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Preface

This lecture gives an introduction to the theory of Galois representations. It consists of the following

three main parts.

• In a long introduction we introduce the necessary terminology, give and sketch principal ex-

amples (e.g. cyclotomic character, Galois representations attached to elliptic curves, abelian

varieties and modular forms) and introduce L-functions.

• The next chapter is on general representation theory. Among other things, the Brauer-Nesbitt

theorem is proved and fields of definition of Galois representations are discussed.

• The third chapter is devoted to the local theory of Galois representations. For anℓ-adic and a

modℓ Galois representation there are huge differences between the local representation atp 6=

ℓ and the one atℓ. We define and discuss conductors for Artin representations andℓ-adic

and modℓ representations away fromℓ. We also introduce Weil-Deligne representations that

serve to classify these. Moreover, also the local representation atℓ is discussed in so far that

fundamental characters are introduced. The goal of this chapter is the precise formulation of

Serre’s modularity conjecture.

• A planned fourth chapter on complex Galois representations could not be realized due to time

constraints. It was planned to focus on the1-dimensional case. This can be used to sketch

a proof of Chebotarev’s density theorem. Finally, it would have been niceto discuss how

the Mellin transformation and its inverse allows to move between modular forms andtheir L-

functions. Consequences for Artin’s conjecture could also have beenbe mentioned.

(These notes should be reworked. G.W.)



Contents

1 Introduction 4

1.1 Representations of a profinite group . . . . . . . . . . . . . . . . . . . . . . .. . . 4

1.2 Galois representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 6

1.3 Principal examples of Galois representations . . . . . . . . . . . . . . . . . .. . . . 12

1.4 L-functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 General representation theory 20

2.1 Simple and semi-simple rings and modules . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Scalar extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27

2.3 Splitting fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Character theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 34

2.5 Definability of Galois representations . . . . . . . . . . . . . . . . . . . . . . . .. 37

3 Local theory 42

3.1 Conductor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.2 Weil-Deligne representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 60

3.3 Serre’s conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . 65

3



Chapter 1

Introduction

In this chapter we will

• define Galois representations,

• introduce basic properties, such as the representation being unramified,

• give some of the motivating geometric examples and

• define L-functions.

1.1 Representations of a profinite group

Definition 1.1.1 LetG be a profinite group and letk be a topological field. By ann-dimensional

representation ofG we mean a continuous homomorphism of groups

ρ : G→ GLn(k).

Example 1.1.2 (1) If G is a finite group with the discrete topology andk are the complex numbers,

then we are in the context of the standard theory of representations of finite groups.

(2) More concretely:Z/NZ→ GL1(C), 1 7→ ζN = e2πi/N .

(3) For a finite groupG theregular representationis defined by the natural leftG-action on the group

algebraC[G].

(4) We have the augmentation exact sequence

0→ IG → C[G]
g 7→1
−−−→ C→ 0

with the aumentation idealIG = (g − 1) � C[G].

The left action ofG on IG gives rise to theaugmentation representation.

4



1.1. REPRESENTATIONS OF A PROFINITE GROUP 5

(5) LetM be anyC[G]-module. ThenG also acts onEndC(M) by (g.σ)(m) = g.(σ(g−1.m)) for

g ∈ G, m ∈ M and σ ∈ EndC(M). This representation is called theadjoint representation

of M . Thinking about this representation in terms of matrices,g acts by conjugation. Hence, the

augmentation representation can be restricted to the matrices of trace0.

We always considerFl with the discrete topology.

Definition 1.1.3 Letρ be ann-dimensional representation ofG overk.

(a) The representationρ is called

• anArtin representationif k ⊆ C (topological subfield),

• an l-adic representationif k ⊆ Ql,

• a modl representationif k ⊆ Fl.

(b) The representationρ is called

• abelianif ρ(G) is an abelian group,

• dihedralif ρ(G) is a dihedral group, etc.

Definition 1.1.4 Twon-dimensional representationsρ1 andρ2 of G overk are calledequivalentif

there exists someM ∈ GLn(k) such that for allg ∈ G

ρ1(g) = Mρ2(g)M
−1.

Proposition 1.1.5 LetG be a profinite group,k a topological field andρ : G→ GLn(k) a represen-

tation. The image ofρ is finite in any of the three cases:

(a) ρ is an Artin representation,

(b) ρ is a modl representation,

(c) G is a pro-p-group andρ is anl-adic representation withl 6= p.

Proof. Exercise 1. 2

Proposition 1.1.6 Let k be a local field with complete discrete valuation ringO, maximal idealm

and residue fieldF = O/m of characteristicl. LetG be a profinite group andρ : G → GLn(k) a

representation. Then there exists a representation

ρ1 : G→ GLn(O)

such that

G
ρ1
−→ GLn(O)

inclusion
−−−−−→ GLn(k)

is equivalent toρ.
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Proof. Exercise 2. 2

Definition 1.1.7 Assume the set-up of Proposition 1.1.6. The composition

ρ : G
ρ1
−→ GLn(O)

natural projection
−−−−−−−−−→ GLn(F)

is calleda modl reduction ofρ.

Remark 1.1.8 The reduction depends on the choice ofρ1. Later we will see (Brauer-Nesbitt theorem)

that the semi-simplification ofρ is independent of this choice.

1.2 Galois representations

We assume infinite Galois theory. A good reference is [Neukirch], SectionIV.1.

Definition 1.2.1 LetK be a field. We denote byGK the absolute Galois group ofK, i.e. the Galois

group of a separable closure ofG.

Letk be a topological field. A representation ofGK overk is called aGalois representation.

If K is a global field (e.g. a number field), then a representation ofGK is called aglobal Galois

representation. If K is a local field, then we speak of alocal Galois representation.

Remark 1.2.2 One often hears aboutℓ-adic Galois representations(or evenelladic ones) as com-

pared top-adic Galois representations. In that case, what people usually mean the following: Let

GK → GLn(k)

be ann-dimensional Galois representation withK a finite extension ofQp andk a finite extension

of Ql. The situationl 6= p is referred to asℓ-adic, and the situationl = p asp-adic.

The behaviour is fundamentally different! Wild inertia (to be explained in a second), which is a

pro-p group, has a finite image in the first case (by Proposition 1.1.5), but it canhave a very large

image in the second case. We will go into that in the chapter on local Galois representations in a bit

more detail.

Before we can go on, we need to recall some algebraic number theory. Westart by the finite

situation. LetK be a number field andp a prime. Then we can completeK at p (with respect to the

non-archimedean absolute value attached top or by completing the ring of integers ofK at p in the

sense of commutative algebra) to obtainKp, a finite extension ofQp, where(p) = Z∩p is the rational

prime number lying underp. ThenKp is a local field with a non-archimedean absolute value| · |,

discrete valuation ring

OKp = Op = {x ∈ Kp | | x |≤ 1}

and valuation ideal

p̂ = {x ∈ Kp | | x |< 1}.
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We shall also writep for p̂. In the sequel we need and assume that the absolute value| · | is correctly

normalized. For the residue fields, we shall use the notation

F(p) = F(Kp) := Op/p̂.

The residue field can also be seen as the quotient of the ring of integers ofK by p.

Now we move on to discuss finite Galois extensions. LetL/K be a finite Galois extension of

number fields andP/p/p prime ideals in these fields. Thedecomposition group ofP is defined as

D(P/p) = {σ ∈ Gal(L/K)|σ(P) = P}.

It is naturally isomorphic to the local Galois group

D(P/p) ∼= Gal(LP/Kp).

Indeed, recall thatL is dense inLP andK in Kp. An automorphismσ ∈ D(P/p) can be uniquely

extended by continuity to an automorphism in the local Galois group. To go in theconverse direction,

one just restricts the automorphism toL.

Whenever we have a Galois extension of local fieldsLP/Kp, we can consider the reduction

mod P of all field automorphisms inGal(LP/Kp), since each of them fixes the valuation rings.

The reduction map

π(LP/Kp) = π(P/p) : Gal(LP/Kp)→ Gal(F(P)/F(p))

is surjective. To see the surjectivity, we considerLP asKp[X]/(f(X)) with f an irreducible polyno-

mial (monic and with coefficients inOp) of degree equal to[LP : Kp]. Let us fix a rootα of f . An

element in the Galois group is uniquely given by the image ofα, i.e. the Galois group consists of the

elementsσβ with σβ(α) = β. The factorization off modp is of the formg(X)e and the reductionα

of α is a root ofg. An elementσ ∈ Gal(F(P)/F(p)) is uniquely given by the imageσ(α), which is

of the formβ with β a root off . Hence,σβ reduces toσ, showing the surjectivity.

A canonical generator ofGal(F(P)/F(p)) is given by the (arithmetic)Frobenius endomorphism

(or Frobenius element) Frob(LP/Kp) = Frob(P/p) which is defined asx 7→ xq with q = #F(p) =

N(p). The integerN(p) is called thenorm ofp. The kernel of the reduction map is called theinertia

groupI(LP/Kp) = I(P/p), so that we have the exact sequence

0→ I(LP/Kp)→ Gal(LP/Kp)
π(LP/Kp)
−−−−−−→ Gal(F(P)/F(p))→ 0.

The field extensionLP/Kp (or the primeP abovep) is unramifiedif and only if I(LP/Kp) is trivial,

i.e. if and only if the reduction mapπ(LP/Kp) is an isomorphism. The inertia groupI(LP/Kp) has

a uniquep-Sylow groupP (LP/Kp) = P (P/p), which is called thewild inertia group. The field

extensionLP/Kp (or the primeP abovep) is tamely ramifiedif P (LP/Kp) is trivial; otherwise, it is

calledwildly ramified.
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Now we investigate what happens if we change the primeP lying above a fixedp in the Galois

extensionL/K. One knows that any other prime is of the formσ(P) with σ ∈ Gal(L/K). Then we

clearly have

D(σ(P)/p) = σ ◦D(P/p) ◦ σ−1

and, consequently, similar statements forI(LP/Kp) andP (LP/Kp). Hence, if the extensionL/K

is unramified (or tamely ramified) at oneP, then so it is at allσ(P), whence we say thatL/K is

unramified (or tamely ramified) at the ’small’ idealp.

SupposeL/K is unramified atp, so that the reduction mapπ(P/p) is an isomorphism. We can

thus considerFrob(LP/Kp) as an element ofD(P/p). We have

Frob(σ(P)/p) = σ ◦ Frob(P/p) ◦ σ−1,

so that the Frobenius elements of the primes lying overp form a conjugacy class inGal(L/K). We

will often write Frobp for either this conjugacy class or any element in it.

Our next goal is to pass to infinite Galois extensions. For that it is often useful to take anem-

bedding point of viewon primes. We fix once and for all algebraic closuresQ andQp for all p. The

field Qp also has an absolute value| · | which is chosen such that the restriction of| · | to any finite

extension ofQp contained inQp gives the standard absolute value on that field.

Let K ⊂ Q be a number field (even if we do not write the inclusion into our fixedQ, we often

mean it). A primep lying abovep is the same as an embedding ofK into Qp. Indeed, we can see

the completionKp as a subfield ofQp; and given an embeddingι : K →֒ Qp we obtain an ideal

p as the inverse image underι of the valuation ideal ofQp. This allows us to generalize the above

discussion and it also enables us to viewQp andC on an equal footing. The role of the ’choice of a

prime abovep’ is now played by embeddings.

Let againK be a number field (insideQ) and fix an embeddingιp : K →֒ Qp. Consider an

embeddingι : Q →֒ Qp extendingιp. It corresponds to choices of prime ideals abovep for every

extensionK ⊆ L ⊂ Q which are compatible with intersection. We also obtain an embedding of

absolute Galois groups

Gal(Qp/Kp) →֒ Gal(Q/K), σ 7→ ι−1 ◦ σ ◦ ι.

Note that this definition makes sense, sinceQ/K is a normal extension. If we have two such embed-

dingsι1 andι2, then the two embeddings of Galois groups are conjugate byι1 ◦ ι
−1
2 , just as in the case

of finite primes.
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Let Kp ⊂ LP ⊂ M
P̃

be finite degree subfields ofQp. We obtain a projective system of short

exact sequences:

0 // I(M
P̃
/Kp) //

��
��

Gal(M
P̃
/Kp)

π(M
P̃
/Kp)

//

��
��

Gal(F(P̃)/F(p)) //

��
��

0

0 // I(LP/Kp) // Gal(LP/Kp)
π(LP/Kp)

// Gal(F(P)/F(p)) // 0.

The projective limit over compact sets is exact, hence, we obtain the exact sequence

0→ IKp → GKp

πp
−→ GF(p) → 0,

whereIKp = Ip is the projective limit over the inertia groups. With the same reasoning we obtain

that the projective limitPKp = Pp over the wild inertia groups is equal to the (necessarily unique)

pro-p Sylow group ofIKp . We again callIKp andPKp theinertia (group)respectively thewild inertia

(group) ofKp (or of p). By Frobp we denote the Frobenius element inGal(Fp/F(p)).

We can see complex conjugation as a variant of this. Suppose there is an embeddingτ∞ of K

into R. Then for any embeddingτ : Q →֒ C extendingτ∞, the map

τ−1 ◦ (complex conjugation inC/R) ◦ τ

defines an element ofGK . It is calleda complex conjugation. Again, all complex conjugations are

conjugate.

Now we come to the very important definition of unramified and tamely ramified Galoisrepresen-

tations. We start with the local case.

Definition 1.2.3 LetKp be a finite extension ofQp and letk be any topological field. Consider a

local Galois representationρ : GKp → GLn(k). It is called

• unramifiedif ρ(IKp ) = 0,

• tamely ramifiedif ρ(PKp ) = 0.

Let ρ be a representation as in the definition and letV be thek-vector space underlying it, i.e. such

thatρ : GKp → GLn(k) = GL(V ). Denote byV IKp the sub-vector spaceV ρ(IKp ) of V consisting of

the elements fixed byIKp . We obtain the unramified representation

ρIKp : GKp → GL(V IKp ) = GLm(k)

for somem ≤ n. Clearly,ρ is unramified if and only ifρ = ρIKp .

Evaluating an unramified representation at the Frobenius element makes sense, since any preimage

underπKp of FrobKp is uniquely determined up to a trivially acting element fromIKp .
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Definition 1.2.4 Thecharacteristic polynomial of Frobenius ofρ is defined as

Φ(ρ)(X) := charpoly(ρIKp (FrobKp )) = det(X − FrobKp |V
IKp ) ∈ k[X].

Very often one sees a slightly different version, namely

Φ̃(ρ)(X) := det(1−X FrobKp |V
IKp ) ∈ k[X].

We have the relation

Φ̃(ρ)(X) = Xn · Φ(ρ)(X−1).

Now we treat the global situation.

Definition 1.2.5 LetK be a number field (insideQ), andk any topological field. Consider a global

Galois representationρ : GK → GLn(k). Let p be a prime ofK corresponding to an embedding

ιp : K →֒ Qp. Choose any embeddingι : Q →֒ Qp extendingιp, giving rise to an embedding ofGKp

into GK . The Galois representationρ is calledunramified (respectively, tamely ramified) atp if the

restriction ofρ toGKp is unramified (respectively, tamely ramified).

We also define thecharacteristic polynomial of Frobenius atp as

Φp(ρ) := Φ(ρ|GKp
) ∈ k[X]

and

Φ̃p(ρ) := Φ̃(ρ|GKp
) ∈ k[X].

Note that these properties do not depend on the choice ofι (for the statement on the characteristic

polynomial we use that conjugate matrices have the same characteristic polynomial).

Definition 1.2.6 Letρ be as in the previous definition withn = 1, 2. Thenρ is calledoddif the image

of all complex conjugations has determinant−1.

I have seen different definitions of odd representations forn > 2, and I am not sure which one is

the ’correct’ one.

The Frobenius elements play a very special role in the theory. Their images determine the Galois

representation uniquely. This is a consequence of Chebotarev’s density theorem.

Recall that the norm of an ideal is denoted asN(p) = #F(p).

Definition 1.2.7 LetK be a number field andS a set of primes ofK.

(a) TheDirichlet density ofS is defined as

d(S) := lim
s→1, s>1

∑
p∈S N(p)−s

∑
pN(p)−s

,

if the limit exists.
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(b) Thenatural density ofS is defined as

δ(S) := lim
x→∞

#{p ∈ S |N(p) < x}

#{p |N(p) < x}
,

if the limit exists.

The existence of the natural density implies the existence of the Dirichlet density, but the converse

does not hold in general.

Theorem 1.2.8 (Chebotarev’s density theorem)Let L/K be a finite Galois extension of number

fields with Galois groupG = Gal(L/K). Let σ ∈ G be any element. We use the notation[σ] to

denote the conjugacy class ofσ in G. Define the set of primes

PL/K(σ) = {p | [Frobp] = [σ]}.

The Dirichlet density of this set is

d(PL/K(σ)) =
#[σ]

#G
.

In other words, the Frobenius elements are uniformly distributed over the conjugacy classes of the

Galois group.

We will at least give a precise sketch of the proof later this lecture and we will also present

important applications. Here we provide a first one concerning Galois representations.

Corollary 1.2.9 Let K be a number field,k a topological field andρ : GK → GLn(k) a global

Galois representation that ramifies at most at finitely many primes ofK. Then the set

{ρ(Frobp)|p unramified}

is a dense subset of the imageρ(GK).

In other words, the Frobenius elements topologically generate the image ofthe Galois repre-

sentation. Hence, the Galois representation is uniquely determined by the images of the Frobenius

elements.

Proof. Recall that in a profinite groupG a subsetX ⊂ G is dense inG if and only if the image of

X under all natural projectionsG ։ Gi is equal toGi.

