

where the homomorphisms are now supposed to be continuous. Alternatreetypuld replaceés;,
by a finite quotient (if the Galois representatiBrhas finite image).

We now compute the conductor of a local induced representation. Fomhigill have to use
Hilbert's theorem on differents.

Theorem 3.1.36 (Hilbert) Let L/K be a finite Galois extension of local fields with finite residue
fields. LetG = G(L/K). Then®, x = pf withd = >_,_o(#Gi — 1), where® i is the different
of L/K.

Taking Ny, /x and usingug o N i = fr/kvr, this yields

k(1) = fr/xd.
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Proof. The proof needs some preparations, for which we do not have any tinpeodk can be
found in [SerreLocalFields] or [Neukirch]. O

Theorem 3.1.37Let K be a local field with finite residue field. L&Y K be a finite Galois extension
andV an F[G]-representation, i.ep : G, — GL(V') for some finite dimension&l-vector spacé’.
Then
n(Indf((p)) =dim(V)vk (0r/x) + fr/xn(p),
whered; /i denotes the discriminant df/ K and f; is the residue degree.

Proof. The usual proof uses Frobenius reciprocity for characters and teegtef my knowledge
must be handled with care when the characteristié¢’a$ non-zero. Hence, | prefer to give a very
explicit direct proof which is based on the use of Mackey’s formula [g#dl]). Write G for G and
H for G. SinceH andG" are normal subgroups @f, Mackey’s formula considerably simplifies
and reads

Res&.Ind% (V) = H IndGuqgResHu gy (V).
9eG/(GuH)
We will from now on stop writingRes if it is clear from the context. Before computing tia&*-
invariants, we discuss the groups involved in the formula. We have

G/(G"H) = (G/H)/(G"H/H) = (G/H)/(G/H)".

Since we prefer not to pass to finite groups, we need a limit process foekistatement.

G“ﬂH:(liLnG(M/K)“)ﬁH zliLn (G(M/K)*NG(M/L))

M/L M/L
M/L M/L

— lim G(M/L)m\/z/LWM/K(U)) —lim G(M/L)??M/L(wM/L(T/JL/K(U)))
PR pr—
M/L M/L

= lim G(M/L)d’L/K(U) :}[1/’L/K(U)7
a1

M/L
where) /L runs through all extensiond of L that are Galois oveK'. This is justified, since the set
of such forms a cofinal subset of the set of all Galois extendigik’, and also of the set of all Galois

extensions\//L.
From Mackey'’s formula and Remark 3.1.35, we obtain

u P (u)
(Tndk (V)" = I1 yHEE
9e(G/H)/(G/H)"
Now, it is just a question of computing. First, we have

codim (Indf (V))”" = #(G/H) dimV ~ m dim VO
=#(G/H)(dimV — #(Gl/H)“ dim VHV’L/K(U)»
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Recall thaty; ;. (s) = % and correspondingly; ;- (u) = iégggﬁ Now we use the substi-

tution rule, the above computation and Hilbert’s theorem on the differengend

n(p):/ codim V" dv
-1

o0 (w)
= /1 codimVHwL/K dr, i (v)

o0 . IUL/K(U) 1
=#(G/H / codim VH

udu

[e.o]

= (@ [ amy =y

udu

= #(G/H)o /_Olo (dimV((G/lH)u 1)+ (dimV — dim V5 (G/lH)u))du

© 1 o0 "
—e dimV/ — — 1))du + / codim(Ind% (V)¢ du
LK _1(<G/H)u ) o ) (Indg(V))

= dim L v ! n(Ind%
= dim(V) [y, ~ DHG/ o + 5 nlindk (V)

dim(V 1
= ( )UK(DL/K> + 7n(1nd%((V))
Jr/K Jo/K
This establishes the theorem. O

Generalities on conductor exponents

Proposition 3.1.38 Let K be a local field andf” an algebraically closed topological field. Lgt:
Gk — GL,(F) be an irreducible Galois representation with finite image. Lebe the smallest
extension of such thatp|¢, is unramified, i.e. leG'y; = ker(p), thenL = MEM/K)o,

Thenn(p) = n(p|GL).

