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Para-complex structure

An almost paracomplex structure on a mani-
fold M is a field of endomorphisms K € End(T M)
with K2 = id.

It is called an (almost) paracomplex structure
in the strong sense if its £1-eigendistributions
have the same rank. An almost paracomplex
structure K is called a paracomplex structure,
if it is integrable, i.e.

(X, Y]+ [KX,KY] - K[X,KY] - K[KX,Y] =0

VX, Y el (TM).
This is equivalent to say that the distributions
T=M are involutive.



Recall that almost C R-structure of codimen-
sion k on a 2n + k-dimensional manifold M is
a distribution HM C T M of rank 2n together
with a field of endomorphisms J € End(HM)
such that J2 = —id.

An almost C'R-structure is called C'R-structure,
if the +i-eigenspace subdistributions HL M of
the complexified tangent bundle TCM are in-
volutive.



Almost Para-C'R structure

We define an (almost) para-CR structure in a
similar way.

A almost CR-structure of codimensions k (in
the weak sense) on a 2n + k-dimensional man-
ifold M is a pair (HM,K), where HM C TM is
a rank 2n distribution and K € End(HM) is a
field of endomorphisms such that K2 = id and
K # +£id. Note that K is defined by eigenspace
decomposition HM = H_ + H_ .



Para-C'R structure

An almost para-CR structure is said to be a
para-CR structure, if the eigenspace subdistri-
butions HL M C HM are integrable or equiv-
alently if the following integrability conditions
hold:

IKX, KY|+ [X,Y]eT(HM), (1)

(X, Y]+ [KX,KY] - K([X,KY]+ [KX,Y]) =0

forall X, Y el(HM).

If the eigenspace distributions Hi+ have the
same rank, we say that (HM,K) is an (al-
most) para-CR structure in the strong sense.



Codimension 1 para-C'R structure

Let (HM,K)) be a codimension 1 para-CR
structure. Locally HM = Ker6 where 1-form
0 is defined up to a scaling.

The symmetric form

g =dho K on HM

is called the Levi-form. A para-C'R mani-
fold is called Levi non-degenerate if g is non-
degenerate or, equivalently, if HM is a contact
distribution.

Then the contact form 6 defines a pseudo-
Riemannian metric on M

g=g" =do?+ 4"

Note that ¢! (H+, H+) = 0 where Hy are eigen-
distributions of K.



Classification of homogeneous compact Levi
non-degenerate CR manifolds (-, A.Spiro).
Let (M = G/L,HM,J) be a simply connected
homogeneous compact Levi-non-degenerate CR
manifold. Then it is either

a) a standard CR homogeneous manifold which
is homogeneous S1-bundle over a flag manifold
F = G/K, with CR structure induced by an in-
variant complex structure on F'; or

b) the Morimoto-Nagano spaces , i.e. sphere
bundles S(N) C TN of a compact rank one
symmetric space N = G/H, with the CR struc-
ture induced by the natural complex structure
of TN = GY/HC; or one of the manifolds



c) SUn/TY SU,_o, SUpx SUG/TY Up_o-Uy_o,
SUn/TY - SU5 - SUs - SU,,_4, SO10/T! - SOg,
Eg/T! - SOg.

These manifolds admit canonical holomorphic
fibration over a flag manifold (F, Jg) with typ-
ical fiber S(S*), where k = 2,3,5,7 or 9, re-
spectively;

the CR structure is determined by the invari-
ant complex structure Jg on F and an invariant
CR structure on the typical fiber, depending on
one complex parameter.



We describe a class of homogeneous Levi non-
degenerate para-C'R manifolds of a semisimple
group.

Homogeneous contact manifold
Homogeneous contact manifolds of a Lie group
(G correspond to coadjoint orbits of G,

( =~ adjoint orbits for a semisimple G ) and are
split into two classes:

If N=Adgz Cgis a non conical orbit of an
element z € g, then the corresponding contact
manifold M = G/L is a homogeneous line ( or
circle) bundle over N;

If N is a conical orbit , then M = PN is the
projectivization of N.



We describe homogeneous non-degenerate para-
C' R manifolds (M = G/L,HM,K) of a semi-
simple Lie group G which correspond to an
orbit N = Adg z of a semisimple non compact
element z € g under additional assumption
that the para-complex structure K is invari-
ant with respect to the Reeb vector field Z,
defined by

0(Z) =1, d0(Z,.) = 0.