We apply this withG = ρ(GK) andX the set of Frobenius images. All the finite quotients

of G correspond to finite Galois extensions and, consequently, Chebotarev’s density theorem (Theo-

rem 1.2.8) implies that the image ofX in any finite quotient is all of it. 2
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1.3 Principal examples of Galois representations

Cyclotomic character

LetK be a field of characteristic0 andK a separable closure. Let

µm(K) = K
×
[m] = ker

(
K

× x 7→xm
−−−−→ K

×)

be them-torsion points ofK
×

, i.e. them-th roots of unity. By choosing acompatible system of roots

of unityζln we obtain the isomorphism of projective systems

Z/lnZ ∼

17→ζln
//

17→1

��
��

µln(K)

x 7→xl

��
��

Z/ln−1Z ∼

17→ζln−1
// µln−1(K),

giving rise to an isomorphism

Zl ∼= lim←−
n

µln(K
×
) =: Tl(K

×
).

The object on the right is called thel-adic Tate module ofK
×

. Note thatGK acts compatibly on all

objects on the right.

We can hence define a Galois representation:

χl : GK
σ 7→

(
x 7→σ(x)

)
−−−−−−−−−→ Aut(Tl(K

×
)) ∼= Z×

l = GL1(Zl) →֒ GL1(Ql).

It is called thel-adic cyclotomic character (overK). Alternatively, one can let

Vl(K
×
) := Ql ⊗Zl Tl(K

×
),

yielding an isomorphismQl
∼= Vl(K

×
).

The standard example is withK = Q.

Proposition 1.3.1 Let χl be the cyclotomic character overQ. It is a 1-dimensional global Galois

representation, which is unramified at all primesp 6= l and is characterized there by

χl(Frobp) = p.

More generally, we have

σ(ζ) = ζχl(σ)

for all ζ ∈ µln(K
×
), all n and all σ ∈ GQ. In particular, the image of any complex conjugation is

equal to−1.

Proof. Exercise 3. 2
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Abelian varieties

LetK be a field andA an abelian variety of dimensiong overK. Let

A(K)[m] = ker
(
A(K)

P 7→m·P
−−−−−→ A(K)

)

be them-torsion points ofA(K). One defines thel-adic Tate module ofA by

Tl(A) := lim←−
n

A(K)[ln]

with respect to the projective system

A(K)[ln] ։ A(K)[ln−1], P 7→ l · P.

If l is not the characteristic ofK, then, as is well known, one can compatibly identifyA(K)[ln] with

(Z/lnZ)2g, yielding an isomorphism

Tl(A) ∼= (Zl)
2g.

One often puts

Vl(A) := Tl(A)⊗Zl Ql
∼= (Ql)

2g.

The absolute Galois groupGK acts onTl(A) and onVl(A), since it compatibly acts on all the

A(K)[ln]. This yields theGalois representation attached toA:

ρA : GK → AutQl(Vl(K)) ∼= GL2g(Ql).

Theorem 1.3.2 LetK be a number field. ThenρA is unramified at all primesp ofK at whichA has

good reduction.

We will not prove this theorem in this course. Here is a more precise theoremfor the special case

of elliptic curves.

Theorem 1.3.3 LetK be a number field andE an elliptic curve overK. Let p be a prime ofK at

whichE has good reduction. ThenρE is unramified atp and we have

Φp(ρE) = X2 − apX +N(p)

and

Φ̃p(ρE) = 1− apX +N(p)X2

whereap ∈ Z such that

#E(F(p)) = N(p) + 1− ap = Φp(ρE)(1).

Furthermore, the determinant ofρE is equal to the cyclotomic character ofK.
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Modular forms

The great importance of modular forms for modern number theory is due to thefact that one may

attach a2-dimensional representation of the Galois group of the rationals to each normalised cuspidal

eigenform. The following theorem is due to Shimura fork = 2 and due to Deligne fork ≥ 2.

Theorem 1.3.4 Letk ≥ 2,N ≥ 1, l a prime not dividingN , andǫ : (Z/NZ)× → C× a character.

Then to any normalised eigenformf ∈ Sk(N, ǫ ; C) with f =
∑

n≥1 an(f)qn one can attach a

Galois representation of the rationals

ρf : GQ → GL2(Qp)

such that

(i) ρf is irreducible (to be explained later),

(ii) ρf is odd,

(iii) for all primes p ∤ Nl the representationρf is unramified atp and

Φp(ρf )(X) = X2 − ap(f)X + ǫ(p)pk−1.

By reduction and semi-simplification one obtains the following consequence.

Theorem 1.3.5 Letk ≥ 2,N ≥ 1, l a prime not dividingN , andǫ : (Z/NZ)× → F
×
l a character.

Then to any normalised eigenformf ∈ Sk(N, ǫ ; C) with f =
∑

n≥1 an(f)qn and to any prime

idealP of the ring of integers ofQf = Q(a(f) : n ∈ N) with residue characteristicl, one can attach

a modl Galois representation

ρf : GQ → GL2(Fp)

such that

(i) ρf is semi-simple,

(ii) ρf is odd,

(iii) for all primes p ∤ Nl the representationρf is unramified atp and

Φp(ρf )(X) ≡ X2 − ap(f)X + ǫ(p)pk−1 mod P.

There is also a weight one version of these theorems due to Deligne and Serre.

Theorem 1.3.6 LetN ≥ 1 andǫ : (Z/NZ)× → C× a character.

Then to any normalised eigenformf ∈ S1(N, ǫ ; C) with f =
∑

n≥1 an(f)qn one can attach a

Galois representation of the rationals

ρf : GQ → GL2(C)

such that



1.3. PRINCIPAL EXAMPLES OF GALOIS REPRESENTATIONS 15

(i) ρf is odd,

(ii) for all primesp ∤ N the representationρf is unramified atp and

Φp(ρf )(X) = X2 − ap(f)X + ǫ(p).

Now we will sketch the construction of these Galois representations. Later inthe course we may

go into more details.

Let f =
∑

n≥1 anq
n ∈ Sk(Γ1(N)) be a Hecke eigenform. LetT be the sub-Q-algebra inside

EndC(Sk(Γ1(N))) generated by all Hecke operatorsTn with (n,N) = 1. It is an Artin Q-algebra

and hence decomposes as the direct product over the localizations at its maximal ideals:

T ∼=
∏

m

Tm.

Recall that

m = ker(T
Tn 7→an−−−−→ C)

is such a maximal ideal. The residue fieldT/m is equal to the coefficient fieldQf := Q(an|(n,N) =

1), as one easily sees. If one assumes thatf is a newform, thenTm
∼= Qf . We shall do that from now

on.

From the Eichler-Shimura theorem it follows that the localizationH1
par(Γ1(N),Q[X,Y ]k−2)m is

a Tm = Qf -vector space of dimension2. This we will explain now. We compute its dimension after

tensoring it overQ with C:

C⊗Q H1
par(Γ1(N),Q[X,Y ]k−2)m

∼=
∏

σ:Qf →֒C

H1
par(Γ1(N),C[X,Y ]k−2)σ(m̃),

with m̃ = ker(C ⊗Q T
Tn 7→an−−−−→ C) (this is not so difficult to check). Hence, it suffices to show that

theC-dimension ofH1
par(Γ1(N),C[X,Y ]k−2)σ(m̃) is equal to2. This is an easy consequence of the

Eichler-Shimura isomorphism

H1
par(Γ1(N),C[X,Y ]k−2)σ(m̃)

∼= Sk(Γ1(N))m⊕ Sk(Γ1(N))m.

From theq-expansion pairing it follows that the dimension ofSk(Γ1(N))m is equal to the dimension

of (C⊗Q T)σ(m̃), which is1 for a newform.

The Galois representation comes from aGQ-action onQl ⊗Q H1
par(Γ1(N),Q[X,Y ]k−2)m. Since

Ql ⊗Q Qf
∼=

∏

λ|l

Qf,λ,

we obtain for everyλ | l a map

GQ → GL2(Qf,λ) →֒ GL2(Ql).
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We shall not explain the properties of this representation here, as it involves too much material for this

introduction. Nevertheless, we shall try to motivate why there is a Galois action.

One needs to get geometry into the business. Using thatH, the upper half plane, is simply con-

nected and, sinceΓ1(N) acts with finite stabilizers on it (forN ≥ 4 even with trivial stabilizers), one

can identify

H1(Γ1(N),Q[X,Y ]k−2) ∼= H1(Y1(N),Q[X,Y ]k−2),

whereQ[X,Y ]k−2 is the locally constant sheaf onY1(N) (seen as a Riemann surface) which in

small enough neighbourhoods looks likeQ[X,Y ]k−2. Formally, this sheaf can be obtained as the

direct image sheaf(π∗Q[X,Y ]k−2)
Γ1(N), whereπ : H ։ Y1(N) is the natural projection and now

Q[X,Y ]k−2 stands for the constant sheaf onH with a suitableΓ1(N)-action (we do not go into details

here). By a suitable extension to the cusps one finds an isomorphism

H1
par(Γ1(N),Q[X,Y ]k−2) ∼= H1(X1(N),Q[X,Y ]k−2).

It is very important to note that the Hecke operators respect this isomorphism.

In general, one now has the comparison theorem

Ql ⊗Q H1(X1(N)(C),Q[X,Y ]k−2)m
∼=

∏

λ|l

H1
et(X1(N)Q ⊗Q Q,Ql[X,Y ]k−2)mλ

with a suitable étale sheaf and the decompositionQl ⊗Q

∏
λ|l Tm

∼= Tmλ
∼=

∏
λ|l Qf,λ. On the right

hand side, one finds the desiredGQ-action.

If k = 2, there is a slightly more down to earth description, which avoids the use of étalecoho-

mology. We explain this version now. LetX = X1(N)(C) the modular curve as a Riemann surface.

Consider the exact sequence of sheaves:

0→ µn,X → O
×
X

x 7→xn
−−−−→ O×

X → 0.

We explain. Exactness of a sequence of sheaves is tested on the stalks. Taking ann-th root of a

non-zero holomorphic function in some small enough neighbourhood is always possible, giving the

surjectivity. We defineµn,X as the kernel. We claim that it is a locally constant sheaf, which in small

enough neighbourhoods looks likeµn, then-th roots of unity. This is very easy to see: then-th power

of a functionφ : U → C with U ⊂ X open and connected is identically1 if and only if φ(x) = ζ for

someζ ∈ C with ζn = 1 and allx ∈ X. We now pass to the long exact sequence in cohomology

0→ µn(C)→ C× x 7→xn
−−−−→ C× → H1(X,µn,X)→ H1(X,O×

X)
x 7→xn
−−−−→ H1(X,O×

X),

usingOX(X) = C, sinceX is connected. We obtain

H1(X,µn,X) ∼= ker
(
H1(X,O×

X)
x 7→xn
−−−−→ H1(X,O×

X)
)
.

Sinceµn,X is locally constant, one finds

H1(X,µn,X) ∼= H1
par(Γ1(N), µn) ∼= H1

par(Γ1(N),Z/nZ),



1.4. L-FUNCTIONS 17

subject to some identification between then-th roots of unity andZ/nZ.

Next, we identifyker
(
H1(X,O×

X)
x 7→xn
−−−−→ H1(X,O×

X)
)

with Jac(X)(C)[n]. One has an isomor-

phism

Pic(X) ∼= H1(X,O×
X)

(see e.g. Liu’s book on ’Arithmetic Geometry’), under whichx 7→ xn on the right becomes multipli-

cation byn on the left. All together, we now have

H1
par(Γ1(N),Z/nZ) ∼= ker

(
Pic(X)

P 7→nP
−−−−→ Pic(X)

)
.

Elements in then-torsion ofPic(X) are necessarily of degree0, whence

H1
par(Γ1(N),Z/nZ) ∼= Pic(X)[n] = Pic0(X)[n] = Jac(X)[n].

Recall that, so far, we have takenX overC (a Riemann surface), so thatJac(X) is a complex abelian

variety. But, every torsion point is defined over the algebraic numbers, whence we finally get

H1
par(Γ1(N),Z/nZ) ∼= Jac(XQ)(Q)[n],

which carries a naturalGQ-action. Now we replacen everywhere byln and pass to the projective

limit:

H1
par(Γ1(N),Zl) ∼= Tl(Jac(XQ))

and

H1
par(Γ1(N),Ql) ∼= Vl(Jac(XQ)).

Of course, these identifications are compatible with the Hecke action, so that we indeed get aGQ-

action as desired.

1.4 L-functions

We will not go into detail on L-functions in this introduction and will mainly restrictourselves to

L-functions of Artin representations.

Definition 1.4.1 Letk be a topological field. LetK be a number field and

ρ : GK → GLn(k)

a global Galois representation. Suppose thatΦ̃p(ρ) ∈ Q[X], e.g. ifk = Q ⊂ C.

Thepartial L-function ofρ is defined as the (formal)Euler product

L(ρ, s) =
∏

p unramified

1

Φ̃p(ρ)(N(p)−s)
.

If k = C, i.e. if ρ is an Artin representation, we define theL-function ofρ as

L(ρ, s) =
∏

p

1

Φ̃p(ρ)(N(p)−s)
.
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Exercise 4 illustrates the factors appearing in the L-functions. The correct choice of the factors of

the L-function of anl-adic representation at ramified primes will be discussed in the chapter on the

local theory. It involves Weil-Deligne representations; more precisely, at ramified primes away froml

one also needs to restrict to the part where the monodromy operator is zero.

Example 1.4.2 (1) LetK be a number field and1 : GK → GLn(C) be the trivial Galois represen-

tation (i.e.1(g) = 1 for all g ∈ G). Then

L(1, s) = ζK(s),

the Dedekind-ζ-function ofK. This is a special case of (3).

(2) LetL/K be a Galois extension of number fields with Galois groupG = Gal(L/K). Then we

have

ζL(s) = ζK(s)
∏

ρ 6=1

L(ρ, s)dim ρ,

where the product runs over all irreducible representations ofG. This is nearly a formal conse-

quence of the representation theory of finite groups. If time allows, we willprove it in the chapter

on complex Galois representations.

(3) Letχ : GQ → C× be a1-dimensional global Galois representation. ThenL(χ, s) converges

absolutely forRe(s) > 1 and satisfies the identity

L(χ, s) =
∞∑

n=1

χ(n)

ns
=

∏

p

1

1− χ(p)p−s
.

Hence, the L-function is equal to the Dirichlet series ofχ. These statements are proved in Exer-

cise 5.

(4) LetE be an elliptic curve overQ. Its L-function coincides with the L-functionL(ρE , s), if one

adds the correct factors at the ramified primes.

We now apply Exercise 4 to the Galois representationsVi = Hi
et(E,Qℓ) for i = 0, 1, 2 with

φ = Frobp.

For i = 0 we haveV0 = Qℓ with the trivial Galois action, sinceE has a single connected

component. Thus, we obtain

1

1−X
= exp

( ∞∑

r=1

Xr

r

)
= exp

( ∞∑

r=1

Tr(Frobrp |V0)
Xr

r

)
.

For i = 2, we note thatFrobrp acts as multiplication bypr onV2, due to the twisting of Poincaré

duality. This gives

1

1− pX
= exp

( ∞∑

r=1

(pX)r

r

)
= exp

( ∞∑

r=1

Tr(Frobrp |V2)
Xr

r

)
.



1.4. L-FUNCTIONS 19

The most interesting case isi = 1. One hasV1 = Vℓ(E). Writing #E(Fp) = p + 1 − ap,

Theorem 1.3.3 yields

1

1− apX + pX2
= exp

( ∞∑

r=1

Tr(Frobrp |V1)
Xr

r

)
.

Now we use theLefshetz fixed point formula

#E(Fpr) =
2∑

i=0

(−1)i
(
Tr(Frobrp |Vi)

)

in order to compute the zeta-function ofE:

Z(E,X) = exp
( ∞∑

r=1

#E(Fpr)
Xr

r

)

= exp
( ∞∑

r=1

2∑

i=0

(−1)i
(
Tr(Frobrp |Vi)

)Xr

r

)

=
2∏

i=0

(
exp

( ∞∑

r=1

(
Tr(Frobrp |Vi)

)Xr

r

))(−1)i

=
1− apX + pX2

(1−X)(1− pX)
.

Hence, the number of points#E(Fpr) for all r is encoded in1−apX+pX2

(1−X)(1−pX) ! Thus, computing

the number of points ofE over finite extensions ofFp reduces to computing the zeta-function

Z(E,X), and hence to computingap. Moreover, after Wiles we know thatE comes from a

modular formf with ap = ap(f). So, it suffices to computeTp onf .

(5) Letf be a newform of the form
∑∞

n=1 anq
n onΓ0(N). Its L-function is defined as

L(f, s) =
∞∑

n=1

an
ns
.

If one adds the correct factors at the ramified primes, one has the identity

L(f, s) = L(ρf , s).

This example will be treated in more detail in the chapter on complex Galois representations.

We finish this introductory chapter by stating a famous conjecture of Emil Artin.

Conjecture 1.4.3 (Artin Conjecture) LetK be a number field and

ρ : GK → GLn(C)

a non-trivial Artin representation.

ThenL(ρ, s) admits an analytic continuation to the whole complex plane.

It is known that there always is a meromorphic continuation. The conjecturewill be discussed in

more detail in the chapter on complex Galois representations.



Chapter 2

General representation theory

Throughout this chapter, I try to stick to the following conventions:

• R is a ring, sometimes commutative, sometimes not.

• K/k are fields.

• k-algebras are usually calledA.

• Simple modules are calledS.

• A-modules are usually calledV andR-modulesM .

We will, however, always explain the symbols appearing. I am writing these lines only to remind

myself of my own notation.

Definition 2.0.4 LetR be a ring. We define thecentre ofR as

Z(R) := {r ∈ R | rt = tr ∀ t ∈ R}.

LetR be a commutative ring. AnR-algebra is a ring homomorphismR→ A such that the image

ofR is contained in the centreZ(A) ofA.

A k-algebraA is calledcentralif Z(A) = k.

LetR be a commutative ring. Whenever we have a group representation

ρ : G→ GL(V ),

whereV is a finitely generatedR-module, we can make it into an algebra representation, i.e. an

R-algebra homomorphism

R[G]→ EndR(V ).

This allows us to seeV as anR[G]-module. This is the point of view that we are going to adopt

throughout this chapter.