Proof. Let H = G(M/L) = Gy = G°. Foru € (0, 00) we have
G —HOAG" = HN Gsz/K(u) _ H"/}J\/I/K(u) — gmy/Lo%mynovn k(W) — ok (v) — HY,

sinceL /K is unramified. This immediately implies the claim. O

The case of restriction to the maximal tamely ramified extension is treated in Ex&ecis

Proposition 3.1.39 Let K be a local field andF' an algebraically closed topological field. Let:
Gx — GL(V) be a Galois representation witli an F'-vector space.
Thenn(p) = n(p™).

Proof. In terms of matricegim VV¢" is the minimum number of's on the diagonal of the Jordan
normal form of eacly € G*, which is clearly independent of the semi-simplification. O



3.1. CONDUCTOR 57

Conductor exponents are integers

The following is adapted from a proof in Serre’s book on linear repriasi®ns of finite groups.

Proposition 3.1.40 Let K be a local field of residue characteristicand F' an algebraically closed
topological field. Assume that the characteristicZofs different fromp. Letp : Gx — GL,,(F) be
an irreducible Galois representation with finite image.

Thenp is of the formIndgf(W) for some finite extensioh of K and W a representation ofry,
with abelian image of inertia, i.d}" corresponds to a representatipn : G, — GL(W) andp; (I1)
is an abelian group.

Proof. Let G = G/ ker(p). LetV be theF-vector space underlying
We distinguish two possibilities:

() G1 € Z(G)
(I1) There is minimals > 1 with G5 € Z(G) andGs41 C Z(G).
In case (1), the exact sequence
0— Gy — Go— Go/G1 — 0

has abelian kernel and cokernel and is split, whefigdés an abelian group. In that case, we are
finished.
Now we assume that we are in case (II). The gréipis ap-group. Moreover, as above, the
sequence
0—Gsy1 = Gs — G/Goy1 — 0

is split with abelian kernel and cokernel, implying tiiaf is abelian. Now we use that the character-
istic of F' is different fromp. In that case, Maschke’s theorem shows that

r
Vg, = @ w; with w; = Vi,
=1

i.e. the restriction o/ to G, is the direct product of pairwise non-isomorphic irreducible representa-
tions of G5. As F'is algebraically closed, eadhj is 1-dimensional.

The quotientG /G acts on the sefWy, ..., W, } = {1,...,r} through its action oV, i.e. we
transport the&z-action onV to an action on the direct sum: Fere G, consider the7,-modulec ;.
It is of the formW; for somej, sincesV; = V; due to irreducibility of thé/; and there; = ¢;. Itis
clear thatzW; only depends on the class@imoduloG,. The permutation is transitive, as for each
the orbit ", ./, oW; is a sub&-module ofV'.

Next we notice that > 1. OtherwiseV|s, = W; and the action of7s would be through scalars
which we excluded above.
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Let now H be the kernel of the permutation representation{on .., r}. In other words, this
means for fixed
{1,...,r} ={cW,lo € G/H}.
From this we conclude

V = Ind$(W)).

Now we continue as above, replaciagby H andV by ;. We have the alternatives (l) or (I1).
In the first caseH; C Z(H), whenceH|, is abelian, and we are done. In case (Il), we obtain by the
same procedure
Vi = Indjj, (Uy),

yielding
p = Ind§Ind% (U1) = Ind§, (U1).

Continuing like this, we will at some point be in case (I). O

Corollary 3.1.41 Conductor exponents of representations as in Proposition 3.1.40 areeisteg

Proof. By Proposition 3.1.40, we have
p= Indgf (W)
with W corresponding to some representation
p1: G — GL(W)

and abelian image of inertia. L& be such tha&zy; = ker(p;). PutH = Gal(M/L). We have that
Hj is abelian. By Propositian 3.1.38 we know

n(pl) - n(pl‘Ho)'

As H is abelian, the jumps in th@d,)“ occur only at integers by Hasse-Arf. Consequently;; ) is
an integer.