The field Z is Hamiltonian, i.e. it preserves 0.
The orbit N of a semisimple element z is not
conical and the associated homogeneous con-
tact manifold (M = G/L,HM) admit a global
G-invariant contact form 6; the associated Reeb
vector is also G-invariant.
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A construction of invariant para-CR structure

Let N = Adgz = G/Cq(z) C g be the ad-
joint orbit of a non-compact semisimple ele-
ment. The associated homogeneous contact
manifold is (M = G/L,Ker ) where

Lie(L) =1I[:= Cg(z) N2+

and 6 is invariant 1-form on M which is the
invariant extension of the 1-form Boz € g* de-
fined by z. (B is the Killing form).

The contact manifold (M, H = Ker@8) has the
canonical invariant para-C'R structure

HM = H-MTHTM defined as follows.
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Let h > z be a Cartan subalgebra of g and R the
root system of (g,h). Denote by R, = RN z+
the roots which belong to the hyperplane 2t
and by Ry, R = —R, the roots which belong
to positive and negative half-spaces h defined
by z. Then

g=(h+gRo) + Rz +g(R-) +9(Ry)) =

[+ (Rz+m_ +my)

where g(P) = Y ,cp8a for P C R.

Then Ady-invariant decomposition

m = (m_ + my) defines an invariant Levi non
degenerate para-C R structure

HM=H M+ HTM on M =G/L.
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Para-C' R-manifolds M3 and 2d order ODE
(P.Nurowski,G.Sparling,CQG,2003)

ODE v" = Q(z,v,vy’) is equivalent to para-CR
structure

HM = Kerf = H_ + H, = Kerp+ Kery/,

on the contact manifold M3 = J1(R), where
0 =dy — pdx, p=dp— Qdx, p' = dzx.
Under a point transformation

r=12x(z,y), y =79(z,y)

the forms are transformed by 0 = af, p = bp +
cd, pf =bp+9).

This shows that the para-C'R structure Hy is
invariant under point transformations.
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Solutions of the ODE are integral curves of the
(1-dimensional) Lagrangian distribution H.
PN-GS considered the 8-dimensional principal
bundle = : P — M of adapted frames for the
para-C'R structure Hy (G-structure) and con-
structs an associated para-Fefferman bundle
F — M with a canonical conformal metric of
signature (2,2).
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Using it, they define two fundamental invari-
ants wq,wp of the ODE (known by S.Lie and
Segre) and solve the problem of equivalency of
ODE under point transformations.

‘The duality between H_ and H_ leads to a
interesting duality between equivalence classes
of ODE, which was known by E. Cartan.
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Para C' R structures and parabolic Monge-
Ampere Equations

(-, G. Manno, F. Pugliese)

Let HM = Kerf be a contact distribution on

a (2n + 1)-dimensional manifold M.

In Darboux coordinates (w?) = (z,x%, p;),

0 =dz— Y p;dz

and we can locally identify M with the mani-
folds J1(R™) of 1-jets of functions z = z(z).
The tangent space T2 of any n-dimensional
integral submanifold > C M of HM is a La-
grangian subspace of the symplectic space (Hy, ww),
where w = df|g.
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The first prolongation of (M, HM) is the set
M) = Lagr(TM) of all Lagrangian subspaces
of T'M. It is a bundle over M with a fiber
Lagr(TyM) = Sp(n,R)/GL(n,R).

A 2d order PDE is a submanifold & ¢ M(1)
and its solution is an n-dimensional integral
submanifold > C M of HM which is tangent
to & .

Tw2 €&, we .
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PDE associated to a subdistribution D C HM
We associate to an n-dimensional subdistrib-
ution D C HM a PDE

g(D)={Le MY, LnD,=#DO0}.

A solution of £(D) is an n-dimensional inte-
grale submanifold > of HM such that T2 N

Dy, # 0.
Let X;,, :=1,---,n be a local basis of the w-
orthogonal distribution D+ c HM and

Consider n-form p:= 601 A--- A 0.
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Equation £(D) in coordinates

Proposition 1 An integrale submanifold > C
M of HM is a solution of £(D) if and only if

plz = 0.