20
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2.1 Simple and semi-simple rings and modules

We start by introducing some definitions.

Definition 2.1.1 LetR be a ring. AnR-moduleM is said to befaithful if the onlyr ∈ R such that

rm = 0 for all m ∈M is r = 0.

Definition 2.1.2 LetR be a ring.

(a) The ringR is calledsimpleif it does not have any two-sided ideals except(0) andR.

(b) TheJacobson radicalJac(R) ofR is defined as the intersection of all maximal left ideals ofR.

(c) The ringR is calledsemi-simpleif Jac(R) = (0).

We also have the corresponding definitions for modules.

Definition 2.1.3 LetR be a ring andM a leftR-module.

(a) M is calledsimpleor irreducibleif it does not have any leftR-submodules except(0) andM .

(b) M is calledsemi-simple(or completely reducible) if it is the direct sum of simple modules.

(c) M is calledindecomposableif any direct sum decompositionM ∼= N ⊕ P implies thatP = (0)

or M = (0).

Remark 2.1.4 In terms of matrices, a representation

G→ GLn(k)

with k a field is irreducible if and only if the matrices cannot be conjugated into a non-trivial block

form like this 


A * . . . *

0 B . . . *

. . . . . . . . . . . .

0 0 . . . Z




with only zeros below the boxed diagonal. If all the∗s are0, a representation of the above form is

semi-simple.

Definition 2.1.5 Let R be a ring. It is called adivision ring if all elements different from0 are

invertible.

Remark 2.1.6 Division rings are simple rings, since all left ideals different from(0) are the whole

ring.

Without proof we mention two classical theorems, which we will only need at one place.
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Definition 2.1.7 LetR be a ring. TheGrothendieck groupC(R) is defined as the free abelian group

on the set of finitely generated simple leftR-modules.

Theorem 2.1.8 (Jordan-Hölder) Letk be a field,A ak-algebra andV anA-module which is a finite

dimensionalk-vector space (or, more generally,V should be anR-module that is both Artinian and

Noetherian).

ThenV has a composition series, i.e. a descending chain of submodules

V = V0 ) V1 ) V2 ) · · · ) Vn ) (0)

such that all subquotientsVi/Vi+1 are simpleA-modules.

Any two composition series have the same composition factors (i.e. subquotients). Hence, the

Grothendieck group can also be defined as the free abelian group on the set of finitely generated left

R-modules, modulo the relationV −A−B for all short exact sequences0→ A→ V → B → 0.

Proof. (See [CurtisReiner], Theorems 13.4 and 13.7.) The proof is not difficultand does not need

anything of what will be developed during this lecture. Omitted. 2

Theorem 2.1.9 (Krull-Schmidt) Letk be a field,A a k-algebra andV anA-module which is a finite

dimensionalk-vector space (or more generallyV should be anR-module such that all submodules

of V are both Artinian and Noetherian). Then any decomposition

V =
n⊕

i=1

Vi

into indecomposable modules has the same lengthn and is unique up to permutation.

Proof. (See [CurtisReiner], Theorem 14.5.) The proof is not difficult and does not need anything

of what will be developed during this lecture. Omitted. 2

Theorem 2.1.10 (Schur’s Lemma)LetR be a ring.

(a) LetS be a simpleR-module. ThenD = EndR(S) is a division ring, i.e. every non-zero element

is invertible.

(b) LetS, T be simpleR-modules. Then

HomR(S, T ) ∼=




D if T ∼= S,

0 otherwise

withD the division ringEndR(S).

Proof. (a) All non-zero endomorphisms are isomorphisms, since the kernel and the image are

non-trivial submodules.

(b) Clear. 2
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Proposition 2.1.11 LetR be a ring.

(a) LetM be a leftR-module. The following conditions are equivalent:

(i) M is semi-simple.

(ii) M is the sum of simple modules.

(iii) Every submoduleN ofM is a direct summand.

(b) Every submodule and every quotient of a semi-simple module is semi-simple.

Proof. Exercise 7. 2

We can and will often considerR as a leftR-module in the natural way. Then we have the

translation table:

• Left ideals = left modules.

• Minimal left ideals = simple left modules.

Lemma 2.1.12 LetR be a ring. Then we have the bijection

{m ⊂ R maximal left ideals} ↔ {M simpleR-modules up to isomorphism}

m 7→ R/m

ker(φx)←[ M,

where inM we choose any non-zero elementx and defineφx : R
r 7→rx
−−−→M .

Proof. This is very easy. The maps are clearly inverses to each other and one checks that they are

well-defined. 2

Let us recall for the following proposition that an idealn of some ring is callednilpotentif there

is an integern such thatnn = (0).

Proposition 2.1.13 LetR be a ring andk a field.

(a) The Jacobson radicalJac(R) is a two-sided ideal, which contains all nilpotent two-sided ideals.

(b) Suppose thatR is a finite dimensionalk-algebra. ThenJac(R) is the maximal nilpotent two-sided

ideal.

(c) Suppose thatR is a finite dimensionalk-algebra. ThenR is semi-simple as a leftR-module if and

only ifR is semi-simple.

Proof. Exercise 8. 2

Corollary 2.1.14 LetR be a semi-simple ring. Every leftR-module is semi-simple.
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Proof. By Proposition 2.1.11 quotients of semi-simple modules are semi-simple. It is clear that

free modules are semi-simple, as direct sums of semi-simple modules are. Now it suffices to represent

a givenR-moduleM as the quotient of a free module. 2

Remark 2.1.15 LetR be a ring. The simpleR-modules are equal to the simpleR/ Jac(R)-modules.

Indeed, letM be a simpleR-module. The kernel of the mapφx of Lemma 2.1.12 is a maximal

ideal, and hence contains the Jacobson radicalJac(R). Thus, the Jacobson radical acts trivially

onM . Conversely, everyR/ Jac(R)-module is anR-module.

A very important example of a semi-simple ring is provided by Maschke’s theorem.

Theorem 2.1.16 (Maschke)Let k be a field andG a finite group. Then the group algebrak[G] is

semi-simple if and only if the order ofG is coprime to the characteristic ofk.

Proof. This proof is quite easy. Omitted. 2

Lemma 2.1.17 Let K/k be a field extension andA a finite dimensionalk-algebra. Consider the

natural embeddingA
a 7→1⊗a
−−−−→ K ⊗k A. The natural map

A/ Jac(A)→ K ⊗k A/ Jac(K ⊗k A)

is an injection. In particular, ifK ⊗k A is a semi-simpleK-algebra, thenA is already semi-simple.

Proof. We use Proposition 2.1.13 and show thatJac(K ⊗k A) ∩ A = Jac(A). The intersec-

tion Jac(K ⊗k A) ∩ A is clearly nilpotent, whence we have the inclusion ’⊆’. The other one is

obtained from the fact that the image of any nilpotent ideal under the natural embedding lies in a

nilpotent ideal, whenceJac(A) lands inJac(K ⊗k A)∩A. The final statement follows directly from

Proposition 2.1.13. 2

Lemma 2.1.18 LetD be a finite dimensional division algebra over a fieldk.

(a) Matr(D) is the direct sum ofr-copies ofDr (column vector) as a leftMatr(D)-module.

(b) Dr is a simpleMatr(D)-module.

(c) Matr(D) is a simplek-algebra with centreZ(D).

(d) Matr(Mats(D)) ∼= Matrs(D).

Proof. Exercise 9. 2

This lemma illustrates the following propositions.

Proposition 2.1.19 LetR be a semi-simple ring. It has only a finite number of non-isomorphic mini-

mal left idealsa1, . . . , as. Let

Ri =
∑

a∼=ai

L
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be the sum over all minimal left idealsa which are isomorphic toai. ThenRi is a two-sided ideal

ofR. EachRi is also a simple ring. Moreover, we have a ring isomorphism

R ∼=

s∏

i=1

Ri.

If ei is the unit inRi, then1 = e1 + · · ·+ es. Theei form a complete set of orthogonal idempotents.

If M is anyR-module, then

M =
s⊕

i=1

RiM =
s⊕

i=1

eiM

and eiM is the submodule ofM which consists of the sum of all its simple submodules that are

isomorphic toai.

Proof. (See [Lang], Theorems 4.3 and 4.4.) Omitted. 2

Corollary 2.1.20 (a) Every simple submodule of a semi-simple ringR is isomorphic to one of the

minimal left ideals ofR.

(b) A simple ring has exactly one simple module up to isomorphism. 2

Proposition 2.1.21 LetR be a simple ring. Then as anR-module,R is a finite direct sum of simple

left ideals. There are no two-sided ideals except0 andR. Any two simple left ideals are isomorphic

as leftR-modules via right multiplication by a suitable element inR.

Proof. (See [Lang], Theorem 5.2.) Omitted. 2

Lemma 2.1.22 Letk be a field andV a finite dimensionalk-vector space. LetR be a subalgebra of

Endk(V ).

ThenR is semi-simple if and only ifV is a semi-simpleR-module.

Proof. Exercise 10. 2

Proposition 2.1.23 LetR be any ring (not necessarily commutative) andM a leftR-module. Then

EndR(Mn) ∼= Matn(EndR(M)).

More generally: LetM be an arbitrary semi-simpleR-module, say, of the formM =
⊕

i S
mi
i

with Si pairwise non-isomorphicR-modules. Then

EndR(M) ∼=
⊕

i

Matmi(EndR(Si)).

Proof. (See [Kersten], Satz I.1.13.) Here is the basic idea from which everyonecan easily recon-

struct the proof. We associate a matrix inMatn(EndR(M)) to f ∈ EndR(Mn). The entry at(i, j)

of the matrix is defined as

M
injection intoi-th factor
−−−−−−−−−−−−→Mn f

−→Mn projection fromj-th factor
−−−−−−−−−−−−−−→M.

The final statement follows from Schur’s lemma (Theorem 2.1.10). 2
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Definition 2.1.24 LetR be a ring. Theopposite ringRopp is defined as the ring having the same

elements asR with order of multiplication reversed, i.e.Ropp = {r̃|r ∈ R} and r̃s̃ := s̃r.

Lemma 2.1.25 (a) LetR be a ring. The ringRopp is isomorphic as a ring toEndR(R) via mapping

r to right multiplicationτr : R→ R with τr(s) = sr.

(b) LetD be a division algebra. The opposite ofMatn(D) is isomorphic toMatn(D
opp) via trans-

posing the matrices.

Proof. Exercise 11. 2

Theorem 2.1.26 (Wedderburn) Let k be a field. LetA be a simplek-algebra. As a leftA-module

A ∼= Sr with the unique simple leftA-moduleS for some integerr ≥ 1. LetD be the division

algebraD = EndA(S). Then

A ∼= Matr(D
opp).

Proof. By Lemma 2.1.25, the oppositeAopp is isomorphic toEndA(A). This, however, is

the direct sum of, say,r copies of the simple leftA-moduleS. By Proposition 2.1.23,Aopp ∼=

Matr(EndA(S)) follows. But, by Schur’s Lemma 2.1.10,EndA(S) ∼= D for some division alge-

braD. Further, again by Lemma 2.1.25,A is isomorphic toMatr(D
opp), establishing the proposition.

2

Corollary 2.1.27 LetA be a semi-simple finite dimensional algebra over a fieldk. ThenA is of the

form
∏s
i=1 Matr(Di) withDi division algebras.

Proof. This follows directly from Theorem 2.1.26 and Proposition 2.1.19. 2

Corollary 2.1.28 LetA be a simple algebra over a fieldk. Then its centreZ(A) is a fieldK, and we

can considerA as aK-algebra. As such it is central simple.

Proof. Theorem 2.1.26 reduces the statement to Lemma 2.1.18, since the centre of a division

algebra is a field. 2

Theorem 2.1.29 (Skolem-Noether)Let k be a field,A andB finite dimensional simplek-algebras

andf, g : B → A two k-algebra homomorphisms. If the centre ofA is equal tok, then there is a

unit u in A such that for allb ∈ B

g(b) = uf(b)u−1.

Proof. (See [Kersten], Satz 8.2.) Omitted. 2

Corollary 2.1.30 LetA be a semi-simplek-algebra andφ ∈ Autk(A) an automorphism that is trivial

on the centre ofA. Thenφ is inner.
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Proof. By Skolem-Noether (Theorem 2.1.29) any automorphism of a central simple algebra is

inner. LetA ∼=
∏
Ai with Ai simple. Letei be the element ofA that is the identity ofAi. All the ei

lie in the centre ofA and hence are left unchanged under the application ofφ. Thus,φ descends to an

automorphism ofAi. NowAi can be considered as an algebra over its centre, as such it is a central

simple algebra. Hence, every restriction ofφ is inner, and, consequently, so isφ. 2

Corollary 2.1.31 Letk be a field andr ≥ 1 an integer. Then every automorphism ofMatr(k) comes

from conjugation by an invertible matrix. 2

2.2 Scalar extensions

Definition 2.2.1 LetK/k be a field extension,A a finite dimensionalk-algebra andV anA-module.

Thescalar extension ofA by K is defined as theK-algebraAK := K ⊗k A and the one ofV as

theAK-moduleVK := K ⊗k V . In terms of the representationA → Endk(V ), this gives rise to

AK → EndK(VK).

Remark 2.2.2 LetG be a (profinite) group,k a field andV1 andV2 two k[G]-modules. Thetensor

product representationofV1 andV2 is defined asV1⊗k V2 with thek[G]-action given byg(v1⊗v2) =

gv1 ⊗ gv2.

In terms of representations ofk[G]-algebras we obtain ak-algebra homomorphism

k[G]
g 7→(g,g)
−−−−−→ k[G×G] ∼= k[G]⊗k k[G]→ Endk(V1 ⊗k V2).

If V2 is a1-dimensional representation, then the tensor product representation iscalled atwist.

Proposition 2.2.3 LetA be a finite dimensional semi-simplek-algebra. Then for any finite separable

extensionK/k, theK-algebraK ⊗k A = AK is semi-simple.

Proof. (See [Lang], Theorem XVII.6.2.) By Lemma 2.1.17 we may assume thatK/k is a Galois

extension and we letG = Gal(K/k). We will show thatN := Jac(K ⊗k A) is zero.

We letG act onK ⊗k A by σ(x ⊗ a) = σ(x) ⊗ a. We see thatσN = N for anyσ ∈ G, asN

is maximal nilpotent by Proposition 2.1.13. Letz ∈ N be any element. It can be written in the form

z =
∑n

i xi ⊗ ai with {a1, . . . , an} forming a basis ofA andxi ∈ K. Now we use the traceTrK/k to

make an element inJac(A). Let y ∈ K be any element. We have

TrK/k(yz) = TrK/k(
∑

i

yxi ⊗ ai) =
∑

σ∈G

∑

i

σ(yxi)⊗ ai

=
∑

i

TrK/k(yxi)⊗ ai = 1⊗
∑

i

TrK/k(yxi)ai.

This element is still inN , but also inA, and hence inJac(A) by Lemma 2.1.17. It follows that it is

equal to0, whenceTrK/k(yxi) = 0 for all i and ally. Since by separabilityTrK/k is a non-degenerate

bilinear form, it follows thatxi = 0 for all i, whencez = 0, as desired. 2



28 CHAPTER 2. GENERAL REPRESENTATION THEORY

If A is ak-algebra andK/k a field extension, then

K ⊗k Matn(A) ∼= Matn(K ⊗k A)

(see Exercise 13).

Theorem 2.2.4 LetR be a commutative ring, letA andB beR-algebras and letV andW beA-

module. Suppose thatB is flat overR andV a finitely presentedA-module. Then the natural map

B ⊗R HomA(V,W )→ HomB⊗RA(B ⊗R V,B ⊗RW )

is anR-isomorphism.

Proof. (See [Karpilovsky], Theorem 3.5.2.) Omitted. 2

Lemma 2.2.5 Let k be a field andA a k-algebra. LetK/k be a field extension. LetW be a simple

AK-module. Then there exists a simpleA-moduleV such thatW occurs as a composition factor of

VK .

Proof. We know thatW occurs as a composition factor ofAK . Let Vi be a composition series

of A. Then a composition series ofAK is obtained by taking the composition factors of every(Vi)K .

2

Lemma 2.2.6 Let k be a field,A a k-algebra andV1 andV2 twoA-modules of finitek-dimension.

LetK/k be a field extension. IfV1 andV2 have a common composition factor, then so do(V1)K and

(V2)K . Conversely, if(V1)K and(V2)K are semi-simple and have a common composition factor, then

so doV1 andV2.

Proof. (See [CurtisReiner], 29.6.) Suppose first thatV1 andV2 have a common composition

factorS, i.e. a simple module occuring in the composition series. Then all the composition factors of

SK occur in the composition series of both(V1)K and(V2)K .

Conversely, if(V1)K and (V2)K are semi-simple and have a common composition factor, then

by Schur’s lemmaHomAK ((V1)K , (V2)K) is non-zero. Note thatV1 andV2 are also semi-simple by

Lemma 2.1.17. From Theorem 2.2.4 it follows thatHomA(V1, V2) is also non-zero, implying thatV1

andV2 have a common composition factor. 2

We now come to the concept of Galois conjugate modules.

Definition 2.2.7 LetK/k be a Galois extension andA a k-algebra.

(a) The Galois groupG = Gal(K/k) acts on the set ofAK-modules from the left as follows:

LetW be anAK-module. For anyσ ∈ Gal(K/k) we letσW be theAK-module whose underlying

K-vector space is equal toW equipped with theAK-action

(x⊗ a).σw := (σ−1(x)⊗ a).oldw

for all x ∈ K and alla ∈ A.
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(b) Given anAK-moduleW , the decomposition groupDW (K/k) = DW is defined as the stabilizer

of W , i.e. as the subgroup consisting of thoseσ ∈ G such thatσW ∼= W . For some reason,

[Karpilovsky] calls this the inertia group.

Remark 2.2.8 (i) It is easy to check that the action is indeed a left action.

(ii) If W is simple, then so isσW .