The formula for the conductor of an induced representation (Theor&®73 yields that(p) is
also an integer. O

Conductors of /-adic and mod ¢-representations

Proposition 3.1.42 The Swan exponent offaadic Galois representation is the same as the Swan
exponent of the modreduction.

More precisely: LetF'/Q, and K/Q, finite extensions with # p. Letp : Gx — GL(V) be a
Galois representation with” an F-vector space of finite dimension. Lefwith VV an F-vector space
for IF the residue field of") be the reduction of mod~.

Thensw(p) = sw(p) andn(p) = n(p) + codimp V*(E0) — codimp yre),
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Proof. The second statement is a direct consequence of the first, on whichwveomaentrate.
First note that for all. > 0, the groupp(G*) is finite, as it is a prg group insideGL (V') with V/
having the/-adic topology.

LetT" C V be an integral lattice with : Gx — GL(T) (possibly after conjugation). S@; is a
free Op-module such thaf’ ®p,. F =V andT ®0, F = V. Let 7 be a uniformizer ofr". Consider
the short exact sequence®f--modules:

0—-T5T—-T®e, F—0.

Its associated long exact sequence in cohomology gives:

(G*)

0 — TP I pel@) L 7T L HY (p(GY), T) = 0,

since the group order is finite and invertibleGh-. This yields:
7°(E") @, F 22 77
Due to flatness, we have
1) G0, F = B (p(G"),T) @0, F = H(p(G*), T ©o, F) = H(p(G"), V) = V"),
Putting these together, we find
dimp VA(E) = rko, T = dimg V'),
from which the proposition is obvious. O

Corollary 3.1.43 Conductor exponents éfadic representations of local fields of residue character-
istic p # ¢ are integers.

Proof. The Swan conductor of thieadic representation equals the Swan conductor of the reduc-
tion of the representation mdgdwhich satisfies the requirements of Corollary 3.1.41. O

Globalisation

Definition 3.1.44 Let K be a global field ang : Gx — GL(V') be a Galois representation withi
a finite dimensional’-vector space. For every finite prinpeof K fix an embeddindd — @p, with
respect to which we will embe@y, into G .

The(Artin) conductor ofp is defined as

N(,O) — H pn(pchp )
p,(p,char(F))=1

(If char(F') = 0, then the product runs through all primes &f.)

In words, the conductor stores information on the ramificatiomaditside the characteristic &f.
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3.2 Weil-Deligne representations

We now fix the notation for all this section.

Let K be a finite extension d,,. Let Gx be the absolute Galois group &f, which is filtered
by I'x = Gy, its inertia group, and’x = G, the wild inertia group. Denote b """ = @;K the
maximal unramified extension & and byK" = @5}( the maximal tamely ramified extension &f,
both considered inside some fix&j,. Moreover, letk™¢ be the maximal prd-extension off ™
inside K for primes? # p. As before, we denote b§x the integers of< (for other fields with a
similar notation). Leff be the residue field . Putq = #F = p/.

Whenever we consider @radic representation in this section, we will have £.

Tamely ramified extensions

We now describe the structure of the Galois grougdf’ /K and also ofk"/ K.
By definition of the inertia group we have the exact sequence

0— Ix — Gg — G(F,/F) — 0.

The latter group is generated Byob,, thegeometric Frobeniusvhich is the inverse of the arithmetic
Frobenius sending to x4 (this is unfortunate but standard). This choice gives an isomorphism

G(K"™/K) = G(F,/F) = Z, Frob, — 1.