We may assume that X; = 9; + q;;(z*, pm, 2)0p,
where 0; .= 0; + p;0-.

Then 0; = wo X; = —dp; + qz-jda:j.

If X = >.(x) is the graph of a function z =
z(z), then p; = z; and

0,1 = (—z;5 + q;j)da’.

The equation p|X = 0 take the form of the
Monge-Ampere equation

det ||z — q;j(a", zm , 2)|| = 0.
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Parabolic Monge-Ampere equation associated
with a Lagrangian distribution

Vector fields X; = 8;4q;;(z*, pm, )8y, generate
a Lagrangian distribution D if and only if the
matrix ||g;;|| is symmetric. The corresponding
equation £(D) is called the parabolic Monge-
Ampere equation (MAE).

Proposition 2 There exist a natural 1-1 cor-
respondence between Lagrangian distributions
on (M, HM) and parabolic MAE.

In particular, a non degenerate para-CR struc-
ture H4 defines a pair of dual parabolic Monge-
Ampere equations.
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In the case n = 2, a local classification of La-
grangian distributions and associated parabolic
MAE was given by R.Bryant and P.Griffiths in
analytic case and R.Alonso Blanco, G. Manno
and F.Pugliese in C°° case.
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Proposition 3 Any integrable n-dimensional sub-
distribution D of HM is a Lagrangian distrib-
ution, locally given by

D = span{0p, - ,0p,}-

Theorem 4 The equation
det ||Z’Z]|| =0
IS contactomorphic to the trivial equation

z11 =0,
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Maximally homogeneous CR structures
(-,C.Medori, A. Tomassini)

Summary
We will consider a para-CR structure (HM, K)

on a manifold M as a Tanaka structure i.e. a
distribution together with a principal bundle of
adapted coframes.

We associate with any point x € M of a para-
CR manifold a non positively graded Lie alge-
bra m + go and consider its full prolongation
g = (m -+ go)>.

A para-CR structure is of a semisimple type if
g is a finite dimensional semisimple Lie algebra.
We give a classification of maximally homoge-
neous para-CR manifolds of semisimple type in
terms of graded real semisimple Lie algebras.
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Gradations of a Lie algebra
Recall that a gradation of depth k of a Lie
algebra g is a direct sum decomposition

o= g =g "o " 4 g0+ e+
A/
such that [g’,¢/] C ¢g'TJ, for any 4,5 € Z and
g~k £ {0}. Note that g0 is a subalgebra and g’
is a g%-module. An element z € g/ has degree
j and we write d(x) = j. The gradation is
determined by a derivation 6 of g defined by
8, =J-id.
J

24



Special types of gradations

Definition 5 A gradation g = Y. g* of a Lie
algebra is called

1. fundamental, if the negative partm = Y, o g

is generated by g~ 1;

2. effective or transitive, if the non-negative
part

contains no non-trivial ideal of g,

3. non-degenerate, if

Xeg! [X,g1]=0 = X =0.
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Fundamental algebra of a distribution

We associate to a distribution H and a point
x € M a graded Lie algebra m(x).

We have a filtration of the Lie algebra X (M)
of vector fields defined inductively by

F(H) -1 r(H),
r(H)_; = I’(H)_,H_l + [T (H), I‘(H)_H_l] ,for + > 1.

Evaluating vector fields at a point x € M, we
get a flag

ToM = H_d(ilj) ) H_d_|_1(ac) DD H_s(x) D Hy
in T, M, where H_;(x) = {X|m | X € r(H)_z}
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The commutators of vector fields induce a struc-
ture of fundamental negatively graded Lie al-
gebra on the associated graded space

m(z) = gr(TxM) = m~ 4 (z)+m T (z)+ - +m~1(2),

where m™7(z) = H_j(a:)/H_j+1(a:).

A distribution ‘H is called a regular of depth d
and type m if all graded Lie algebras m(z) are
isomorphic to a given fundamental Lie algebra

mzm_d—l—m_d"'l—l—---—l—m_l.

A distribution H is called non-degenerate if the
Lie algebra m is non-degenerate.
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Para-C' R algebras

Definition 6 A pair (m, K,), where
m:m_d—l—---—l—m_l

is a negatively graded fundamental Lie algebra
and K, is an involutive endomorphism of m—1,
is called a para-CR algebra of depth d.