(iii) If σ ∈ Gal(K/k) andV is anA-module, we define the isomorphism (ofk-vector spaces)

σ : VK
x⊗v 7→σ(x)⊗v
−−−−−−−−→ VK .

It is easy to check that for a submoduleW ⊂ VK the mapσ defines an isomorphism ofAK-

modules fromσW to σ(W ).

(iv) Suppose thatW is a matrix representation ofAK , i.e.AK → EndK(W ) = Matn(K). Then

the matrix representation forσW is obtained from the one ofW by applyingσ−1 to the matrix

entries.

Lemma 2.2.9 Letk be a field andA a k-algebra. LetK/k be a Galois extension. LetV be a simple

A-module. If the simpleAK-moduleW occurs in the composition series ofVK with multiplicity e,

then so doesσW for all σ ∈ Gal(K/k).

Proof. Note thatσVK ∼= VK asAK-modules. ThusσW , which naturally occurs in the decompo-

sition series ofσV , is isomorphic to a composition factor ofV . The statement on the multiplicities

follows also. 2

Lemma 2.2.10 LetK/k be a finite Galois extension. Denote byWA the moduleW considered as an

A-module (rather than as anAK-module). Then there is an isomorphism ofAK-modules

(WA)K ∼=
⊕

σ∈Gal(K/k)

σW.

Proof. We give the map:x ⊗ v 7→ (. . . , x.σv, . . . ) = (. . . , σ−1(x)v, . . . ). It is an AK-

module homomorphism. That it is an isomorphism can be reduced to the isomorphism K ⊗k K ∼=∏
σ∈Gal(K/k)

σK, which is easily checked. 2

Proposition 2.2.11 LetK/k be a finite Galois extension. LetV be indecomposable and letW be an

indecomposable direct summand ofVK . Then there exists an integere such that

VK =
( ⊕

σ

σW
)e
,

whereσ runs through a system of coset representatives forGal(K/k)/DW .
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Proof. (See [Karpilovsky], Theorem 13.4.5.) The proof is based on the uniqueness of a decompo-

sition into indecomposables (Krull-Schmidt theorem, Theorem 2.1.9). DecomposeVK into different

indecomposables

VK ∼= V n1
1 ⊕ V n2

2 ⊕ · · · ⊕ V nr
r

with V1 = W . We obtain

V [K:k] ∼= (VK)A ∼= (V1)
n1
A ⊕ (V2)

n2
A ⊕ · · · ⊕ (Vr)

nr
A

asA-modules. As a consequence,(V1)A ∼= V s for somes. Lemma 2.2.10 yields

V s
K
∼= ((V1)A)K ∼=

⊕

σ∈Gal(K/k)

σV1,

whence for everyi there isσi ∈ Gal(K/k) such thatVi = σiV1. From Lemma 2.2.9,n1 = ni =: e

for all i follows. We now rewrite the first displayed equation:

VK ∼= W e ⊕ (σ2W )e ⊕ · · · ⊕ (σrW )e.

By assumption, all theσiW are different. Lemma 2.2.9 implies that all the Galois conjugates occur.

This finishes the proof. 2

Corollary 2.2.12 LetV be simple and letW be a simple composition factor ofVK . Then there exists

an integere such that

VK =
( ⊕

σ

σW
)e
,

whereσ runs through a system of coset representatives forGal(K/k)/DW .

Proof. SinceV is simple, it is a simpleB := A/ Jac(A)-module. Note thatBK ∼= AK/(K ⊗k

Jac(A)) (using thatK/k is flat) is also semi-simple (Proposition 2.2.3). Proposition 2.2.11 implies

thatVK =
( ⊕

σ
σW

)e
with some indecomposable, and due to the semi-simplicity, hence simple,BK-

moduleW . We note thatW is also a simpleAK-module. The isomorphism is also an isomorphism

of AK-modules, sinceK ⊗k Jac(A) ⊆ Jac(AK) acts trivially. 2

We draw the attention to Exercise 14.

2.3 Splitting fields

We draw the attention to Exercise 15.

Definition 2.3.1 LetR be a ring andT ⊂ R be a subring. We define thecentralizer ofT in R as

ZR(T ) := {r ∈ R | rt = tr ∀ t ∈ T}.

For important properties of the centralizer see Exercise 15. We include thefollowing proposition,

although it will not be needed for the subsequent proofs.
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Proposition 2.3.2 Let k be a field and considerk-algebrasA,A′, B,B′ such thatB ⊆ A andB′ ⊆

A′. Then

ZA⊗kA′(B ⊗k B
′) = ZA(B)⊗k ZA′(B′).

Proof. Exercise 16. 2

Proposition 2.3.3 Arbitrary scalar extension of a central simple algebra is central simple.

Proof. (See [Kersten], Satz 5.10.) Omitted. 2

Proposition 2.3.4 Let k be a field andA a finite dimensional central simplek-algebra. LetB ⊂ A

be a simple subalgebra withdimk B = n. Then there is ak-algebra homomorphism

ZA(B)⊗k Matn(k) ∼= A⊗k B
opp.

Proof. (See [Kersten], Korollar 8.4 (i).) Omitted. 2

Theorem 2.3.5 Letk be a field andD a division algebraD overk. LetK be a subfield ofD.

ThenD is split byK, i.e.DK
∼= Matr(K) for somer ≥ 1, if and only ifK is a maximal subfield.

In that case,r is equal to[K : k] and is called theindex ofD.

Proof. This is a direct consequence of Proposition 2.3.4. For, we obtain isomorphisms

ZD(K)⊗k Matr(k) ∼= D ⊗k K
opp ∼= DK .

If K is a maximal subfield, thenZD(K) = K by Exercise 15. IfK is properly contained in a maximal

subfieldL, thenZD(K) properly containsL, and is hence not a field. 2

Lemma 2.3.6 Let k be a field andD a finite dimensional division algebra overk. Suppose that any

maximal subfield ofD is equal tok. ThenD = k.

In particular, there is no finite dimensional division algebra over an algebraically closed field

other than the fieldk itself.

Proof. Let d ∈ D be any element. Inside ofD considerk(d), i.e. the smallest ring containingk

andd. This ring is commutative, ask is in the centre ofD (by the definition of ak-algebra). Sok(d)

is a field extension ofk and thus equal tok. 2

Corollary 2.3.7 LetD be a division algebra over a fieldk. All its maximal subfields are isomorphic.

Proof. This follows from Theorem 2.3.5. 2

Corollary 2.3.8 (Wedderburn) A finite division ring is a finite field.
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Proof. (See [Bourbaki], 11.1.) LetD be a finite division ring with centrek and letK be a

maximal subfield ofD. By Corollary 2.3.7 and basic algebra, every other maximal subfield is of the

form xKx−1. As every element ofD is contained in some maximal subfield, it follows that

D× =
⋃

x∈D×

xK×x−1.

Notice that forx′ = xt with t ∈ K we havex′K×x′−1 = xK×x−1. The number of distinctxK×x−1

is, thus, at most equal to the number of elements inD×/K×. Moreover, the number of elements of

xK×x−1 is always equal to the number of elements ofK×. Consequently, all distinctxK×x−1 are

pairwise disjoint. Since they all contain the unit element, the number of distinctxK×x−1 has to be

one. 2

Corollary 2.3.9 (Wedderburn) Let k be either an algebraically closed or a finite field. LetA be a

finite dimensional semi-simplek-algebra. ThenA is the direct product of matrix algebras.

Proof. By Lemma 2.3.6 and Corollary 2.3.8 we know that the only finite dimensional division

algebras overk are fields. Hence, the corollary is a consequence of Corollary 2.1.27. 2

Definition 2.3.10 Letk be a field andA a k-algebra.

(a) An irreducibleA-moduleV is calledabsolutely irreducible(or geometrically irreducible) if for

every extensionK/k the moduleVK = K ⊗k V is an irreducibleAK = K ⊗k A-module.

(b) A field extensionK/k is called asplitting field ofA if every irreducibleAK-module is absolutely

irreducible.

Theorem 2.3.11An irreducibleA-moduleV is absolutely irreducible if and only if

EndA(V ) ∼= k,

i.e. the onlyA-endomorphisms ofV are left multiplications by an element ofk.

Proof. Since the statement is about endomorphism rings, by Exercise 6 we may assume thatV is a

faithful module. This implies thatA is a simple ring withV the only simple module (Lemma 2.1.22).

Let us now first assume thatV is an absolutely irreducibleA-module. LetD = EndA(V ) and

let K be a field splitting fieldD. By Theorem 2.1.26 we know thatA ∼= Matr(D
opp) and that

V ∼= (Dopp)r. For theK-dimensions we obtain

n := dimK VK = r dimkD
opp.

Using Exercise 13 we have

Matr(K ⊗k D
opp) ∼= K ⊗k Matr(D

opp) ∼= K ⊗k A ∼= AK ∼= Matn(K).
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TheK-dimension is thus

n2 = r2 dimkD.

Comparing with the above yieldsdimkD = (dimkD)2, whencedimkD = 1.

Now we assume conversely thatEndA(V ) = D = k. ThenA ∼= Matn(k) for some integern ≥

1. Hence, under this isomorphismV is isomorphic to the simple modulekn, which is absolutely

irreducible by Lemma 2.1.18 (a). 2

Corollary 2.3.12 LetA be a simplek-algebra. Its simple module is absolutely irreducible if and only

if A ∼= Matr(k) for somer.

Proof. This follows from Theorem 2.3.11 and Wedderburn’s Theorem 2.1.26, which statesA ∼=

Matr(D
opp) with D = EndA(S) with S the only simpleA-module. 2

Proposition 2.3.13 Let k be a field and letD be a finite dimensional divisionk-algebra. Then any

maximal subfield ofD is a separable extension ofk.

Proof. (See [Kersten], Theorem 10.2.) Omitted. 2

Corollary 2.3.14 Let k be a field andA a finite dimensionalk-algebra. There is a finite separable

splitting field ofA.

Proof. Let Si be the finitely many simpleA-modules andDi = EndA(Si) the corresponding

division algebras. For eachDi, let Ki be the field provided by Theorem 2.3.5 such that(Di)Ki =

Matsi(Ki). The fieldKi is finite and separable (by Proposition 2.3.13), hence the compositeK of all

theKi is also a finite separable extension ofk.

As the statement is about simple modules, we can work withB := A/ Jac(A). SinceK is

separable,BK = AK/(K ⊗k Jac(A)) is also semi-simple by Proposition 2.2.3. We haveB =
∏
iBi

and eachBi is of the formMatri(D
opp
i ) by Wedderburn’s Theorem 2.1.26. Consequently,

BK =
∏

i

(Bi)K ∼=
∏

i

Matri((D
opp
i )K) ∼=

∏

i

Matri(Matsi(K)) ∼=
∏

i

Matrisi(K)

by Lemma 2.1.18 (d). Hence, every simple module ofBK is absolutely simple. Since the simple

modules ofBK are the same as those ofAK (asK⊗k Jac(A) ⊆ Jac(AK) acts trivially), the corollary

follows. 2

Remark 2.3.15 We should mention that the theory we are exposing is about the Brauer group, which,

however, we do not wish to define.

At the end of this section, we draw the reader’s attention to Exercise 17, in which a simple but not

absolutely simple module should be exhibited.
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2.4 Character theory

Definition 2.4.1 LetA be ak-algebra andV anA-module of finitek-dimension. After choosing a

basis, every elementa ∈ A acts onV via a matrix, so it makes sense to speak of its trace.

Thecharacter ofV is defined as the map

A −→ k, a 7→ TrV (a).

If K/k is a field extension andW anAK-module, then we will often also consider the character

ofW as anA-module, i.e.

A→ AK
χ
−→ K.

We use the same notation.

Remark 2.4.2 (i) If B ⊂ A is a spanning set ofA as aK-vector space (e.g. a basis), any charac-

terχ is uniquely determined by the valuesχ(b) for b ∈ B, asχ is a vector space homomorphism.

The standard application of this concerns group algebrasA = k[G]. Any characterχ is deter-

mined byχ(g) for g ∈ G. The usual use of the word ’character’ is in this sense.

Another important application is to the situation of a field extensionK/k and anAK-moduleW ,

affording a characterχ : AK → K. It is uniquely determined by its values onA (via the natural

embeddingA →֒ AK). This will be very important in the sequel, in particular, for applications

to the definability of Galois representations.

(ii) In certain cases, it makes sense and it is very useful not to considerthe natural matrix action

from the definition. For instance, letD be a division quaternionk-algebra, which is split overK.

Then thek-dimension of the simpleD-moduleD is 4, but, splitting the algebraDK = Mat2(K)

has the consequence thatDK has a2-dimensional simpleK-module. Its trace and determinant

are called thereduced trace/determinant. They are half (resp. the square root) of the other trace

(resp. determinant).

Proposition 2.4.3 Let k be a field of characteristic0, A a k-algebra andV , V ′ two semi-simpleA-

modules of finitek-dimension. If the characters ofV andV ′ are the same (i.e. ifTrV (a) = TrV ′(a)

for all a ∈ A), thenV andV ′ are isomorphic asA-modules.

Proof. (See [Bourbaki], p. 136.) Since the statement is about semi-simple modules, we may

assume thatA is a semi-simple algebra. Letting it act onV ⊕ V ′ me may further assume, using

Corollary 2.1.27, that we have

A ∼=

r∏

i=1

Matri
(
Endk(Si)

)

with the simpleA-modulesSi occuring in one ofV or V ′.

The only question is whether the multiplicitiesn, n′ with which a given simple moduleS, say

S = S1, appears inV andV ′ are equal. For that we just take the elementc ∈ A which is the identity
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on S and0 elsewhere. We haveTrV (c) = n · dimS and similarly forV ′, from which the result is

clear, using thatk has characteristic0, asn · dimS = n′ · dimS follows. 2

Theorem 2.4.4 (Burnside-Frobenius-Schur)Let A be a finite dimensionalk-algebra. The char-

acters of the simpleA-modules arek-linearly independent, ifk is a splitting field ofA or k is of

characteristic0.

Proof. (See [CurtisReiner], 27.8.) Since all the modules in question are simple and thus Jac(A)

acts trivially, we may assume thatA is semi-simple. By Corollary 2.1.27 we have

A ∼=

r∏

i=1

Endk(Si) ∼=

r∏

i=1

Matri(D
opp
i )

with Di = EndA(Si) for the simpleA-modulesSi.

Assume first thatk is a splitting field. Then the decomposition becomes

A ∼=

r∏

i=1

Matri(k).

The characters of the simple modulesSi ∼= kri are now obviously linearly independent, since inA

we can choose elements that are zero in all matrix algebras except one, where we put a single1 on the

diagonal.

Now assume thatk is of characteristic0. LetK be a splitting field ofA. Let Si for i = 1, . . . , r

be the simpleA-modules, andWj for j = 1, . . . , s the simpleAK-modules. Hence, there are integers

ai,j such that

(Si)K ∼=
⊕

j

(Wj)
ai,j .

From Lemma 2.2.6 it follows that(Si)K and(Si′)K do not have any composition factor in common

if i 6= i′; hence for a givenj there is a singlei =: ij with aij ,j 6= 0. Let σi be the character

of Si andτj the character ofWj . Note that any characterσi : A → Endk(Si)
Tr
−→ k is equal to

A→ AK → EndK((Si)K)
Tr
−→ K. It follows thatσi =

∑
j ai,jτj . If we now have

0 =
∑

i

biσi,

then we obtain

0 =
∑

i

∑

j

biai,jτj =
∑

j

bijaji,jτj ,

implying bi = 0 for all i, as desired. 2

Corollary 2.4.5 Absolutely irreducible modules are uniquely characterized by their characters.

Proof. (See [CurtisReiner], 30.15.) LetS1 andS2 be absolutely irreducible modules. Replacing

A by its image inEndk(S1 ⊕ S2) if necessary, we may and do assume thatk is a splitting field ofA.

By Theorem 2.4.4, the corresponding characters arek-linearly independent and hence different. 2
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This corollary, for example, tells us that simple modules are uniquely determinedby their charac-

ters, when the field is algebraically closed. The most complete result about characters is the following

theorem by Brauer and Nesbitt, where the assumption of the simplicity is dropped. Moreover, it also

works when the field over which the algebra is defined is not the splitting field (in the proof we will

see that it is no loss of generality to pass to the splitting field).

The Brauer-Nesbitt theorem says that the composition factors of a module are uniquely character-

ized by the character of the module. This is, of course, best possible: The characteristic polynomial

does not see the difference between a diagonal matrix and a matrix with the same diagonal and some

non-zero entries above the diagonal.

Theorem 2.4.6 (Brauer-Nesbitt) Letk be any field andA a k-algebra. LetM,N be twoA-modules

which are finite-dimensional ask-vector spaces. If for alla ∈ A, the characteristic polynomials on

M andN are equal, thenM andN have the same composition factors, i.e. define the same element

in the Grothendieck group.

Proof. (See [CurtisReiner], 30.16.) For this question we may and do assume thatA is a semi-

simple finite dimensionalk-algebra: if necessary, replaceM andN by the direct sum of its compo-

sition factors; this does not change the characteristic polynomials; and, if necessary, replaceA by its

image inEndk(M ⊕N).

Assume that the action ofA onM andN has the same characteristic polynomials, but thatM and

N are not isomorphic. By splitting off common composition factors, we also assumethatM andN

do not have any composition factor in common. We want to show thatM andN are zero.

Let K be a Galois splitting field ofA of finite degree overk. By Proposition 2.2.3, alsoAK is

semi-simple. The characteristic polynomials of the action of anya ∈ AK onMK andNK are the

same. We again split off all common composition factors, in order to assume thatMK andNK do

not have any factor in common. We have decompositions into simpleAK-modules:MK
∼=

⊕
i S

ei
i

andNK
∼=

⊕
j T

fj
j . Let σi andτj be the characters corresponding to the simple modulesSi andTj ,

respectively. As the characteristic polynomials are the same, we have the equality
∑

i

eiσi =
∑

j

fjτj .