Lemma 3.2.1 Choose a uniformiser € Of. Then the field<" is obtained fromk ™" by adjoining

71/™ for all m with (p,m) = 1. In particular, the fieldK" is obtained by adjoining td<"™" all
/e,

Proof. Adjoining anm-th root (p 1 m) of any element 0® x results in a tamely ramified extension
(its Galois group is a subgroup @/ mZ, asK"™" contains then-th roots of unity). Itis a fact that any
tamely ramified extension of a localadic field can be obtained by adjoinimg-th roots forp  m.
Finally, them-th roots ¢ 1 m) of any unite of O are in K", asa™ — e splits intom different
factors ovefF,, which implies that adjoininger®)'/™ to FU™ is the same as adjoining"/™. O

As m € K, we can also consider the field, := K(7'/“'|n € N), so that we have" =
K" K. This means that the exact sequence

0 — G(Ktr,E/Kunr) N G(Ktr,Z/K) N G(Kunr/K) =0
is split, thus obtaining a description 6f K¢/ K) as the semi-direct product
G(Ktr,Z/K) _ G(Ktr,é/Kunr) “ G(K—unr/[()7

for the conjugation action af (K" /K ) on G(K™¢/ K1),
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Definition 3.2.2 Let? # p be a prime. Define

Zg(1) = lim pgn (Qp).

—
We have tha,(1) is aZe,-module viaz. ((¢en)n) = ((fu)n- In fact, itis aZ,-torsor.

Lemma 3.2.3 The canonical map

a(7r1/€")

tf . G(Ktr,g/Kunr) — Z£(1)7 g — (W n
T

is an isomorphism. O

Let us choose an isomorphism (of profinite grouig)l) = Z, and compose, with it, thus
obtaining an isomorphism, : G(K"¢/K"™) — Z,. Let us callu the topological generator in
G (K™ /Kunr), which satisfies,(u) = 1 € Z,.

We could also have chosen any other topological genetatout then we would have to “divide”
by its image inZ, later on. That seems more conceptual, but makes the formulae more complicated

Lemma 3.2.4 Leto € G(K™/K"). We have
o o Frob, = Frob, oo.

Proof. Via the split,Frob, is an element ir;(K"/ K1) C G(K™/K). So it fixes in particular
all 71/¢" . However, on roots of unity that are in the unramified tower it actg-as- Cgln/q (as it does
so on the residue field).

Letn € N. We have:

Frobq_l 00 0O Frobq(ﬂl/én) = Frobq_l (a(ﬂl/gn)) =

_, o(m/f n o(mt/t n n
Frobq1 ((ﬂl/én )Trl/é ) = (Erl/zn ))qﬂ'l/e = aq(ﬂ'l/e ).

The last equality follows from

o(@/™) 1y _ o(@/")
/e o gl

O(ﬂ_l/é")

ofl(m!/*") = o7 1/en
m

O_qfl(ﬂ_l/én) - .= )qﬂ,l/fnl

This finishes the proof. O
Summarizing the above, we obtain the following proposition.
Proposition 3.2.5 There is an isomorphism
G(K"™/K) = 7,(1) x Z,

where the action of € Z on Z(1) is given by raising to the-th power. m
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Semi-stable/-adic representations

Definition 3.2.6 A continuoug-adic representation
p: Gk — GL(V)

(with V" a finite dimensionaF -vector space witl#'/Q, and? +# p) is calledsemi-stableif the inertia
group Ik acts unipotently, i.e. for alk € I there is an integen such that(p(c) — 1) = 0.

As any unipotent subgroup 6fL.(1), e.g. the upper triangular matrices with ones on the diagonal,
is a pro# group, the representation factors throd@hi " / K).

Proposition 3.2.7 Every/-adic representation as above becomes semi-stable after passing to a suit-
able finite extensio’/ K. One says that it ipotentially semi-stable

Proof. As the wild part of/x can only have a finite image, we can assume that it acts trivially.
The profinite groud i / P is the direct product of the groufs (1) for ¢ running through the primes
different fromp. The product oZ,(1) for primesg # ¢, p has a finite image, so we can also assume
that it is trivial.