If, moreover, the +1-eigenspaces mj_cl of K, on
m~—1 are commutative subalgebras of m, then
(m, K,) is called an integrable para-CR struc-
ture.
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Reqgular para-CR structures

Definition 7 Let (m, K,) be a para-CR alge-

bra of depth d. A almost para-C'R structure

(HM,K) on M is called regular of type (m, Ky)

and depth d if, forany x € M, the pair (m(xz), K;)
is isomorphic to (m, K,). We say that the regu-

lar almost para-C' R structure is non-degenerate

if the graded algebra m is non-degenerate.

A reqgular almost para-C'R structure of type
(m,Kg) is integrable if and only the Lie al-
gebra (m, Kp) is integrable.
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Prolongations of negatively graded Lie alge-

bras
The full prolongation of a negatively graded

fundamental Lie algebram=m 4+ ... +m~1
is defined as a maximal graded Lie algebra

g(m) = g~ 4(m)+- - -+g = (m)+g°(m)+gt (m)+- -
with the negative part
g m) 4+ 4+ g7 (m) =m
such that Vk > 0, X € gF(m)
(X, g7 (m)]={0} = X =0
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N.Tanaka proved that the full prolongation g(m)
always exists and it is uniqgue up to an isomor-
phism. Moreover, it can be defined inductively
by

/

)
g'(m) = { {A € Der(m,m) : A(m7) Cc m/,Vj < 0}

{4 € Der(m, Y ;8" (m)) + A(mI) C g(m)*+7,
where Der(m, V) is the space of derivations of

Lie algebra m with values in the m-module V.
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Prolongations of non-positively graded Lie al-
gebras

The full prolongation of a non-positively graded
Lie algecbram4+g0 =m 94 ... 4+m 1 +4%is a
graded Lie subalgebra

(m+g)>° =m 94 +m 404" +g°+- -
of g(m), defined inductively by
o' ={X egm)’: [X,m ]cg 1}

A graded Lie algebra m 4 g% has finite type
(resp.,semisimple type) if g = (m 4+ g9)>® is
a finite dimensional ( resp., finite dimensional
semisimple) Lie algebra.
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Lemma 8 Let (m = Y, om', K,) be an inte-
grable para-CR algebra and go the subalgebras
of g9(m) consisting of any A € g%(m) such that
Al -1 commutes with K,. Then the graded
Lie algebra (m-+g°) is of finite type if and only
if m is non-degenerate.

A reqgular almost para-C'R structure of type
(m, Kg) is of finite type or, respectively, of
semisimple type, if the Lie algebra (m4g®)>® is
finite-dimensional or, respectively, semisimple.
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Tanaka structures

Definition 9 Let m = m ¢4 ... + m~1 pe a
negatively graded Lie algebra generated by m—1
and G° a closed Lie subgroup of (grading pre-
serving) automorphisms of m. A Tanaka struc-
ture of type (m,G°) on a manifold M is a
regular distribution H C TM of type m to-
gether with a principal G%-bundle = : Q — M of
adapted coframes of ' H. A coframe ¢ . Hy —
m~1 js called adapted if it can be extended to
an isomorphism ¢ : my; — m oOf Lie algebra.
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We say that the Tanaka structure of type (m, G9)
is of finite type (respectively semisimple type
(m,GY)), if the graded Lie algebra m + g© is of
finite type (respectively semisimple type).

Let P be a Lie subgroup of a connected Lie
group G and p (respectively, g) the Lie algebra
of P (respectively, G).
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Maximally homogeneous Tanaka structures

Theorem 10 Let (n:Q — M,H) be a Tanaka
structure on M of semisimple type (m,GO9).
Then the Tanaka prolongation of (w,H) is a
P-principal bundle G — M, with the parabolic
structure group P, equipped with a Cartan
connection k : T'G — g, where g is the full pro-
longation of m + ¢° and LieP = p = Y500
Moreover, Aut(H, ) is a Lie group and

dim Aut(H, n) < dimg.

If the equality holds, the Tanaka structure is
called to be maximally homogeneous.
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Tanaka structures of semisimple type

Let g=m 4 g% + g7 be a fundamental graded
Lie algebra, G the simply connected Lie group
defined by g and P = GO . G1 the parabolic
subgroup generated by p = g% + g 7.