By Theorem 2.4.4, it follows thatei andfj are all0 in K. If the characteristic ofK is zero, the proof

is finished. Assume now that the characteristic ofk is p, then we obtainp | ei andp | fj for all i, j.

We now crucially use that we know that the characteristic polynomials are the same and not only

the traces. The above yields the existence ofAK-modulesM1 andN1 such thatMK
∼= Mp

1 and

NK
∼= Np

1 . It follows that the characteristic polynomials of theAK-action onM1 andN1 are the

same, since takingp-th roots is unique. By Theorem 2.4.4 we again conclude thatM1
∼= Mp

2 and

N1
∼= Np

2 . Since the degree of the polynomials is divided byp in each step, we obtain a contradiction.

2

Remark 2.4.7 There are different formulations of Theorem 2.4.6:
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(i) The statement on the characteristic polynomials can also be formulated in amore fancy way.

AnA-moduleV is determined by the traces of the action ofA on all exterior powers
∧i V for

i = 1, . . . , d, whered is the dimension ofV . For 2-dimensional representation this just means

’by the trace and the determinant’.

(ii) In [CurtisReiner], the statement of Brauer-Nesbitt involves characteristic roots (i.e. the roots of

the characteristic polynomial) instead of characteristic polynomials. But, ofcourse, a monic

polynomial is uniquely determined by and uniquely determines its roots.

(iii) Due to Remark 2.4.2 (i), it suffices to test a basis.

To say it very clearly again: By Corollary 2.4.5, the absolutely simpleAK-modules are uniquely

determined by the values of their characters at elements inA (and byg ∈ G in caseA = k[G]).

By Theorem 2.4.6, the composition factors of anyAK-moduleW are uniquely determined by the

characteristic polynomials ata ∈ A (respectively, atg ∈ G in caseA = k[G]).

(iv) Letk be a field,G a group andV ak[G]-module of finitek-dimensiond. If k is of characteristic0

or if d is smaller than the characteristic ofk, then by Theorem 2.4.6 the traces of powers of

generators ofG uniquely characterizeV .

For this one uses that

X1 + · · ·+Xd, X
2
1 + · · ·+X2

d , . . . , X
d
1 + · · ·+Xd

d

generate the space of symmetric functions in the variablesX1, . . . , Xd, under the above assump-

tions.

Corollary 2.4.8 Up to semi-simplification, reductions ofl-adic representations are unique, i.e. their

images in the Grotendieck group over the finite field are unique.

Proof. The characteristic polynomials of the reduction are the reduction of the characteristic

polynomials. By Brauer-Nesbitt (Theorem 2.4.6) the characteristic polynomials determine the module

over the finite field uniquely. 2

There is also an alternative proof for this corollary, which I found in an article by Serre. This proof

really makes use that the representation is a reduction.

Remark 2.4.9 This would be a good place to recall class functions, orthogonality of characters,

character tables, etc. We just refer to the literature.

2.5 Definability of Galois representations

In this section we use the theory developed so far in order to determine for agiven representation

ρ : G→ GLn(K) over which fieldK ⊂ K it can be minimally defined (after suitable conjugation).
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Here is the situation we are looking at in the beginning of the section. We letk be a field,A a

k-algebra andK a separable extension ofk (not necessarily Galois). LetW be a simpleAK-module

of finiteK-dimension.

Definition 2.5.1 We let

ρ : A→ AK → EndK(W )

be the representation belonging toW (considered as anA-module) and we let

χ = Tr(ρ) : A→ K

be its character.

The fieldk(ρ) is defined as the extension ofk (inside some fixed algebraic closure) that is gener-

ated by all the coefficients of all characteristic polynomials ofρ.

The fieldk(χ) is the extension ofk that is generated by all the values ofχ.

Lemma 2.5.2 Assume thatK/k is Galois and thatK is a splitting field ofA. Then the following

statements are equivalent:

(i) DW = Gal(K/k)

(ii) k = k(ρ)

(iii) k = k(χ)

Proof. (i)⇒ (ii): If DW = Gal(K/k), thenW ∼= σW for all σ ∈ Gal(K/k). Consequently, the

characteristic polynomials forW andσW are the same at alla ∈ A. As the second one is obtained

from the first by applyingσ to the coefficients, it follows that the characteristic polynomial is invariant

underGal(K/k). Consequently, all its coefficients lie ink.

(ii)⇒ (iii): Trivial.

(iii) ⇒ (i): As the characters ofW andσW are conjugate byσ and all their values are ink, the

characters are the same. By Corollary 2.4.5 all simpleAK-modules are uniquely determined by their

characters ata ∈ A, sinceK is a splitting field ofA. Consequently,W is isomorphic toσW for all

σ ∈ Gal(K/k). 2

Lemma 2.5.3 If in Lemma 2.5.2 we do not assume any more thatK is a splitting field ofA, then the

equivalence between (i) and (ii) stays correct.

Proof. It suffices to use the Brauer-Nesbitt theorem, Theorem 2.4.6, to conclude fromk = k(ρ)

thatW andσW are isomorphic. 2

Corollary 2.5.4 LetK/k be a separable extension,A a k-algebra,V a simpleA-module andW any

simpleAK-module occuring in the decomposition series ofVK .

(a) Assume thatK is a splitting field ofA andk = k(χ) or
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(b) assume thatk = k(ρ).

Then there is an integere such thatVK ∼= W e.

Proof. For a Galois extension, this follows from Lemmas 2.5.2 and 2.5.3 and Corollary 2.2.12.

The general case is a consequence. 2

Corollary 2.5.5 Suppose thatK/k is finite Galois. We havek(ρ) = KDW and alsok(χ) = KDW if

K is a splitting field.

Proof. We only write out the proof forK a splitting field. LetH be the subgroup such that

k(ρ) = KH . We haveσ ∈ DW ⇔
σW ∼= W ⇔ σ(charpoly(a)) = charpoly(a) ∀a. This is further

equivalent toσ fixing k(ρ) and hence toσ ∈ H. We used Corollary 2.4.5. IfK is not a splitting field,

the first statement follows from Brauer-Nesbitt, Theorem 2.4.6. 2

Corollary 2.5.6 Suppose thatK/k is finite Galois. We have

[k(ρ) : k]#DW = [K : k]

and

[k(χ) : k]#DW = [K : k]

if K is a splitting field

Proof. This is immediate from Corollary 2.5.5. 2

Corollary 2.5.7 LetV be a simple module and suppose thatk contains the values ofχ. LetK be a

separable splitting field. The exponente in VK ∼= W e (see Corollary 2.5.4) is equal to the index of

the division algebraD := EndA(V ), i.e. to the square root ofdimkD. By Theorem 2.3.5,e is hence

equal to[L : k], whereL is any maximal subfield ofD.

Proof. We have

K ⊗k D = K ⊗k EndA(V ) = EndAK (VK) = EndAK (W e) = Mate
(
EndAK (W )

)
= Mate(K),

using Proposition 2.1.23 and Theorems 2.2.4 and 2.3.11. Thus,k-dimension ofD is e2. 2

Definition 2.5.8 LetK/k be a field extension,A a k-algebra and

ρ : AK → Matn(K)

be a representation. We say thatρ is realizable overk if ρ is equivalent to a representation

ρ1 : AK → Matn(K)

such that for alla ∈ A the imageρ1(a) lies inMatn(k).
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Remark 2.5.9 If the representationρ isAK → EndK(W ), thenρ is realizable overk if and only if

there exists anA-moduleV such thatVK is isomorphic toW asAK-modules.

Indeed,W = Kn andV = kn for the samen.

Corollary 2.5.10 LetW be an absolutely simpleAK-module in the above set-up. SupposeVK ∼= W e.

It is obviously necessary thatk contains the values ofχ for W to be realizable overk.

Suppose thatk contains the values ofχ. Then the following statements are equivalent:

(i) W is realizable overk.

(ii) e = 1.

(iii) V is absolutely simple asAk-module.

Proof. We have already observed the first equivalence in the preceding remark. The second

equivalence follows from Theorem 2.3.11 and Corollary 2.5.7:D = EndA(V ) hask-dimension

e = 1 if and only if V is absolutely simple. 2

Corollary 2.5.11 Supposek contains the values ofχ. ThenW is realizable over an extensionF of k

if and only ifF splitsD = EndA(V ).

Proof. This follows directly by applying Corollary 2.5.10 withF in the place ofk. 2

Definition 2.5.12 Let ρ be a representation overk. TheSchur index ofρ is defined as the minimum

of [K : k(χ)] whereK runs through the extentions ofk(χ) over whichρ is realizable.

Corollary 2.5.13 The Schur index is less than or equal to[F : k(χ)], whereF is any maximal

subfield contained inD withD = EndAk(χ)
(V ) for any simpleAk(χ)-moduleV such thatW is in the

composition series ofVK .

Proof. We know thatD is split by any maximal subfieldF of D. Hence,VF = Xf for some

simpleAF -moduleX. However,X is absolutely simple, sinceD is split by F (see the proof of

Corollary 2.3.14). Consequently,f = 1 andXK = W . 2

Corollary 2.5.14 LetK be a topological field and letρ : G→ GLn(K) be a group representation.

(a) If K = Fp, thenρ can be realized overFp(χ).

(b) If n = 2, thenρ can be realized over an extension of degree2 ofK(χ).

Proof. This follows from Corollary 2.5.13. For (a) we use that there is no finite non-commutative

division algebra. In (b), the algebraD can only be a quaternion algebra, since after splitting it is a

2× 2-matrix algebra. Its maximal subfield has degree at most2. 2

Remark 2.5.15 (i) A theorem of Witt-Fein statesZ(EndA(V )) = k(χ).
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(ii) In Corollary 2.5.13 the inequality is in fact an equality. This follows from the factthat an

algebraD cannot be split by fields that have a smaller degree than the biggest subfield.



Chapter 3

Local theory

3.1 Conductor

The point of view on conductors adopted in [Neukirch] and in [SerreLocalFields] is to treat all char-

acters of some finite Galois group at once, using that the set of the characters of all irreducible repre-

sentations of a finite group (over a characteristic zero field) uniquely determines the group. This point

of view is very elegant and leads, for instance, to the ’Führerdiskriminantenproduktformel’, which is

quite famous, probably mostly due to its long name.

We, however, will be mainly interested in representations with coefficient in fields of characteris-

tic ℓ and also inℓ-adic representations which typically have infinite images. These two reasons lead

us to adopt the point of view of considering individual characters rather than the set of all characters

at once.

As a consequence, many of the proof in [SerreLocalFields] do not work without change. I have

not worked out in how far one can replace characteristic zero representation theory in Serre’s proofs

by Brauer’s modular representation theory. Instead, I wrote some of theproofs myself, in particular,

those for computing the conductor of an induced representation and the fact that conductor exponents

are integers. However, the largest part of this section is still quite close to Serre’s treatment, as will be

obvious to the reader.

Ramification groups

For this section letL/K be a finite Galois extension of local fields (complete with respect to a discrete

valuationvK , with valuation ringOK , maximal ideal (valuation ideal)pK = (πK), perfect residue

field FK = OK/pK such thatvK(K) = Z, and similarly forL). We have

vL|K = eL/KvK

with eL/K the ramification index. We putfL/K = [FL : FK ]. We writeG for Gal(L/K).

42
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Definition 3.1.1 Let s ≥ −1 be a real number. Thes-th ramification group (in lower numbering)is

defined as

Gs = G(L/K)s = {σ ∈ Gal(L/K)|vL(σa− a) ≥ s+ 1∀a ∈ OL}.

In terms of absolute values, and hence of distances, the definition means, roughly speaking, that

σ ∈ Gs if σa stays as close toa as indicated bys.

Example 3.1.2 We look at some particular cases:

(i) If s = −1, then it is clear thatG−1 = Gal(L/K).

(ii) If s = 0, then it is easy to see thatG0 is the inertia group of the extensionL/K.

(iii) If s = 1, thenG1 is the wild inertia group. This will become clear in a moment.

Lemma 3.1.3 TheGs are normal subgroups ofG = Gal(L/K).

Proof. Let σ ∈ Gs andτ ∈ G. Then we have, using thatτ does not change the valuation of an

element:

vL(τ−1στa− a) = vL(τ−1(στa− τa)) = vL(σ(τa)− τ(a)).

As τOL = OL, the lemma follows. 2

Interpretation of the Gs

Lemma 3.1.4 LetL/K be as above, but assume thatL/K is totally ramified, i.e.eL/K = [L : K].

ThenOK [πL] = OL.

Proof. It turns out that the characteristic polynomial (inOK [X]) of πL is an Eisenstein polynomial

and hence irreducible. For details, see Serre: Corps Locaux, p. 30. 2

Proposition 3.1.5 Let L/K any finite Galois extension of local fields. Then there isx ∈ OL such

thatOK [x] = OL.

Proof. (Note that we insisted that the residue fieldsFL andFK are perfect. For this proof we only

need that the extensionFL/FK is separable.) Letπ be any uniformiser ofL, i.e. (π) = (πL). Write

e = eL/K andf = fL/K .

Claim: If x ∈ OL such thatFL = FK(x̄), then{xjπi|j = 0, . . . , f−1, i = 0, . . . , e−1} generate

OL asOK-module. (We denote bȳx the image ofx moduloPL.)

Everyy ∈ OL/πKOL = OL/(π
e) has a representative of the following form:

y = ǫ0 + πy1

= ǫ0 + πL(ǫ1 + πLy2)

= . . .

= ǫ0 + πLǫ1 + π2
Lǫ2 + · · ·+ πe−1

L ǫe−1.
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with ǫi in a system of representatives ofOL/(π) = FL andyi ∈ OL. All ǫi can be uniquely written

asFK-linear combinations of̄x0, x̄1, . . . , x̄f−1. Hence, the set in the claim generatesOL/πKOL as

OK-module. The claim is now a direct consequence of Nakayama’s lemma.

Now we want to choose a goodx. For this we choose anyy ∈ OL such thatFL = FK(ȳ). Let

m̄ ∈ FK [X] be the minimal polynomial of̄y and choose any liftm ∈ OK [X] of m̄. If vL(m(y)) = 1,

then choosex := y. If not, then letx := y + πL. In both cases we havevL(m(x)) = 1. For in the

second case, we can use the Taylor expansion

m(x) = m(y + πL) = m(y) + πLm
′(y) + π2

Lz

for somez ∈ OL. Note thatm′(y) is a unit, since its reduction is non-zero inFL, asm̄ is separable.

Thus,vL(m(x)) = 1. Choosing the uniformiserπ = m(x), the proposition now follows from the

claim withx andπ. 2

Definition 3.1.6 SupposeOL = OK [x]. For σ ∈ G let

iL/K(σ) = iG(σ) = vL(σx− x).

Lemma 3.1.7 Letσ ∈ G. We have

σ ∈ Gs ⇔ iG(σ) ≥ s+ 1.

Hence,Gs = {σ ∈ G|iG(σ) ≥ s+ 1}.

Proof. The implication ’⇒’ is clear. For the other one, we only need to note thatσ acts trivially

onOL/(πL)s+1 = OK [x]/(πL)s+1 if and only if σx− x ∈ (πL)s+1. 2

Proposition 3.1.8 For all integerss ≥ 0 the map

Gs/Gs+1 → U
(s)
L /U

(s+1)
L , σ 7→

σπL
πL

is an injective group homomorphism. Here,U
(0)
L = O×

L andU (s)
L = 1 + πsLOL for s ≥ 1.

Proof. It is easily checked that the map is well defined and a group homomorphism. Wemay

assume thatL/K is totally ramified. By Lemma 3.1.4,πL generatesOL asOK-module. Hence,

σ ∈ Gs ⇔ iG(σ) = vL(σπL − πL) ≥ s+ 1.

Supposeσ ∈ Gs such thatσπLπL ∈ U
(s+1)
L . ThenσπL = πL + πs+2

L y for somey ∈ OL. Thus,

σ ∈ Gs+1, proving the injectivity. 2

Corollary 3.1.9 We have

G0/G1 →֒ (F×
L ,×)

and

Gs/Gs+1 →֒ (FL,+).
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Proof. By Proposition 3.1.8, it suffices to prove that

U
(0)
L /U

(1)
L = O×

L/(1 + πOL) −→ (OL/πL)×

and

U
(s)
L /U

(s+1)
L = (1 + πsOL)/(1 + πs+1OL)

1+πsLy 7→y
−−−−−−→ OL/πL

are isomorphisms. This is straight forward. 2

Corollary 3.1.10 Galois extensions of local fields are solvable. 2

Corollary 3.1.11 Assume thatK is a finite extension ofQp. The wild inertia group ofL/K is equal

toG1.

Proof. For s ≥ 1 all the quotientsGs/Gs+1 arep-groups. However, the order ofG0/G1 divides

pr − 1, for somer, and is hence coprime top, establishing thatG1 is ap-Sylow ofG0. In fact, it is

the uniquep-Sylow due to the fact thatG1 is a normal subgroup ofG0. 2

Change of field

It is easy to pass to subextensions:

Proposition 3.1.12 LetL′ be a field such thatL/L′/K. Then for alls ≥ −1

Gs(L/K) ∩G(L/L′) = Gs(L/L
′).

Moreover,

iG(σ) = iH(σ)

for σ ∈ H = Gal(L/L′) ⊆ Gal(L/K).

Proof. This follows from the definition. 2

The corresponding statement for quotients is wrong. Our next aim is to work out how the num-

bering changes when passing fromG toG/H (assuming thatL′/K is Galois).

Proposition 3.1.13 LetL/L′/K be finite Galois extensions. We have

eL/L′iL′/K(σ′) =
∑

τ∈H

iL/K(στ)

withH = Gal(L/L′), σ ∈ G(L′/K) andσ ∈ G(L/K) any element restriction toσ′.

Proof. Let x ∈ OL andy ∈ OL′ such thatOL = OK [x] andOL′ = OK [y]. Define the following

two polynomials:

• g(X) ∈ OK [X] : g(x) = y
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• f(X) ∈ OL′ [X] is the minimal polynomial ofx overL′, hence,f(X) =
∏
τ∈H(X − τx).