From the relatiorFrob, ! o Frob, = o7 for o € G(K™/K"™) it follows that p(c') and p(c9)
have the same eigenvalues. From this it is clear that the eigenvalygs )o€an only be roots of
unity. So the unipotent part ¢f (K¢ / K"™") is open of finite index in it. Passing to a finite extension
K'/K we can hence assume that the inertia group acts unipotently. O

Recall that we made two choices above, namely that of a uniformiserOg and that of an
isomorphisniZ,(1) = Z, (i.e. choosing a topological generatorZf(1) correpsonding td, resp. a
topological generator off (K¢ / K'r)). Let us fix these choices for the time being.

Assume thap is a semi-stablé-adic representation as above. We have the following data:

e A continuous action ofZ (K" /K') on an/-adic vector spac&’, coming fromp via the split.
In G(K"™/K) we have a special element, the geometric Frobegus: p(Frob,) : V. — V.
Itis an isomorphism, describing the action@fK """/ K') uniquely.

¢ A unipotent endomorphisiti = p(u) : V — V.

For any unipotent endomorphism one can define its logarithm
1-u)"
1 — _ A P
og(U) == -
n>1
(the sum is finite). It is a nilpotent endomorphism.

Let N =log(U) : V — V. Givenp, the endomorphisn¥ is uniquely determined (remember-
ing our choices).

As we havep~ Uy = U4, using thafog(p~1Uyp) = ¢! log(U)e, we obtain

Ny = qpN.
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Theorem 3.2.8 Subject to the choices made above, there is a bijection between the selai-sdic
representation : Gx — GL(V') and the set of tuple§, N) with p : G(K"/K) — GL(V) a
continous representation amdl : V' — V a nilpotent endomorphism satisfyifgy = qp N, where
¢ is p(Frob,) with Frob, a geometric Frobenius element.

Proof. We have seen that the tuple associated above is unique.

Let us construct a representatioout of (p, N). Itis clear thap restricted to the prime-té-parts
of I'x has to be trivial, and restricted @( K" /K) = G(K"™ /K) has to be given by.

Recall the continuous isomorphism: G(K" /K"") — Z,. It involved choices and was made
in such a way that,(u«) = 1. From it we obtain a continuous homomorphism

pla (k) rury : G(K"/K"™) — GL(V), x> exp(ry(z)N),

whereexp is defined via the usual power series expansion, which is a finite sum,Sireailpotent.
The commutativity relation implies thatis well-defined. One checks (e.g. on the dense subset
{u™}) that these constructions are inverses to each other. O

Remark 3.2.9 More conceptually, one can get rid of the choices by consideNhgot as a map
V — V, but as the mafy/ ®z, Z,(1) — V defined byN(v ® 1) = (ng)log(p(g)))v, which is
independent of the choice gfc G(K"*/ K1),

Remark 3.2.10 Most of the above fails ff = p. In particular, the image of the representation will in
general not be a semi-direct product.

Weil-Deligne representations

The idea behind Weil-Deligne representations is to 'forget’ the topologytdxetain enough infor-
mation to uniquely identify a givefradic representation. We recall that through® p.

Definition 3.2.11 TheWeil groupWj of thep-adic local fieldK is defined as
{o€Gk|3In€Z: 7 =TFroby },
where we writer for the image ofr in G(F, /F).

In words, the Weil group is the subgroup@f; (as a group, not as a topological group) of those
elements that map to a power of the geometric Frobenius element in the Galgisofithe residue
extension.

Definition 3.2.12 Let I be an algebraically closed field of characteristicA pair (p, N') consisting
of a group homomorphism: Wx — GL(V') and nilpotent endomorphisii : V' — V', whereV is a
finite dimensionaF'-vector space (with the discrete topology), is calledgil-Deligne representation
of K overF if for all g € W, whose image it (F,/F) C G(F,/F,) equals(Frob,)*), one has

Np(g) = p™@p(g)N.
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(We are again consideringrob, to be the geometric Frobenius.)
A Weil-Deligne representation is callédsemi-simpldthat’s a differentt” meaning 'Frobenius’)
if the underlying representation & is semi-simple (in the usual sense).