Then the flag manifold F = G/P has invari-
ant Tanaka structure (H, 7 : Q — G/P) of type
(m, G%) where GO ¢ GL(m) is the adjoint rep-
resentation of G° on m.

It is called the standard maximally homoge-
neous Tanaka structure.

Any maximally homogeneous Tanaka structure
IS locally isomorphic to the standard one.
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Standard maximally homogeneous almost para-
C' R manifolds

Let g=3% g =g + g%+ gT be an effective
fundamental gradation of a semisimple Lie al-
gebra g with negative part m = g~ and pos-
itive part gt. Let F = G/P be associated
the simply connected real flag manifold, where
LieP =p = go+ g4

A decomposition

S I (2)

of go-module g_41 into two submodules deter-
mines invariant almost para-CR structure (HF, K)

on FF=_G/P. Ttis called standard almost para-
C R manifold.
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Theorem 11 Let FF = G/P be the simply con-
nected flag manifold associated with a (real)
semisimple effective fundamental graded Lie
algebra g.

A decomposition

g 1= 94—_1 4 g:l

of g—1 into complementary GO-submodules g1*
determines an invariant almost para-CR struc-
ture (HM, K) such that t£1-eigenspaces Hy M
of K are subdistributions of HM associated
with g3 1.

Conversely, any standard almost para-CR struc-
ture (HM,K) on F can be obtained in such a
way.
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Moreover, (HM, K) is:

1. an almost para-CR structure if g:Ll and gjl
have the same dimensions,

2. a para-CR structure if and only if 94—_1 and

gjl are commutative subalgebras of g,

3. non-degenerate if and only if g has no graded
ideals of depth one.
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The classification of maximally homogeneous
almost para-CR structures of semisimple type,
up to local isomorphisms (i.e. up to cover-
ings), reduces to the

description of all gradation of semisimple Lie
algebras g and

to decomposition of the gP-module g1 into
irreducible submodules.

41



Fundamental gradations of a semisimple Lie
algebra
A Z-gradation

g=g "+ g '+ o'+ +g" [gh¢] C g

(3)
of a (real or complex) semi-simple Lie algebra
g is called fundamental if the subalgebra

gt =gt 4+ 4 gt

is generated by g*1!.
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Examples. Fundamental gradations of sl(V)
Let V be a (complex or real) vector space and
V =V%1i4+...4VF a decomposition of V into
a direct sum of subspaces. It defines a funda-
mental gradation sl(V) = Y%, g of the Lie
algebra sl(V'), where

g ={Aecsl(V), AVIicVti j=1,...,k}.
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Fundamental gradations of a complex semisim-
ple Lie algebra g

Let

g="b+>acRr 0
be a root space decomposition of a complex

semisimple Lie algebra g with respect to a Car-
tan subalgebra b.

We fix a system of simple roots
MNM={a1, - ,ap} C R.
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Any disjoint decomposition

N=n%un! of N

defines a fundamental gradation of g as fol-
lows.

We define the function d : R — Z by

dlpo =0, d|q1 = 1, d(a) = Zkid(ai), Voo = Zkiai.

Then the fundamental gradation is given by

=+ 3 ga, = Y g

acR, d(a)=0 acR, d(a)=1

Any fundamental gradation of g is conjugated
to a unique gradation of such form.
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Fundamental gradations of a real semisimple
Lie algebra

Any real semisimple Lie algebra g is a real form
of a complex semisimple Lie algebra g, that is it
is the fixed point set g = g7 of some antilinear
involution o of g, i.e. an antilinear involutive
map o : g — g, which is an automorphism of g
as a Lie algebra over R.
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We can always assume that o preserves a Car-
tan subalgebra h of g and induces an automor-
phism of the root system R. A root o« € R

is called compact (or black) if ca = —a. It
is always possible to choose a system of sim-
ple roots N = {aq,---,ap} such that, for any

non compact root «; € I, the corresponding
root oa; is a sum of one non-compact root
a; € [T and a linear combination of compact
roots from I1. The roots a; and «; called to
be equivalent.
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Theorem 12 Let g be a complex semisimple
Lie algebra g, o . g — g an antilinear involution
and g° the corresponding real form. The gra-
dation of g, associated with a decomposition
N = nN%un!, defines a gradation g° = Y (g*)°
of g9 if and only if

Nl consists of non compact roots and

any two equivalent roots are either both in Mo
or both in Nt.