Now letσ andσ′ as in the statement. We first applyσ to the coefficients off . Then all coefficients

of (σf)(X)− f(X) are inOL′ and theirL-valuation is at leastvL(σ′y− y), as this is the lowest non-

zero valuation of an element ofOL′ . Consequently,

vL(σ′y − y) ≤ vL((σf)(x)− f(x)) = vL((σf)(x)).

We shall now also establish this inequality in the opposite direction. For this note thatg(X)−y ∈

OL′ [X] hasx as a zero. Consequently, it is divisible byf , i.e.

g(X)− y = f(X)h(X)

for someh ∈ OL′ [X]. We now applyσ again to the coefficients on both sides and obtain

(σg)(X)− σy = g(X)− σy = (σf)(X)(σh)(X).

Plugging inx yields:

y − σ′y = (σf)(x) · (σh)(x),

whence

vL(σ′y − y) ≥ vL((σf)(x)),

so that we have equality.

To finish the proof, we note that

(σf)(x) =
∏

τ∈H

(x− στx),

so that

vL((σf)(x)) =
∑

τ∈H

vL(στx− x).

Finally,

vL(σ′y − y) = eL/L′vL′(σ′y − y),

completing the proof. 2

Definition 3.1.14 LetL/K be a finite Galois extension of local fields. We define the piecewise con-

stant (step) function:

αL/K : [−1,∞)→ (0, 1], s 7→
1

(G0 : Gs)
,

if i ≤ s < i+ 1 with i ∈ Z≥−1. Further, we define theHerbrand function

ηLK : [−1,∞)→ [−1,∞), s 7→

∫ s

0
αL/K(u)du.

It is customary to writegs for #Gs, which we shall also do.
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Note thatαL/K(s) = 1
(G0:Gi+1) if i ≤ s < i+ 1 with i ∈ Z≥−1.

Remark 3.1.15 The Herbrand functionη = ηL/K satisfies the following properties:

(i) η(0) = 0

(ii) η(−r) = −r for −1 ≤ r ≤ 0.

(iii) η′(s) = gs
g0

=
g⌈s⌉
g0

for s 6∈ Z.

(iv) η is strictly increasing and continuous.

(v) η(s) = 1
g0

(
g1 + g2 + · · ·+ g⌊s⌋ + (s− ⌊s⌋)g⌈s⌉

)
for s > 0.

Proposition 3.1.16 Letθ(s) = −1 + 1
g0

∑
σ∈G min{iL/K(σ), s+ 1}. ThenηL/K(s) = θ(s).

Proof. The functionθ is continuous and piecewise linear. We shall compare it withη at 0 and

establish that the slopes of all linear pieces coincide, yielding equality. We have

min{iL/K(σ), s+ 1} =




s+ 1 if σ ∈ Gs

iL/K(σ) if σ 6∈ Gs.

Consequently,

θ(0) = −1 +
1

g0

∑

σ∈G

min{iL/K(σ), 1} = −1 +
1

g0

∑

σ∈G0

1 = 0 = ηL/K(0).

Fors 6∈ Z, sayi < s < i+ 1, we now compute the slope ofθ ats:

θ′(s) =
1

g0
#{σ ∈ G|s+ 1 < iL/K(σ)} (slopes are0 or 1)

=
1

g0
#{σ ∈ G|i+ 2 < iL/K(σ)} (⌈s⌉ = i+ 1)

=
gi+1

g0
= η′L/K(s).

The proposition follows. 2

Lemma 3.1.17 LetL/L′/K be finite Galois extensions and letH = Gal(L/L′). Letσ′ ∈ G(L′/K)

and letσ ∈ G(L/K) restricting toσ′ such thatiL/K(σ) is maximal (among theσ restricting toσ′).

Then we have

ηL/L′(iL/K(σ)− 1) = iL′/K(σ′)− 1.

Proof. We have forτ ∈ H:

iL/K(στ) = min{iL/K(τ), iL/K(σ)}. (3.1.1)
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For, if iL/K(τ) < iL/K(σ), then

iLK (στ) = vL(στx− x) = vL((σx− x) + σ(τx− x)) = iL/K(τ).

If, on the other hand,iL/K(τ) ≥ iL/K(σ), thenσ, τ ∈ GiL/K(σ)−1, whenceiL/K(στ) ≥ iL/K(σ)

and, thus,iL/K(στ) = iL/K(σ) due to the maximality ofiL/K(σ), establishing Equation 3.1.1.

Using Proposition 3.1.13, we now obtain

iL′/K(σ′) =
1

eL/L′

∑

τ∈H

iL/K(στ) =
1

eL/L′

∑

τ∈H

min{iL/K(τ), iL/K(σ)}.

Noting thateL/L′ = #H0, iL/K(τ) = iL/L′(τ) and substracting1 yields

iL′/K(σ′)− 1 = −1 +
1

eL/L′

∑

τ∈H

min{iL/K(τ), iL/K(σ)} = ηL/L′(iL/K(σ)− 1),

by appealing to Proposition 3.1.16. 2

We now obtain the behaviour of ramification groups (in lower numbering) when passing to quo-

tients.

Theorem 3.1.18 (Herbrand) LetL/L′/K be finite Galois extensions and letH = Gal(L/L′). Then

for all s ∈ [−1,∞) we have

Gs(L/K)H/H ∼= Gt(L
′/K)

with t = ηL/L′(s).

Proof. Let σ ∈ G(L′/K). Then we have the equivalences:

σ′ ∈ GsH/H ⇔ ∃σ ∈ G : σ|L = σ′, σ ∈ Gs

⇔ ∃σ ∈ G : σ|L = σ′, iL/K(σ)− 1 ≥ s

⇔ ηL/L′(iL/K(σ)− 1) ≥ ηL/L′(s),

sinceηL/L′ is srictly increasing. In the last equivalenceσ is chosen as in Lemma 3.1.17, so that we

further obtain:

σ′ ∈ GsH/H ⇔ iL′/K(σ′)− 1 ≥ ηL/L′(s)

⇔ σ′ ∈ GηL/L′ (s)(L
′/K),

finishing the proof. 2

Next we want to change the numbering of the ramification groups so that the numbering behaves

well with respect to taking quotients (it will, however, not be compatible with taking subgroups any

more). We need some preparations.

Proposition 3.1.19 LetL/L′/K be finite Galois extensions of local fields. Then we have

ηL/K = ηL′/K ◦ ηL/L′ .
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Proof. This is a simple computation starting from the formula in Herbrand’s theorem:

(G/H)ηL/L′ (s)
∼= GsH/H ∼= Gs/(Gs ∩H) = Gs/Hs.

Thus #Gs
#Hs

= #(G/H)ηL/L′ (s). Using the multiplicativity of the ramification index, we obtain

1

eL/K
#Gs =

( 1

eL/L′
#Hs

)
·
( 1

eL′/K

#Gs
#Hs

)
=

( 1

eL/L′
#Hs

)
·
( 1

eL′/K
#(G/H)ηL/L′ (s)

)
.

Instead of comparingηL/K with ηL′/K ◦ ηL/L′ directly, we will again compute the slopes of the

two and establish that both functions take the same value at0, namely0. The latter is clear, asη(0) = 0

for all fields. For the following computation noteeL/K = #G0.

η′L/K(s) =
#Gs
#G0

=
1

eL/K
#Gs

=
#Hs

#H0
·
#(G/H)ηL/L′ (s)

#(G/H)0

= η′L/L′(s) · η′L′/K(ηL/L′(s))

= (ηL′/K ◦ ηL/L′)′(s)

by the chain rule. This finishes the proof. 2

Definition 3.1.20 The inverse function ofηL/K is calledψL/K .

Corollary 3.1.21 We haveψL/K = ψL/L′ ◦ ψL′/K .

Proof. BothψL/K andψL/L′ ◦ψL′/K are inverse functions toηL/K . Hence, they are equal. 2

Definition 3.1.22 For t ≥ −1 we define theramification groups (in upper numbering)as

Gt(L/K) := GψL/K(t).

(Then:GηL/K(s)(L/K) = Gs(L/K).)

Corollary 3.1.23 The upper numbering is compatible with forming quotients, i.e. forL/L′/K finite

Galois extensions andH = Gal(L/L′) we have

Gt(L/L)H/H ∼= Gt(L′/K)

for all t ≥ −1.

Proof. We have

Gt(L/K)H/H = GψL/K(t)H/H ∼= (G/H)ηL/L′ (ψL/K(t))

= (G/H)ηL/L′ (ψL/L′ (ψL′/K(t)))

= (G/H)ψL′/K(t) = (G/H)t,

proving the statement. 2
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Remark 3.1.24 (a) If L/K is unramified, thenηL/K(s) = s andψL/K(s) = s.

For, 1 = g0 = g1 = . . . .

(b) We haveG0(L/K) = G0(L/K) andL/K is unramified if and only ifG0(L/K) = 0.

(c) L/K is tamely ramified⇔ G1 = 0⇔ Gs = 0 ∀s > 0⇔ Gt = 0 ∀t > 0.

Definition 3.1.25 We say thats is a jump for the lower numberingif Gs−ǫ 6= Gs+ǫ for all ǫ > 0. We

make a similar definition for the upper numbering.

Example: cyclotomic fields

For r ≥ 1 we letKr := Qp(ζpr), whereζpr is a primitivepr-th root of unity. Recall that thep-th

cyclotomic polynomial, i.e. the minimal polynomial ofζp, is equal to

Φp(X) = Xp−1 +Xp−2 + · · ·+X + 1.

Thepr-th cyclotomic polynomial is

Φpr(X) = Φp(X
pr−1

) =

pr−1∏

i=1,(i,p)=1

(X − ζipr).

Consequently,

p =

pr−1∏

i=1,(i,p)=1

(1− ζipr).

We note further that with(i, p) = 1

(1− ζipr) = (1− ζpr)(1 + ζpr + ζ2
pr + · · ·+ ζi−1

pr )

and that(1 + ζpr + ζ2
pr + · · · + ζi−1

pr ) is a unit, since reduction modulo the maximal ideal ofKr is

equal toi, which is a unit inFp. From this one obtains that

pOKr = (1− ζpr)
pr−1(p−1),

i.e. that1 − ζpr is a uniformiser ofKr and thatKr/Qp is totally ramified. Passing to the relative

situation, we have

eKr/Kt =





(p− 1)pr−1 if t = 0,

(p−1)pr−1

(p−1)pt−1 = pr−t if t > 0.

We will now computeGs(Kr/Qp), i.e. the ramification groups in lower numbering. Letσ ∈

G := G(Kr/Qp). Thenσ is uniquely determined by an integer1 ≤ i ≤ pr − 1, (i, p) = 1 such that

σζpr = ζipr =: σi(ζpr).
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We have

Gs = {σ ∈ G|v(σ(1− ζpr)− (1− ζpr)) ≥ s+ 1}

= {σ ∈ G|v(σ(ζpr)− ζpr) ≥ s+ 1}

= {σi ∈ G|v(ζ
i
pr − ζpr) ≥ s+ 1},

wherev = vKr . Let i be given as above and lett be the unique (ifi 6= 1) positive integer such thati =

1 + qpt with (q, p) = 1. This is equivalent toσi being an element ofGal(Kr/Kt)−Gal(Kr/Kt+1),

sinceζipt = ζptζ
ptq
pt = ζpt . We compute further:

v(ζipr − ζpr) = v(1− ζi−1
pr ) = v(1− ζqp

t

pr ) = v(1− (ζq
pr−t

))

= eKr/Kr−t =




pt if r − t ≥ 1,

∞ if r = t.

This means the following for1 6= i = 1 + qpt with (q, p) = 1:

σi ∈ Gs ⇔ v(σiζpr − ζpr) = pt ≥ s+ 1.

Finally, we obtain

Gs =





G(Kr/Qp) if s = 0

G(Kr/K1) if 0 < s ≤ p− 1

G(Kr/K2) if p− 1 < s ≤ p2 − 1

. . .

G(Kr/Kt) if pt−1 − 1 < s ≤ pt − 1

. . .

0 if pr−1 − 1 < s.

Thus, the jumps for the lower numbering occur at0, p− 1, p(p− 1), p2(p− 1),. . . .

Next we discuss the upper numbering. For that we computeη = ηKr/Qp(s). We haveη(0) = 0

and forpt−1 − 1 < s ≤ pt − 1 with t ≥ 1:

η(s) =
1

g0

(
g1 + g2 + · · ·+ g⌊s⌋ + (s− ⌊s⌋)g⌈s⌉

)

=
1

(p− 1)pr−1

(
(p− 1)g1 + p(p− 1)gp + · · ·+ pt−2(p− 1)gpt−2 + (s− pt−1 + 1)gpt−1

)

= (t− 1) + (s− pt−1 + 1)
pr−t

(p− 1)pr−1

= (t− 1) +
(s+ 1)− pt−1

pt − pt−1
.
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We usedgpt = # Gal(Kr/Kt+1) = pr−t−1, whencegptp
t(p− 1) = pr−1(p− 1). One obtains:

η(s) = 1⇔ s = p− 1⇔ ψ(1) = p− 1

η(s) = 2⇔ s = p2 − 1⇔ ψ(2) = p2 − 1

η(s) = 3⇔ s = p3 − 1⇔ ψ(3) = p3 − 1

. . .

η(s) = r − 1⇔ s = pr−1 − 1⇔ ψ(r − 1) = pr−1 − 1

Thus, we see thatGt = Gal(Kr/Kt). Since the jumps in the lower numbering occur atp− 1, p2− 1,

etc., the jumps for the upper numbering are precisely the natural numbers.

Conductor

Definition 3.1.26 LetK be a local field (complete with respect to a discrete valuation with perfect

residue class field). LetL/K a (possibly infinite) Galois extension. Fort ≥ −1 we define the

ramification groups in upper numberingas

Gu(L/K) = lim←−
L/L′/K

Gu(L′/K),

where theL′/K are finite Galois.

Definition 3.1.27 LetK be a local field of residue characteristicp > 0 and let

ρ : GK → GL(V )

be a Galois representation, whereV is a finite dimensionalF -vector space for a fieldF of character-

istic different fromp.

(i) Theconductor exponentn(ρ) is defined as

n(ρ) =

∫ ∞

−1
codimF (V ρ(Gu(L/K)))du.

(ii) We will see in Corollary 3.1.41 thatn(ρ) always is a non-negative integer. TheconductorN(ρ)

is defined aspn(ρ)
K , with pK the valuation ideal ofK.

(iii) The Swan exponentsw(ρ) (also calledwild exponent) is defined as

sw(ρ) =

∫ ∞

0
codimF (V ρ(Gu(L/K)))du.

(Draw a little graph ofcodimF (V ρ(Gu(L/K))).)

Remark 3.1.28 (i) n(ρ) = codimF V
ρ(G0(L/K)) + sw(ρ).

(ii) If V is irreducible, thencodimF V
ρ(G(L/K)) = dimF V .
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One-dimensional representations

It is directly clear that the conductor of a1-dimensional faithful representation is theu where the first

(and only) jump in the upper filtration occurs.

Proposition 3.1.29 LetK be a local field of residue characteristicp and consider a non-trivial1-

dimensional Galois representation

ρ : GK → F×.

Thensw(ρ) is the minimalu ≥ 0 such thatρ(Gu(K/K)) = 1.

Proof. This is immediate fromρ(Gu) = 1⇔ V ρ(Gu) = V with V = F . Hereρ(Gu) ⊆ F× acts

onV = F by multiplication. 2

In order to let the ramification groups in upper numbering occur in a different set-up, we recall the

principal result from local class field theory.

Theorem 3.1.30LetL/K be a Galois extension of local fields (with finite residue fields). There is a

group homomorphism, thenorm residue symbolor Artin map( , L/K), such that

1→ NL/KL
× → K× ( ,L/K)

−−−−−→ G(L/K)ab → 1

is an exact sequence of groups. Moreover, the norm residue symbol mapsU (n)
K ontoGn(Lab/K).

We will need the following result.

Theorem 3.1.31 (Hasse-Arf)Let L/K be a finite abelian extension of local fields. IfGs 6= Gs+1

for s ∈ Z, thenηL/K(s) ∈ Z. In other words, the jumps in the upper ramification groups occur at

integers.

Proof. For cyclotomic fields we computed this explicitly. The same computation works for totally

ramified extensions of other local base fields, using Lubin-Tate theory. The details are beyond the

scope of this text. 2

Corollary 3.1.32 Let K be a local field of residue characteristicp and consider a non-trivial1-

dimensional Galois representation

ρ : GK → F×

with finite image.

Thensw(ρ) is the minimal integeru ≥ 0 such thatU (u)
K ∈ ker

(
( , L/K)

)
, whereL is such that

GL = ker(ρ).

Proof. This follows by combining Hasse-Arf, Proposition 3.1.29 with the principal theorem of

local class field theory. 2

We also give an infinite version of Hasse-Arf.
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Corollary 3.1.33 Let L/K be a (possibly infinite) abelian extension of a local fieldK. Then the

jumps in the upper ramification groups occur at integers, i.e. ifGu−ǫ(L/K) 6= Gu+ǫ(L/K) for all

ǫ > 0, thenu ∈ Z.

Proof. ForL/K finite, the statement follows from Hasse-Arf’s theorem, sinceu = ηL/K(s) with

s a jump in the lower filtration.

Now letL/K be arbitrary and assume that the jumpu does not occur at an integer. Then there are

u′ andu′′ such thats < u′ < u < u′′ < s+1 for ones ∈ Z. Since for all finite GaloisL′/K insideL

the jumps occur at integers, we have

Gu
′
(L′/K) = Gu

′′
(L′/K).

Consequently, passing to the projective limit yieldsGu
′
(L/K) = Gu

′′
(L/K), a contradiction. 2

Induced representations

We first recall the definition of induced representations.