Remark 3.2.13 There is an algebraic group ové?, called theWeil-Deligne groupwhose represen-
tations are precisely those above. Thus the name.

Proposition 3.2.14 Every ¢-adic representatiorp : Gx — GL(V) gives a unique Weil-Deligne
representation of overQ,, which we denote aWD(p)@Z.

Proof. Let us first extend scalars &f to Q,. We know thatp is potentially semi-stable. Let
hencek’/K be a finite Galois extension so thdt;, , is semi-stable. Above we have constructed a
homomorphismi i / Pk — 7Z4, namelyr,. Now we uses, : Ix — Ix/Px — Zy. We letu be a
topological generator of-. Let furthermore N = %, which is nilpotent and satisfies the
necessary commutativity relation (same proof as already presented.above

We now define the Weil-Deligne representatWrD(p)@ to be associated withas follows. First
choose som@ lifting the geometric Frobenius, so that every element in the Weil gidpcan be

written as®”o with o € Ix. We let
WD(p)g,(®"0) = p(®"0) exp(s¢(o)N).

Then for example one ha&D(u") = p(u™) exp(—s¢(u™)/s¢(u)log(p(u))) = 1, so Ik, acts triv-
ially. Hence, only the Frobenius action and the actiof;of /- is remembered bWD(p)g, and the
action of i is ’put’ into V.

We remark without proof that the associated Weil-Deligne representatiaa igpmorphism is
independent of the choices made (i.e.do&nd of the identificatiorZ,(1) = Z, used in the homo-
morphsimsy). O

Remark 3.2.15 For the sake of completeness we mention that one can égwipwith a topology.
For this, we consider the exact sequence

O—>IK—>G’KE—>2—>O,
and the exact sequence (of subgroups of the former)
0—>IK—>WK£>Z—>O.

OnZ we put the discrete topology, so thais dense iZ. We consideiVy aspr—1(Z) C Gk with

the subspace topology. Then the Weil grélig is dense irG g and Ik carries its original topology.
The main reason for putting the mentioned topolog¥ian is that one then has a natural bijection

between the set of continuous representatiiiis — GL4(Qy) with the discrete topology o),

together with a nilpotent operata¥ subject to the commutativity rule above and the set of continuous

¢-adic representation®l’x; — GL4(Qy). In the latter set one has the proper subset obtained from the

¢-adic representation&'x — GL4(Qy) by restricting toW .
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3.3 Serre’s conjecture

Whereas in the previous section the césg p was treated, we now have to move#te= p. This
is much more difficult and, in general, requires Fontaine’s theory. W $loavever, only treat the
so-called fundamental characters. These suffice for a formulatiore efeight in Serre’s conjecture.

Fundamental characters

Let K/Q, be a finite extension with residue fielt}. By the discussion in the previous section, we
have an explicit isomorphism

GK"/K™)=[]Ze() = lim (@)= lim  p(Fy) = lim (F)5).

um
l#£p m,(m,p)=1 m,(m,p)=1 n

Moreover, conjugation b¥rob, on G(K"/K""") translates to raising to theth power.

Definition 3.3.1 A character

unr =X
¢: G(K"/K"™) —TF,

is said to be ofeveln if n > 1 is the minimabn such thatp factors throughF .., i.e.

rojectionot =X
proj Fxm T

¢ : G(KY/K") , b

The projection is the natural one dim (F ( ). (A character is of leveh if its order dividesp™ — 1

and notp™ — 1 for any smallerm.)
Thefundamental characters (féf) of leveln are then characters
I = G(K"/K"™) L lim (F) — F. 5 F,

— p P’
T

wherery, ..., 7, are then embeddings df,» into FF,,.

Remark 3.3.2 The fundamental characters of levelare {w,wp,wp2, .. .,1,[)1”"71} for some fixed
fundamental charactep, since the embeddingsare given by the-power Frobenius.