48



Decomposition of a go—module gl into irre-
ducible submodules

Let g = > ¢g* be a fundamental gradation of a
complex semisimple Lie algebra g. We set

Rr={aeR|da)=il={a€R|gaCg'l
and
N=MNNR={aecn]|da)=:i}.
For any simple root v € I'l, we put

R(y) ={v+ (R°U{0}}nR=

{a=v+¢°€R, ¢° € ROU{0}}.
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We associate to any set of roots Q C R a sub-
space

g(Q) = Z gao C 9.
acQ)

Proposition 13 The decomposition of a go—
module gl into irreducible submodules is given
by

gt = > a(R(M)).

yeni

Moreover, ~ is a lowest weight of the irre-
ducible submodule g(R(v)). In particular, the
number of the irreducible components = #I‘Il.
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Proposition 14 For any simple root v € N1 of
label one, there are two possibilities:

i) o'y =~v4+>gen, kgB. Then o*y € R(vy) and
the g0-module g(R(v)) is o-invariant;

i) o*y =+ 4+ Y gen, kgB, where v 7 ' € N
Then, c*R(v) = R(y') and the two irre-
ducible g°-modules g(R(~)) and g(R(¥"))
determine one irreducible submodule g° N

(a(R(7)) + 9(R(Y))) of ¢°.
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Corollary 15 Let g° = Y (g°)' be a graded
real semisimple Lie algebra. Then irreducible
submodules of the (g°)°-module (g°)~1 cor-
respond to vertices v with label one without
curved arrow and to pairs (~,~") of equivalent
vertices with label one. In particular, decom-
positions Mt = ni y I‘Iﬁ_ such that equivalent
roots belong to the same component corre-
spond to decomposition

(gt = ()" + (@)

of (g°)°-module (g°)~1 into submodules, where

(61" =9¢"Nn Y a(R(—)). (4)

veni
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Maximally homogeneous para-CR manifolds
Let g be a real semisimple Lie algebra asso-
ciated with a Satake diagram (M =M U, ~)
with the fundamental gradation defined by a
subset MY ¢ M’ and F = G/P the associated
flag manifold.

An almost para-CR structure on F = G/P
associated with a decomposition Ml = I‘IEr U
Ml is integrable i.e. is a CR structure if and
only if (g°)%-submodules (g")q_1 and (g°)~! are
Abelian subalgebras of g°.
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We give now a simple criterion for this. We
need the following definitions.

Definition 16 We say that a subset N1 c I

of a system Il of simple roots of a root system
R is admissible if

there is no root of R of the form

200+ Y ki, a €Nt g e Ng=n\nNt (5)
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Definition 17 Let g° be a real semisimple Lie
algebra with a fundamentally gradation defined
by a subset ntcn we say that a decompo-
sition Ml = I‘Ii_UI‘Il is alternate, if the vertices
from I‘Iﬁ_ and N appear in the Satake diagram
in alternate order.

More precisely, this means that after deleting
vertices from N1 (respectively, Ml ), one gets
a graph, each connected component of which
has not more then one vertex from ML (re-
spectively, from I‘I}I_).
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Proposition 18 Let g° be a semisimple real
Lie algebra with the fundamental gradation as-
sociated to a subset MY c M and F = G/P the
associated flag manifold. A decomposition
nl=nlunt

defines a para-CR structure on the flag mani-
fold F' if and only if the subset Nl is admissible
and the decomposition of N js alternate.
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T he following Proposition describes admissible
subsystems Nt of a system 1 of simple roots
for any indecomposable root system R.

We denote by M = {a1, -+, ap} the simple roots
of g.