Definition 3.1.34 LetH ≤ G be a subgroup andV anR[H]-representation, whereR is any com-

mutative unitary ring. Theinduction fromH to G of V (more correctly, thecoinduction) is defined

as

IndGH(V ) = HomR[H](R[G], V )

with the natural leftG-action: (g.f)(h) = f(hg) for g, h ∈ G.

Remark 3.1.35 We have
(
IndGH(V )

)G ∼= V H , by sending a functionf to its value at1.

In terms of Galois representation induction works as follows. LetV be a Galois representation of

the fieldL (local or global field) with coefficients in the fieldF , i.e.V is anF [GL]-module. Take a

subfieldK of L; thenGL is a subgroup ofGK . We then put

IndKL (V ) = HomF [GL](F [GK ], V ),

where the homomorphisms are now supposed to be continuous. Alternatively, we could replaceGL
by a finite quotient (if the Galois representationV has finite image).

We now compute the conductor of a local induced representation. For this,we will have to use

Hilbert’s theorem on differents.

Theorem 3.1.36 (Hilbert) Let L/K be a finite Galois extension of local fields with finite residue

fields. LetG = G(L/K). ThenDL/K = pdL with d =
∑

i≥0(#Gi − 1), whereDL/K is the different

ofL/K.

TakingNL/K and usingvK ◦NL/K = fL/KvL, this yields

vK(dL/K) = fL/Kd.
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Proof. The proof needs some preparations, for which we do not have any time. Aproof can be

found in [SerreLocalFields] or [Neukirch]. 2

Theorem 3.1.37LetK be a local field with finite residue field. LetL/K be a finite Galois extension

andV anF [GL]-representation, i.e.ρ : GL → GL(V ) for some finite dimensionalF -vector spaceV .

Then

n(IndLK(ρ)) = dim(V )vK(dL/K) + fL/Kn(ρ),

wheredL/K denotes the discriminant ofL/K andfL/K is the residue degree.

Proof. The usual proof uses Frobenius reciprocity for characters and to thebest of my knowledge

must be handled with care when the characteristic ofF is non-zero. Hence, I prefer to give a very

explicit direct proof which is based on the use of Mackey’s formula (see[MFII]). Write G forGK and

H for GL. SinceH andGu are normal subgroups ofG, Mackey’s formula considerably simplifies

and reads

ResGGuIndGH(V ) =
∏

g∈G/(GuH)

gIndG
u

Gu∩HResHGu∩H(V ).

We will from now on stop writingRes if it is clear from the context. Before computing theGu-

invariants, we discuss the groups involved in the formula. We have

G/(GuH) ∼= (G/H)/(GuH/H) ∼= (G/H)/(G/H)u.

Since we prefer not to pass to finite groups, we need a limit process for thenext statement.

Gu ∩H = (lim←−
M/L

G(M/K)u) ∩H =lim←−
M/L

(G(M/K)u ∩G(M/L))

= lim←−
M/L

(G(M/K)ψM/K(u) ∩G(M/L)) =lim←−
M/L

G(M/L)ψM/K(u)

= lim←−
M/L

G(M/L)ηM/L(ψM/K(u)) =lim←−
M/L

G(M/L)ηM/L(ψM/L(ψL/K(u)))

= lim←−
M/L

G(M/L)ψL/K(u) =HψL/K(u),

whereM/L runs through all extensionsM of L that are Galois overK. This is justified, since the set

of such forms a cofinal subset of the set of all Galois extensionM/K, and also of the set of all Galois

extensionsM/L.

From Mackey’s formula and Remark 3.1.35, we obtain
(
IndLK(V )

)Gu
=

∏

g∈(G/H)/(G/H)u

V H
ψL/K (u)

.

Now, it is just a question of computing. First, we have

codim
(
IndLK(V )

)Gu
= #(G/H) dimV −

#(G/H)

#(G/H)u
dimV H

ψL/K (u)

= #(G/H)(dimV −
1

#(G/H)u
dimV H

ψL/K (u)

).
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Recall thatη′L/K(s) = #(G/H)s
#(G/H)0

and correspondinglyψ′
L/K(u) = #(G/H)0

#(G/H)u . Now we use the substi-

tution rule, the above computation and Hilbert’s theorem on the different andget

n(ρ) =

∫ ∞

−1
codimV Hv

dv

=

∫ ∞

−1
codimV H

ψL/K (u)

dψL/K(v)

= #(G/H)0

∫ ∞

−1
codimV H

ψL/K (u) 1

(G/H)u
du

= #(G/H)0

∫ ∞

−1
(dimV − dimV H

ψL/K (u)

)
1

(G/H)u
du

= #(G/H)0

∫ ∞

−1

(
dimV (

1

(G/H)u
− 1) + (dimV − dimV H

ψL/K (u) 1

(G/H)u
)
)
du

= eL/K dimV

∫ ∞

−1
(

1

(G/H)u
− 1))du+

1

fL/K

∫ ∞

−1
codim(IndLK(V ))G

u
du

= dim(V )

∫ ∞

−1
(

1

(G/H)v
− 1))#(G/H)vdv +

1

fL/K
n(IndLK(V ))

=
dim(V )

fL/K
vK(dL/K) +

1

fL/K
n(IndLK(V )).

This establishes the theorem. 2

Generalities on conductor exponents

Proposition 3.1.38 LetK be a local field andF an algebraically closed topological field. Letρ :

GK → GLn(F ) be an irreducible Galois representation with finite image. LetL be the smallest

extension ofK such thatρ|GL is unramified, i.e. letGM = ker(ρ), thenL = MG(M/K)0 .

Thenn(ρ) = n(ρ|GL).

Proof. LetH = G(M/L) = G0 = G0. Foru ∈ (0,∞) we have

Gu = H ∩Gu = H ∩GψM/K(u) = HψM/K(u) = HηM/L◦ψM/L◦ψL/K(u) = HψL/K(u) = Hu,

sinceL/K is unramified. This immediately implies the claim. 2

The case of restriction to the maximal tamely ramified extension is treated in Exercise 19.

Proposition 3.1.39 LetK be a local field andF an algebraically closed topological field. Letρ :

GK → GL(V ) be a Galois representation withV anF -vector space.

Thenn(ρ) = n(ρss).

Proof. In terms of matricesdimV Gu is the minimum number of1’s on the diagonal of the Jordan

normal form of eachg ∈ Gu, which is clearly independent of the semi-simplification. 2
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Conductor exponents are integers

The following is adapted from a proof in Serre’s book on linear representations of finite groups.

Proposition 3.1.40 LetK be a local field of residue characteristicp andF an algebraically closed

topological field. Assume that the characteristic ofF is different fromp. Letρ : GK → GLn(F ) be

an irreducible Galois representation with finite image.

Thenρ is of the formIndGKGL (W ) for some finite extensionL ofK andW a representation ofGL
with abelian image of inertia, i.e.W corresponds to a representationρ1 : GL → GL(W ) andρ1(IL)

is an abelian group.

Proof. LetG = GK/ ker(ρ). LetV be theF -vector space underlyingρ.

We distinguish two possibilities:

(I) G1 ⊆ Z(G)

(II) There is minimals ≥ 1 with Gs 6⊆ Z(G) andGs+1 ⊆ Z(G).

In case (I), the exact sequence

0→ G1 → G0 → G0/G1 → 0

has abelian kernel and cokernel and is split, whenceG0 is an abelian group. In that case, we are

finished.

Now we assume that we are in case (II). The groupGs is a p-group. Moreover, as above, the

sequence

0→ Gs+1 → Gs → Gs/Gs+1 → 0

is split with abelian kernel and cokernel, implying thatGs is abelian. Now we use that the character-

istic of F is different fromp. In that case, Maschke’s theorem shows that

V |Gs =
r⊕

i=1

Wi with Wi = V ei
i ,

i.e. the restriction ofV toGs is the direct product of pairwise non-isomorphic irreducible representa-

tions ofGs. AsF is algebraically closed, eachVi is 1-dimensional.

The quotientG/Gs acts on the set{W1, . . . ,Wr} = {1, . . . , r} through its action onV , i.e. we

transport theG-action onV to an action on the direct sum: Forσ ∈ G, consider theGs-moduleσWi.

It is of the formWj for somej, sinceσVi = Vj due to irreducibility of theVi and thenei = ej . It is

clear thatσWi only depends on the class ofσ moduloGs. The permutation is transitive, as for eachi,

the orbit
∑

σ∈G/Gs
σWi is a sub-G-module ofV .

Next we notice thatr > 1. Otherwise,V |Gs = W1 and the action ofGs would be through scalars

which we excluded above.
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Let nowH be the kernel of the permutation representation on{1, . . . , r}. In other words, this

means for fixedi

{1, . . . , r} = {σWi|σ ∈ G/H}.

From this we conclude

V = IndGH(W1).

Now we continue as above, replacingG byH andV byW1. We have the alternatives (I) or (II).

In the first case,H1 ⊂ Z(H), whenceH0 is abelian, and we are done. In case (II), we obtain by the

same procedure

V1 = IndHH1
(U1),

yielding

ρ = IndGHIndHH1
(U1) = IndGH1

(U1).

Continuing like this, we will at some point be in case (I). 2

Corollary 3.1.41 Conductor exponents of representations as in Proposition 3.1.40 are integers.

Proof. By Proposition 3.1.40, we have

ρ = IndGKGL (W )

with W corresponding to some representation

ρ1 : GL → GL(W )

and abelian image of inertia. LetM be such thatGM = ker(ρ1). PutH = Gal(M/L). We have that

H0 is abelian. By Proposition 3.1.38 we know

n(ρ1) = n(ρ1|H0).

AsH0 is abelian, the jumps in the(H0)
u occur only at integers by Hasse-Arf. Consequently,n(ρ1) is

an integer.

The formula for the conductor of an induced representation (Theorem 3.1.37) yields thatn(ρ) is

also an integer. 2

Conductors of ℓ-adic and modℓ-representations

Proposition 3.1.42 The Swan exponent of aℓ-adic Galois representation is the same as the Swan

exponent of the modℓ reduction.

More precisely: LetF/Qℓ andK/Qp finite extensions withℓ 6= p. Letρ : GK → GL(V ) be a

Galois representation withV anF -vector space of finite dimension. Letρ (with V anF-vector space

for F the residue field ofF ) be the reduction ofρ modℓ.

Thensw(ρ) = sw(ρ) andn(ρ) = n(ρ) + codimF V
ρ(G0) − codimF V

ρ(G0)
.
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Proof. The second statement is a direct consequence of the first, on which we now concentrate.

First note that for allu > 0, the groupρ(Gu) is finite, as it is a pro-p group insideGL(V ) with V

having theℓ-adic topology.

Let T ⊂ V be an integral lattice withρ : GK → GL(T ) (possibly after conjugation). So,T is a

freeOF -module such thatT ⊗OF F = V andT ⊗OF F = V . Letπ be a uniformizer ofF . Consider

the short exact sequence ofOF -modules:

0→ T
·π
−→ T → T ⊗OF F→ 0.

Its associated long exact sequence in cohomology gives:

0→ T ρ(G
u) ·π
−→ T ρ(G

u) → V
ρ(Gu)

→ H1(ρ(Gu), T ) = 0,

since the group order is finite and invertible inOF . This yields:

T ρ(G
u) ⊗OF F ∼= V

ρ(Gu)
.

Due to flatness, we have

T ρ(G
u) ⊗OF F = H0(ρ(Gu), T )⊗OF F = H0(ρ(Gu), T ⊗OF F ) = H0(ρ(Gu), V ) = V ρ(Gu).

Putting these together, we find

dimF V
ρ(Gu) = rkOF T

ρ(Gu) = dimF V
ρ(Gu)

,

from which the proposition is obvious. 2

Corollary 3.1.43 Conductor exponents ofℓ-adic representations of local fields of residue character-

istic p 6= ℓ are integers.

Proof. The Swan conductor of theℓ-adic representation equals the Swan conductor of the reduc-

tion of the representation modℓ, which satisfies the requirements of Corollary 3.1.41. 2

Globalisation

Definition 3.1.44 LetK be a global field andρ : GK → GL(V ) be a Galois representation withV

a finite dimensionalF -vector space. For every finite primep ofK fix an embeddingK →֒ Qp, with

respect to which we will embedGKp intoGK .

The(Artin) conductor ofρ is defined as

N(ρ) =
∏

p,(p,char(F ))=1

p
n(ρ|GKp

)
.

(If char(F ) = 0, then the product runs through all primes ofK.)

In words, the conductor stores information on the ramification ofρ outside the characteristic ofF .
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3.2 Weil-Deligne representations

We now fix the notation for all this section.

Let K be a finite extension ofQp. LetGK be the absolute Galois group ofK, which is filtered

by IK = G0, its inertia group, andPK = G1, the wild inertia group. Denote byKunr = Q
IK
p the

maximal unramified extension ofK and byK tr = Q
PK
p the maximal tamely ramified extension ofK,

both considered inside some fixedQp. Moreover, letK tr,ℓ be the maximal pro-ℓ-extension ofKunr

insideK tr for primesℓ 6= p. As before, we denote byOK the integers ofK (for other fields with a

similar notation). LetF be the residue field ofOK . Putq = #F = pf .

Whenever we consider anℓ-adic representation in this section, we will havep 6= ℓ.

Tamely ramified extensions

We now describe the structure of the Galois group ofK tr,ℓ/K and also ofK tr/K.

By definition of the inertia group we have the exact sequence

0→ IK → GK → G(Fp/F)→ 0.

The latter group is generated byFrobq, thegeometric Frobenius, which is the inverse of the arithmetic

Frobenius sendingx to xq (this is unfortunate but standard). This choice gives an isomorphism

G(Kunr/K) ∼= G(Fp/F) ∼= Ẑ, Frobq 7→ 1.

Lemma 3.2.1 Choose a uniformiserπ ∈ OK . Then the fieldK tr is obtained fromKunr by adjoining

π1/m for all m with (p,m) = 1. In particular, the fieldK tr,ℓ is obtained by adjoining toKunr all

π1/ℓn .

Proof. Adjoining anm-th root (p ∤ m) of any element ofOK results in a tamely ramified extension

(its Galois group is a subgroup ofZ/mZ, asKunr contains them-th roots of unity). It is a fact that any

tamely ramified extension of a localp-adic field can be obtained by adjoiningm-th roots forp ∤ m.

Finally, them-th roots (p ∤ m) of any unitǫ of OK are inKunr, asxm − ǫ splits intom different

factors overFp, which implies that adjoining(ǫπa)1/m to F unr is the same as adjoiningπa/m. 2

As π ∈ K, we can also consider the fieldK1 := K(π1/ℓn |n ∈ N), so that we haveK tr,ℓ =

KunrK1. This means that the exact sequence

0→ G(K tr,ℓ/Kunr)→ G(K tr,ℓ/K)→ G(Kunr/K)→ 0

is split, thus obtaining a description ofG(K tr,ℓ/K) as the semi-direct product

G(K tr,ℓ/K) = G(K tr,ℓ/Kunr) ⋊G(Kunr/K),

for the conjugation action ofG(Kunr/K) onG(K tr,ℓ/Kunr).
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Definition 3.2.2 Let ℓ 6= p be a prime. Define

Zℓ(1) = lim←−
n

µℓn(Qp).

We have thatZℓ(1) is aZℓ-module viaz.
(
(ζℓn)n

)
= (ζzℓn)n. In fact, it is aZℓ-torsor.

Lemma 3.2.3 The canonical map

tℓ : G(K tr,ℓ/Kunr)→ Zℓ(1), σ 7→ (
σ(π1/ℓn)

π1/ℓn
)n

is an isomorphism. 2

Let us choose an isomorphism (of profinite groups)Zℓ(1) ∼= Zℓ and composetℓ with it, thus

obtaining an isomorphismrℓ : G(K tr,ℓ/Kunr) → Zℓ. Let us callu the topological generator in

G(K tr,ℓ/Kunr), which satisfiesrℓ(u) = 1 ∈ Zℓ.

We could also have chosen any other topological generatoru, but then we would have to “divide”

by its image inZℓ later on. That seems more conceptual, but makes the formulae more complicated.

Lemma 3.2.4 Letσ ∈ G(K tr,ℓ/Kunr). We have

σ ◦ Frobq = Frobq ◦σ
q.

Proof. Via the split,Frobq is an element inG(K tr,ℓ/K1) ⊆ G(K tr,ℓ/K). So it fixes in particular

all π1/ℓn . However, on roots of unity that are in the unramified tower it acts asζℓn 7→ ζ
1/q
ℓn (as it does

so on the residue field).

Let n ∈ N. We have:

Frob−1
q ◦σ ◦ Frobq(π

1/ℓn) = Frob−1
q

(
σ(π1/ℓn)

)
=

Frob−1
q

(σ(π1/ℓn)

π1/ℓn
π1/ℓn

)
=

(σ(π1/ℓn)

π1/ℓn

)q
π1/ℓn = σq(π1/ℓn).

The last equality follows from

σq(π1/ℓn) = σq−1(
σ(π1/ℓn)

π1/ℓn
π1/ℓn) =

σ(π1/ℓn)

π1/ℓn
σq−1(π1/ℓn) = · · · =

(σ(π1/ℓn)

π1/ℓn

)q
π1/ℓn .

This finishes the proof. 2

Summarizing the above, we obtain the following proposition.

Proposition 3.2.5 There is an isomorphism

G(K tr,ℓ/K) ∼= Zℓ(1) ⋊ Ẑ,

where the action of1 ∈ Ẑ onZℓ(1) is given by raising to theq-th power. 2



62 CHAPTER 3. LOCAL THEORY

Semi-stableℓ-adic representations

Definition 3.2.6 A continuousℓ-adic representation

ρ : GK → GL(V )

(with V a finite dimensionalF -vector space withF/Qℓ andℓ 6= p) is calledsemi-stable, if the inertia

groupIK acts unipotently, i.e. for allσ ∈ IK there is an integern such that(ρ(σ)− 1)n = 0.

As any unipotent subgroup ofGL(V ), e.g. the upper triangular matrices with ones on the diagonal,

is a pro-ℓ group, the representation factors throughG(K tr,ℓ/K).

