Para-CR Geometry

Dmitri V. Alekseevsky

24d March 2009

Para-complex structure

An almost paracomplex structure on a manifold M is a field of endomorphisms $K \in \text{End}(TM)$ with $K^2 = \text{id}$.

It is called an (almost) paracomplex structure in the strong sense if its ± 1 -eigendistributions have the same rank. An almost paracomplex structure K is called a paracomplex structure, if it is integrable, i.e.

[X, Y] + [KX, KY] - K[X, KY] - K[KX, Y] = 0

 $\forall X, Y \in \Gamma(TM).$

This is equivalent to say that the distributions $T^{\pm}M$ are involutive.

Recall that almost *CR*-structure of codimension k on a 2n + k-dimensional manifold M is a distribution $HM \subset TM$ of rank 2n together with a field of endomorphisms $J \in \text{End}(HM)$ such that $J^2 = -\text{id}$.

An almost CR-structure is called CR-structure, if the $\pm i$ -eigenspace subdistributions $H_{\pm}M$ of the complexified tangent bundle $T^{\mathbb{C}}M$ are involutive.

Almost Para-CR structure

We define an (almost) para-CR structure in a similar way.

A almost *CR*-structure of codimensions *k* (in the weak sense) on a 2n + k-dimensional manifold *M* is a pair (*HM*, *K*), where $HM \subset TM$ is a rank 2n distribution and $K \in \text{End}(HM)$ is a field of endomorphisms such that $K^2 = \text{id}$ and $K \neq \pm \text{id}$. Note that *K* is defined by eigenspace decomposition $HM = H_- + H_+$.

Para-CR structure

An almost para-CR structure is said to be a para-CR structure, if the eigenspace subdistributions $H_{\pm}M \subset HM$ are integrable or equivalently if the following integrability conditions hold:

$$[KX, KY] + [X, Y] \in \Gamma(HM), \qquad (1)$$

[X, Y] + [KX, KY] - K([X, KY] + [KX, Y]) = 0for all $X, Y \in \Gamma(HM)$.

If the eigenspace distributions H_{\pm} have the same rank, we say that (HM, K) is an (almost) para-CR structure in the strong sense.

Codimension 1 para-CR structure

Let (HM, K)) be a codimension 1 para-CR structure. Locally $HM = \text{Ker }\theta$ where 1-form θ is defined up to a scaling.

The symmetric form

 $g^H = d\theta \circ K \text{ on } HM$

is called the Levi-form. A para-CR manifold is called Levi non-degenerate if g^H is non-degenerate or, equivalently, if HM is a contact distribution.

Then the contact form θ defines a pseudo-Riemannian metric on M

$$g = g^{\theta} := d\theta^2 + g^H.$$

Note that $g^H(H_{\pm}, H_{\pm}) = 0$ where H_{\pm} are eigendistributions of K.

Classification of homogeneous compact Levi non-degenerate CR manifolds (-, A.Spiro). Let (M = G/L, HM, J) be a simply connected homogeneous compact Levi-non-degenerate CRmanifold. Then it is either

a) a standard CR homogeneous manifold which is homogeneous S^1 -bundle over a flag manifold F = G/K, with CR structure induced by an invariant complex structure on F; or

b) the Morimoto-Nagano spaces , i.e. sphere bundles $S(N) \subset TN$ of a compact rank one symmetric space N = G/H, with the CR structure induced by the natural complex structure of $TN = G^{\mathbb{C}}/H^{\mathbb{C}}$; or one of the manifolds

c) $SU_n/T^1 \cdot SU_{n-2}$, $SU_p \times SU_q/T^1 \cdot U_{p-2} \cdot U_{q-2}$, $SU_n/T^1 \cdot SU_2 \cdot SU_2 \cdot SU_{n-4}$, $SO_{10}/T^1 \cdot SO_6$, $E_6/T^1 \cdot SO_8$.