Every character ofl; of level at most: is thei-th power ofy for a unique0d < i < p™ — 1,
since the definition op only differs fromy) by the fact thaﬁF‘;n — F; need not come from a field
embedding but is allowed to be any group homomorphisnﬁ?pxlf\éss cyclic, it is uniquely determined
by the image of a generator, which has orgér— 1

Note that by Exercise 20, the levefundamental character fdf = Q, is the cyclotomic charac-
ter.
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The weight in Serre’s conjecture

We now adopt the situation of Serre’s conjecture 2-dimensional mog representations @fg. The
weight reflects the ramification of the representatiop.dtlence, in this section we consider Galois
representations

pp: Gy — GL(V)

with a 2-dimensionalF,,-vector spacé’, where we writeG), for Gg,. By V= we denote the semi-
simplification ofp,, i.e. of V' seen as a representation(@f.

Lemma 3.3.3 The image op, is of the form{(§ )} or {(9)., (%)} (after conjugation).

Proof. We have seen above that local Galois groups are solvable. The onlysfhgtle sub-

groups ofGLy(FF,) are of the claimed form. This follows from Dickson’s classification of the-sub
groups ofPGLy(F,,). ]

Corollary 3.3.4 OnV*®, the wild inertia groupP, acts trivially.
Furthermore, the tame inertia group, i.e. the quotiént= I,/ P, = G(Qg/@;m) acts onV*s
through two characters, ¢o, i.e.

pplr, + Iy — GL(V*™)

is given asp, (o) = <¢10(°) ¢2(()0)) (after conjugation).

Proof. The first statement immediately follows from Lemma 3.3.3, sincg(in? )} there is no
non-trivial element op-power order.

For the second statement note tliais a profinite group of order coprime 9 meaning that no
finite quotient has order divisible hy Hence, by Maschke’s theorem, its representation theory over

I, is semi-simple. A4, is furthermore abelian, the action 6f is diagonalisable, i.e. given by two
characters, as claimed. O

Proposition 3.3.5 The characters, ¢, are either both of level or of level2. In the latter case,
1 = @b, p2 = ¢} andV is an irreducibleG,-representation.

Proof. Above we have seen that conjugationtayb, on; = G(Qg/@;nr) means raising to the
p-th power. Thus, there is a matrix such that conjuga(iﬁgg") ¢2(()U)) by it equals raising to thg-th
power. If a conjugate of a diagonal matrix is still diagonal, then only the diagentries can have
been permuted (e.g. look at the Jordan form). Consequently, tH@ set} is stable under taking
p-th powers. If¢% = ¢1, theng, is of level1. Then alsap, is of level1.

If ¢} = ¢2, thenV is irreducible. For, if it were not, then there would be>g-invariant 1-
dimensional subspace on which, acts through a character. Hengg,and ¢, would be of levell.

O
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Definition 3.3.6 Let K/Q,, be a finite Galois extension and denote &¥ and K""* the maximal
tamely ramified, respectively unramified subextensiors.ohssume that; (K" /K" = (Z/pZ)*
and thatG(K/K") is an elementary abelian group of exponenti.e. (Z/pZ)™). ThenK" =
K" (¢,) and by Kummer theory there arg, . . ., z,, € K" such thatk = Ktr(:c}/‘”, Py,

ThenK is calledlittle ramifiedif all the x; can be chosen among the unitsiof™. Otherwise,
K is calledvery ramified

c ey

Now we are ready to define the weight in Serre’s conjecture. We poirthatiwhat we present
here is theminimal weightdiscussed by Edixhoven, i.e. the weight that one should use when for-
mulating Serre’s conjecture with Katz modular forms oFgrather than reductions of holomorphic
modular forms.

Definition 3.3.7 Denote by, 4P the two fundamental characters of le@shnd byy the cyclotomic
character.

Letp, : G, — GL(V) be a Galois representation with a 2-dimensionalF,-vector space.
Define¢y, ¢ as above. Theninimal weightk(p,) of p,, is defined as follows.