Proposition 3.2.7 Everyℓ-adic representation as above becomes semi-stable after passing to a suit-

able finite extensionK ′/K. One says that it ispotentially semi-stable.

Proof. As the wild part ofIK can only have a finite image, we can assume that it acts trivially.

The profinite groupIK/PK is the direct product of the groupsZq(1) for q running through the primes

different fromp. The product ofZq(1) for primesq 6= ℓ, p has a finite image, so we can also assume

that it is trivial.

From the relationFrob−1
q σ Frobq = σq for σ ∈ G(K tr,ℓ/Kunr) it follows thatρ(σ) andρ(σq)

have the same eigenvalues. From this it is clear that the eigenvalues ofρ(σ) can only be roots of

unity. So the unipotent part ofG(K tr,ℓ/Kunr) is open of finite index in it. Passing to a finite extension

K ′/K we can hence assume that the inertia group acts unipotently. 2

Recall that we made two choices above, namely that of a uniformiserπ ∈ OK and that of an

isomorphismZℓ(1) ∼= Zℓ (i.e. choosing a topological generator ofZℓ(1) correpsonding to1, resp. a

topological generator ofG(K tr,ℓ/Kunr)). Let us fix these choices for the time being.

Assume thatρ is a semi-stableℓ-adic representation as above. We have the following data:

• A continuous action ofG(Kunr/K) on anℓ-adic vector spaceV , coming fromρ via the split.

In G(Kunr/K) we have a special element, the geometric Frobenius:ϕ = ρ(Frobq) : V → V .

It is an isomorphism, describing the action ofG(Kunr/K) uniquely.

• A unipotent endomorphismU = ρ(u) : V → V .

For any unipotent endomorphism one can define its logarithm

log(U) = −
∑

n≥1

(1− U)n

n

(the sum is finite). It is a nilpotent endomorphism.

LetN = log(U) : V → V . Givenρ, the endomorphismN is uniquely determined (remember-

ing our choices).

As we haveϕ−1Uϕ = U q, using thatlog(ϕ−1Uϕ) = ϕ−1 log(U)ϕ, we obtain

Nϕ = qϕN.
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Theorem 3.2.8 Subject to the choices made above, there is a bijection between the semi-stable ℓ-adic

representationsρ : GK → GL(V ) and the set of tuples(ρ̃, N) with ρ̃ : G(Kunr/K) → GL(V ) a

continous representation andN : V → V a nilpotent endomorphism satisfyingNϕ = qϕN , where

ϕ is ρ(Frobq) with Frobq a geometric Frobenius element.

Proof. We have seen that the tuple associated above is unique.

Let us construct a representationρ out of(ρ̃, N). It is clear thatρ restricted to the prime-to-ℓ-parts

of IK has to be trivial, and restricted toG(K tr,ℓ/K1) ∼= G(Kunr/K) has to be given bỹρ.

Recall the continuous isomorphismrℓ : G(Ktr/Kunr) → Zℓ. It involved choices and was made

in such a way thatrℓ(u) = 1. From it we obtain a continuous homomorphism

ρ|G(K tr/Kunr) : G(K tr/Kunr)→ GL(V ), x 7→ exp(rℓ(x)N),

whereexp is defined via the usual power series expansion, which is a finite sum, sinceN is nilpotent.

The commutativity relation implies thatρ is well-defined. One checks (e.g. on the dense subset

{un}) that these constructions are inverses to each other. 2

Remark 3.2.9 More conceptually, one can get rid of the choices by consideringN not as a map

V → V , but as the mapV ⊗Zℓ Zℓ(1) → V defined byN(v ⊗ 1) = ( 1
tℓ(g)

log(ρ(g)))v, which is

independent of the choice ofg ∈ G(K tr,ℓ/Kunr).

Remark 3.2.10 Most of the above fails ifℓ = p. In particular, the image of the representation will in

general not be a semi-direct product.

Weil-Deligne representations

The idea behind Weil-Deligne representations is to ’forget’ the topology, but to retain enough infor-

mation to uniquely identify a givenℓ-adic representation. We recall that throughoutℓ 6= p.

Definition 3.2.11 TheWeil groupWK of thep-adic local fieldK is defined as

{ σ ∈ GK | ∃n ∈ Z : σ = Frobnq },

where we writeσ for the image ofσ in G(Fp/F).

In words, the Weil group is the subgroup ofGK (as a group, not as a topological group) of those

elements that map to a power of the geometric Frobenius element in the Galois group of the residue

extension.

Definition 3.2.12 LetF be an algebraically closed field of characteristic0. A pair (ρ,N) consisting

of a group homomorphismρ : WK → GL(V ) and nilpotent endomorphismN : V → V , whereV is a

finite dimensionalF -vector space (with the discrete topology), is called aWeil-Deligne representation

of K overF if for all g ∈WK , whose image inG(Fp/F) ⊆ G(Fp/Fp) equals(Frobp)
α(g), one has

Nρ(g) = pα(g)ρ(g)N.
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(We are again consideringFrobp to be the geometric Frobenius.)

A Weil-Deligne representation is calledF-semi-simple(that’s a differentF meaning ’Frobenius’)

if the underlying representation ofWK is semi-simple (in the usual sense).

Remark 3.2.13 There is an algebraic group overF , called theWeil-Deligne group, whose represen-

tations are precisely those above. Thus the name.

Proposition 3.2.14 Every ℓ-adic representationρ : GK → GL(V ) gives a unique Weil-Deligne

representation ofK overQℓ, which we denote asWD(ρ)
Qℓ

.

Proof. Let us first extend scalars ofV to Qℓ. We know thatρ is potentially semi-stable. Let

henceK ′/K be a finite Galois extension so thatρ|GK′ is semi-stable. Above we have constructed a

homomorphismIK/PK → Zℓ, namelyrℓ. Now we usesℓ : IK → IK/PK → Zℓ. We letu be a

topological generator ofIK′ . Let furthermore,N = − log(ρ(u))
sℓ(u)

, which is nilpotent and satisfies the

necessary commutativity relation (same proof as already presented above).

We now define the Weil-Deligne representationWD(ρ)
Qℓ

to be associated withρ as follows. First

choose someΦ lifting the geometric Frobenius, so that every element in the Weil groupWK can be

written asΦnσ with σ ∈ IK . We let

WD(ρ)
Qℓ

(Φnσ) = ρ(Φnσ) exp(sℓ(σ)N).

Then for example one hasWD(un) = ρ(un) exp(−sℓ(u
n)/sℓ(u) log(ρ(u))) = 1, soIK′ acts triv-

ially. Hence, only the Frobenius action and the action ofIK/IK′ is remembered byWD(ρ)
Qℓ

and the

action ofIK′ is ’put’ into N .

We remark without proof that the associated Weil-Deligne representation upto isomorphism is

independent of the choices made (i.e. ofΦ and of the identificationZℓ(1) ∼= Zℓ used in the homo-

morphsimsℓ). 2

Remark 3.2.15 For the sake of completeness we mention that one can equipWK with a topology.

For this, we consider the exact sequence

0→ IK → GK
pr
−→ Ẑ→ 0,

and the exact sequence (of subgroups of the former)

0→ IK →WK
pr
−→ Z→ 0.

On Z we put the discrete topology, so thatZ is dense in̂Z. We considerWK aspr−1(Z) ⊂ GK with

the subspace topology. Then the Weil groupWK is dense inGK andIK carries its original topology.

The main reason for putting the mentioned topology onWK is that one then has a natural bijection

between the set of continuous representationsWK → GLd(Qℓ) with the discrete topology onQℓ

together with a nilpotent operatorN subject to the commutativity rule above and the set of continuous

ℓ-adic representationsWK → GLd(Qℓ). In the latter set one has the proper subset obtained from the

ℓ-adic representationsGK → GLd(Qℓ) by restricting toWK .
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3.3 Serre’s conjecture

Whereas in the previous section the caseℓ 6= p was treated, we now have to move toℓ = p. This

is much more difficult and, in general, requires Fontaine’s theory. We shall, however, only treat the

so-called fundamental characters. These suffice for a formulation of the weight in Serre’s conjecture.

Fundamental characters

Let K/Qp be a finite extension with residue fieldFq. By the discussion in the previous section, we

have an explicit isomorphism

t : G(K tr/Kunr) ∼=
∏

ℓ6=p

Zℓ(1) ∼= lim←−
m,(m,p)=1

µm(Qp) ∼= lim←−
m,(m,p)=1

µm(Fp) ∼= lim←−
n

(F×
pn).

Moreover, conjugation byFrobq onG(K tr/Kunr) translates to raising to theq-th power.

Definition 3.3.1 A character

φ : G(K tr/Kunr)→ F
×
p

is said to be ofleveln if n ≥ 1 is the minimalm such thatφ factors throughF×
pm , i.e.

φ : G(K tr/Kunr)
projection◦t
−−−−−−−→ F×

pm →֒ F
×
p .

The projection is the natural one onlim←−
n

(F×
pn). (A character is of leveln if its order dividespn − 1

and notpm − 1 for any smallerm.)

Thefundamental characters (forK) of leveln are then characters

It = G(K tr/Kunr)
t
−→ lim←−

r

(F×
pr) ։ F×

pn
τi−→ F

×
p ,

whereτ1, . . . , τn are then embeddings ofFpn into Fp.

Remark 3.3.2 The fundamental characters of leveln are {ψ,ψp, ψp
2
, . . . , ψp

n−1
} for some fixed

fundamental characterψ, since the embeddingsτi are given by thep-power Frobenius.

Every character ofIt of level at mostn is the i-th power ofψ for a unique0 ≤ i < pn − 1,

since the definition ofφ only differs fromψ by the fact thatF×
pn →֒ F

×
p need not come from a field

embedding but is allowed to be any group homomorphism. AsF×
pn is cyclic, it is uniquely determined

by the image of a generator, which has orderpn − 1.

Note that by Exercise 20, the level1 fundamental character forK = Qp is the cyclotomic charac-

ter.
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The weight in Serre’s conjecture

We now adopt the situation of Serre’s conjecture, i.e.2-dimensional modp representations ofGQ. The

weight reflects the ramification of the representation atp. Hence, in this section we consider Galois

representations

ρp : Gp → GL(V )

with a 2-dimensionalFp-vector spaceV , where we writeGp for GQp . By V ss we denote the semi-

simplification ofρp, i.e. ofV seen as a representation ofGp.

Lemma 3.3.3 The image ofρp is of the form{( ∗ ∗
0 ∗ )} or {( ∗ 0

0 ∗ ) , ( 0 ∗
∗ 0 )} (after conjugation).

Proof. We have seen above that local Galois groups are solvable. The only finitesolvable sub-

groups ofGL2(Fp) are of the claimed form. This follows from Dickson’s classification of the sub-

groups ofPGL2(Fp). 2

Corollary 3.3.4 OnV ss, the wild inertia groupPp acts trivially.

Furthermore, the tame inertia group, i.e. the quotientIt = Ip/Pp = G(Qtr
p/Q

unr
p ) acts onV ss

through two charactersφ1, φ2, i.e.

ρp|It : It → GL(V ss)

is given asρp(σ) =
(
φ1(σ) 0

0 φ2(σ)

)
(after conjugation).

Proof. The first statement immediately follows from Lemma 3.3.3, since in{( ∗ 0
0 ∗ )} there is no

non-trivial element ofp-power order.

For the second statement note thatIt is a profinite group of order coprime top, meaning that no

finite quotient has order divisible byp. Hence, by Maschke’s theorem, its representation theory over

Fp is semi-simple. AsIt is furthermore abelian, the action ofIt is diagonalisable, i.e. given by two

characters, as claimed. 2

Proposition 3.3.5 The charactersφ1, φ2 are either both of level1 or of level2. In the latter case,

φ1 = φp2, φ2 = φp1 andV is an irreducibleGp-representation.

Proof. Above we have seen that conjugation byFrobp onIt = G(Qtr
p/Q

unr
p ) means raising to the

p-th power. Thus, there is a matrix such that conjugating
(
φ1(σ) 0

0 φ2(σ)

)
by it equals raising to thep-th

power. If a conjugate of a diagonal matrix is still diagonal, then only the diagonal entries can have

been permuted (e.g. look at the Jordan form). Consequently, the set{φ1, φ2} is stable under taking

p-th powers. Ifφp1 = φ1, thenφ1 is of level1. Then alsoφ2 is of level1.

If φp1 = φ2, thenV is irreducible. For, if it were not, then there would be aGp-invariant1-

dimensional subspace on whichGp acts through a character. Hence,φ1 andφ2 would be of level1.

2



3.3. SERRE’S CONJECTURE 67

Definition 3.3.6 Let K/Qp be a finite Galois extension and denote byK tr andKunr the maximal

tamely ramified, respectively unramified subextensions ofK. Assume thatG(K tr/Kunr) = (Z/pZ)×

and thatG(K/K tr) is an elementary abelian group of exponentp (i.e. (Z/pZ)m). ThenK tr =

Kunr(ζp) and by Kummer theory there arex1, . . . , xm ∈ K
unr such thatK = K tr(x

1/p
1 , . . . , x

1/p
m ).

ThenK is called little ramified if all the xi can be chosen among the units ofKunr. Otherwise,

K is calledvery ramified.

Now we are ready to define the weight in Serre’s conjecture. We point out that what we present

here is theminimal weightdiscussed by Edixhoven, i.e. the weight that one should use when for-

mulating Serre’s conjecture with Katz modular forms overFp rather than reductions of holomorphic

modular forms.

Definition 3.3.7 Denote byψ,ψp the two fundamental characters of level2 and byχ the cyclotomic

character.

Let ρp : Gp → GL(V ) be a Galois representation withV a 2-dimensionalFp-vector space.

Defineφ1, φ2 as above. Theminimal weightk(ρp) of ρp is defined as follows.

(I) Supposeφ1, φ2 are of level2. After interchangingφ1 andφ2 there are unique integers0 ≤ a <

b ≤ p− 1 such that

φ1 = ψa+pb andφ2 = ψb+ap.

Let

k(ρp) = 1 + pa+ b.

(II) Supposeφ1, φ2 are of level1.

(1) Suppose thatρp is tamely ramified, i.e.ρp(Pp) = 0. There are unique integers0 ≤ a ≤ b ≤

p− 2 such thatφ1 = χa andφ2 = χb. Let

k(ρp) = 1 + pa+ b.

(2) Suppose thatρp is not tamely ramified. Then there are unique integers0 ≤ α ≤ p− 2 and

1 ≤ β ≤ p− 1 such that

ρp|Ip
∼=

(
χβ ∗
0 χα

)
.

Leta = min(α, β) andb = max(α, β).

(a) Supposeβ 6= α+ 1. Let

k(ρp) = 1 + pa+ b.

(b) Supposeβ = α+ 1. LetK be the extension ofQp such thatGK = ker(ρp).

(i) SupposeK is little ramified. Let

k(ρp) = 1 + pa+ b.

(ii) SupposeK is very ramified. Let

k(ρp) = 1 + pa+ b+ (p− 1).
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Serre’s conjecture

We finish this course by giving the full statement of Serre’s conjecture.

Theorem 3.3.8 (Serre’s conjecture: Khare, Wintenberger, Kisin, Taylor, et al.) Given any irredu-

cible odd Galois representationρ : GQ → GL2(Fp). There is a (Katz) modular form onΓ1(N(ρ)) of

weightk(ρ|GQp
) such that its attached modp Galois representation is isomorphic toρ.



Exercises

Exercise 1 Prove Proposition 1.1.5.

Exercise 2 Prove Proposition 1.1.6.

Exercise 3 Prove Proposition 1.3.1.

Exercise 4 Letφ be an endomorphism of a finite dimensionalk-vector space. Show that there is the

identity of formal power series

exp
( ∞∑

r=1

Tr(φr)
Xr

r

)
=

1

det(1− φX)
.

Exercise 5 Prove the statements made in Example 1.4.2 (3).

Exercise 6 Let V be anA-module for ak-algebraA. Assume thatV is finite dimensional as ak-

vector space. LetB be the image of the natural mapA → Endk(V ). Show thatV is a faithful

B-module and that

EndA(V ) ∼= EndB(V ).

We will use this exercise to assume in questions aboutEndA(V ) thatV is a faithfulA-module.

Exercise 7 Prove Proposition 2.1.11. You may use the fact that by Zorn’s lemmaR contains maximal

left ideals.

Exercise 8 Prove Proposition 2.1.13.

Exercise 9 Prove Lemma 2.1.18

Exercise 10 Prove Lemma 2.1.22.

Exercise 11 Prove Lemma 2.1.25. For (b) use transposed matrices.

Exercise 12 Find a counterexample to the statement in Proposition 2.2.3, dropping the separability

assumption.

69
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Exercise 13 LetR be ak-algebra andK/k a field extension. Prove

Matn(R)⊗k K ∼= Matn(R⊗k K).

Exercise 14 LetH be the Hamiltonian quaternion algebra overk = R and letV be its simple module.

LetK = C. Write down an explicit embedding ofH into Mat2(C) and computee in Corollary 2.2.12.

Exercise 15 (a) ZR(R) = Z(R).

(b) ZR(T ) is a subring ofR.

(c) T ⊆ ZR(T ) if and only ifT is commutative.

(d) T = ZR(T ) if and only ifT is a maximal commutative subring.

Exercise 16 Prove Proposition 2.3.2.

Exercise 17 Let k be a finite fieldFq. Exhibit an example of a2-dimensional irreducible group

representation overk which is not absolutely irreducible.

Exercise 18 Prove Part (iv) of Remark 2.4.7.

Exercise 19 LetK be a local field andF an algebraically closed topological field. Letρ : GK →

GLn(F ) be an irreducible Galois representation with finite image. LetL be the smallest extension

ofK such thatρ|GL is tamely ramified, i.e. letGM = ker(ρ), thenL = MG(M/K)1 .

Thenn(ρ) = q · n(ρ|GL) with q the number of elements ofG0/G1.

Exercise 20 LetK = Qp. The level1 fundamental character is the cyclotomic character.
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