If (M=MNeUTl ~) is a Satake diagram which
defines a real form g7 of g we denote elements
of a subset M! ¢ M’ which defines a fundamen-
tal gradation

of g by

Qjgy " Qs 11 <1 < -0 < 1.
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Proposition 19 A subset Ml c M of a system
[T of simple roots of a root system R is admis-
sible in the following cases:

e For R = Ay, in all cases;

e For R = By and Cy, under the additional
condition : ifi. =¥¢, then i,_1 =¥¢—1,

e For g = Dy, under the condition: if i; <
¢ —1, then ik—l = ik —1;

e Forg = Eg, in all cases except the following
ONnes:

I_ll — {ala Oé4} ) {ala Q{5} ) {043, Ck6} ) {044, Ck6} ) {ala Q.
e Forg = E, in all cases except the following
ones:

|—|1 = {Oé]_,Oé4}, {041,045}, {Oé]_,a6}
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e Forg = Eg, in all cases except the following
ONnes:

N' = {a1,04}, {a1,05}, {a1, a6}, {a1,a7}
e Forg = Fy, in all cases except the following
ones:

1
N ={ai,a3}, {a1,a4}, {az, a4}, {az,as}, {a1, a:

e For g = Go, in the case

Nt = {a,as}.



Theorem 20 Let (N = N U, ~) be a Sa-
take diagram of a simple real Lie algebra g°
and MY c M’ an admissible subset described
in Proposition 19. Let G be the simply con-
nected Lie group with the Lie algebra g° and P
the parabolic subgroup of G generated by the
non-negatively graded subalgebra
p=> (g7)
i>0
with the grading element d1. Then the alter-

nate decomposition Nt = I‘Iﬁ_ U Nl defines a
decomposition

(gt = @)L+ @)t
of (g°)%-module (g°)! into a sum of two com-
mutative subalgebras. This decomposition de-
termines an invariant para-CR structure on the
simply connected flag manifold F = G /P. More-
over, any simply connected maximally homo-
geneous para-CR manifolds of semisimple type
is a direct product of such manifolds.
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Maximal homogeneous para-CR manifolds of
depth 2

Theorem 21 Let M be a non degenerate max-
imally homogeneous weak para-CR manifold of
semisimple type (m, Kg) and depth 2. Then, up
to coverings, M is isomorphic to a direct prod-
uct of the following flag manifolds FF = G /P of
a simple Lie group G associated with a graded
Lie algebra g = (m + g®)>® equipped with an
invariant para-C'R structure:
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g is of type Ay:

) g =sl+1(R) and F' = Fpq(R) =SLp41(R)/P
is the manifold of (p,qg)-flags in the space
V = RHL

ii) g = 5[£_|_1(<C) and F' = Fp,q(C) = SLg_|_1((C)/P
is the manifold of (p,q)-flags in the space
V =t

iii) g =slyy1(H) and F = Fp o(H) = SLyy(H)/P
is the manifold of (p, ¢g)-flags in the space
vV = Hit;
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g is of type Dy:

)

g = s05(C) and F = SOS}Z(C)/P is the
manifold of all isotropic (1,¢)-flags in the
complex Euclidean space V = (C2¢ <, >),
where P is the standard (1, ¢)-flag fo = C C
C*;

g = s05(C) and F = SO;E(C)/P is the
manifold of all isotropic (¢ — 1,¢)-flags in
the complex Euclidean space V = (C2, <
,>), where P is the standard (¢ — 1, ¢)-flag
fo=C1cch
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iii) g =s0y, (the normal form of Dy) and F =
Fy1 0= SOy /P is the manifold of isotropic

(1,/4)-flags in the pseudo-Euclidean space
RE,K;

iv) g =soy, (the normal form of Dy) and F =
Fy_1 0= SOy /P is the manifold of isotropic

(/—1,¢)-flags in the pseudo-Euclidean space
REE
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g is of type Eg:

i) g = eg (see subsection 6.2 for the descrip-
tion of the manifold F);

i) g =¢eJ°"M = ET (the normal form of Eg)
with the maximal compact subalgebra sp,
and F = EQ°"™M/P is the flag manifold de-
scribed like in the complex case;

i) g = ¢g(fa)=FE IV the real form of eg with
maximal compact subalgebra {4 and F =

Es(f4)/P is the flag manifold described like
in the complex case.
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Moreover, we have

dmH_F |dimHF codimHF
Api) — i) (p(q—p) |(@—p){U+1—q)|p(l+1—q)
Dyi), i) | =2 1y /-1
i), iv) /-1 /-1 (=1)(=2)
Eei) — iii) | 8 8 8

where the dimensions have to be intended over
C whenever g has a complex structure).

In particular, the weak para-CR structure is a
para-CR structure in cases A, for p4+q=/¢41,
Dy ZZ) and i’l)) and Eg.
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