(I) Supposeh:, po are of level2. After interchangingp, and ¢- there are unique integes < a <
b < p — 1 such that
g1 = andgy = ¢,

Let
k(pp) =1+ pa +b.
(I) Supposes:, ¢- are of levell.

(1) Suppose that, is tamely ramified, i.ep,(P,) = 0. There are unique integefs< a < b <
p — 2 such thatp; = xy* and¢, = \°. Let
k(pp) =1+ pa +b.

(2) Suppose that, is not tamely ramified. Then there are unique integers o < p — 2 and
1 <3 <p-—1suchthat

Ppliy, = (Xoﬁ x*“) '
Leta = min(«, 5) andb = max(«, ).
(a) Suppose # o + 1. Let
k(pp) =1+ pa +b.

(b) Supposes = o+ 1. Let K be the extension @, such thatG i = ker(p,).
(i) SupposeX is little ramified. Let

k(pp) =1+ pa+b.
(il) SupposeX is very ramified. Let

k(pp) =1+pa+b+(p—1).
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Serre’s conjecture
We finish this course by giving the full statement of Serre’s conjecture.
Theorem 3.3.8 (Serre’s conjecture: Khare, Wintenberger, Kisin, Tglor, et al.) Given any irredu-

cible odd Galois representatign: Gg — GLo(F,). There is a (Katz) modular form dry (N (p)) of
weightk(p|a,, ) such that its attached mqdGalois representation is isomorphic to



Exercises

Exercise 1 Prove Proposition 1.1/5.
Exercise 2 Prove Proposition 1.1.6.
Exercise 3 Prove Proposition 1.3/1.

Exercise 4 Let ¢ be an endomorphism of a finite dimensiohalector space. Show that there is the
identity of formal power series

) X 1
exp (ZTT(GZ)T)T) = m'

r=1

Exercise 5 Prove the statements made in Example 1.4.2 (3).

Exercise 6 Let V' be anA-module for ak-algebra A. Assume that’ is finite dimensional as &-
vector space. LeB be the image of the natural map — Endg (V). Show thatV is a faithful
B-module and that

Enda(V) = Endp(V).

We will use this exercise to assume in questions aBiadty (V') that V' is a faithful A-module.

Exercise 7 Prove Proposition 2.1.11. You may use the fact that by Zorn’s leRe@ntains maximal
left ideals.

Exercise 8 Prove Proposition 2.1.13.

Exercise 9 Prove Lemma 2.1.18

Exercise 10 Prove Lemma 2.1.22.

Exercise 11 Prove Lemma 2.1.25. For (b) use transposed matrices.

Exercise 12 Find a counterexample to the statement in Proposition 2.2.3, dropping tlaeat®lity
assumption.
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Exercise 13 Let R be ak-algebra andK /k a field extension. Prove
Mat,,(R) ®; K = Mat, (R ® K).

Exercise 14 LetH be the Hamiltonian quaternion algebra over= R and letV” be its simple module.
Let K = C. Write down an explicit embedding&finto Mat,(C) and compute in Corollary(2.2.12.

Exercise 15(a) Zr(R) = Z(R).

(b) Zgr(T) is a subring ofR.

(c) T C Zgr(T) if and only ifT" is commutative.

(d) T = Zgr(T) if and only ifT is a maximal commutative subring.

Exercise 16 Prove Proposition 2.3/2.

Exercise 17 Let k be a finite fieldF,. Exhibit an example of @-dimensional irreducible group
representation ovet which is not absolutely irreducible.

Exercise 18 Prove Part|(iv) of Remark 2.4.7.

Exercise 19 Let K be a local field andf” an algebraically closed topological field. Lget: G —
GL,(F) be an irreducible Galois representation with finite image. Lebe the smallest extension
of K such thatp|g, is tamely ramified, i.e. lefy; = ker(p), thenL = MEM/K)1,

Thenn(p) = q - n(p|Gr) with ¢ the number of elements 6%/G; .

Exercise 20 Let K = Q,,. The levell fundamental character is the cyclotomic character.
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