These manifolds admit canonical holomorphic fibration over a flag manifold (F, J_F) with typical fiber $S(S^k)$, where k = 2, 3, 5, 7 or 9, respectively;

the CR structure is determined by the invariant complex structure J_F on F and an invariant CR structure on the typical fiber, depending on one complex parameter.

We describe a class of homogeneous Levi nondegenerate para-CR manifolds of a semisimple group.

Homogeneous contact manifold

Homogeneous contact manifolds of a Lie group G correspond to coadjoint orbits of G,

(\approx adjoint orbits for a semisimple G) and are split into two classes:

If $N = \operatorname{Ad}_G z \subset \mathfrak{g}$ is a non conical orbit of an element $z \in \mathfrak{g}$, then the corresponding contact manifold M = G/L is a homogeneous line (or circle) bundle over N;

If N is a conical orbit , then $M = \mathbb{P}N$ is the projectivization of N.

We describe homogeneous non-degenerate para-*CR* manifolds (M = G/L, HM, K) of a semisimple Lie group *G* which correspond to an orbit $N = \operatorname{Ad}_G z$ of a semisimple non compact element $z \in \mathfrak{g}$ under additional assumption that the para-complex structure *K* is invariant with respect to the Reeb vector field *Z*, defined by

$$\theta(Z) = 1, \ d\theta(Z, .) = 0.$$

The field Z is Hamiltonian, i.e. it preserves θ . The orbit N of a semisimple element z is not conical and the associated homogeneous contact manifold (M = G/L, HM) admit a global G-invariant contact form θ ; the associated Reeb vector is also G-invariant. A construction of invariant para-CR structure Let $N = \operatorname{Ad}_G z = G/C_G(z) \subset \mathfrak{g}$ be the adjoint orbit of a non-compact semisimple element. The associated homogeneous contact manifold is $(M = G/L, \operatorname{Ker} \theta)$ where

$$\operatorname{Lie}(L) = \mathfrak{l} := C_{\mathfrak{g}(z)} \cap z^{\perp}$$

and θ is invariant 1-form on M which is the invariant extension of the 1-form $B \circ z \in \mathfrak{g}^*$ defined by z. (B is the Killing form). The contact manifold ($M, H = \operatorname{Ker} \theta$) has the canonical invariant para-CR structure $HM = H^-M^+H^+M$ defined as follows. Let $\mathfrak{h} \ni z$ be a Cartan subalgebra of \mathfrak{g} and R the root system of $(\mathfrak{g}, \mathfrak{h})$. Denote by $R_z = R \cap z^{\perp}$ the roots which belong to the hyperplane z^{\perp} and by $R_+, R_- = -R_+$ the roots which belong to positive and negative half-spaces \mathfrak{h}_{\pm} defined by z. Then

 $\mathfrak{g} = (\mathfrak{h} + \mathfrak{g}R_0) + (\mathbb{R}z + \mathfrak{g}(R_-) + \mathfrak{g}(R_+)) =$

 $\mathfrak{l} + (\mathbb{R}z + \mathfrak{m}_{-} + \mathfrak{m}_{+})$

where $\mathfrak{g}(P) = \sum_{\alpha \in P} \mathfrak{g}_{\alpha}$ for $P \subset R$. Then Ad_{L} -invariant decomposition $\mathfrak{m} = (\mathfrak{m}_{-} + \mathfrak{m}_{+})$ defines an invariant Levi non degenerate para-CR structure $HM = H^{-}M + H^{+}M$ on M = G/L. Para-*CR*-manifolds M^3 and 2d order ODE (P.Nurowski,G.Sparling,CQG,2003) ODE y'' = Q(x, y, y') is equivalent to para-*CR* structure

$$HM = \operatorname{Ker} \theta = H_{-} + H_{+} = \operatorname{Ker} \rho + \operatorname{Ker} \rho',$$

on the contact manifold $M^3 = J^1(\mathbb{R})$, where $\theta = dy - pdx$, $\rho = dp - Qdx$, $\rho' = dx$. Under a point transformation

$$\tilde{x} = \tilde{x}(x, y), \ \tilde{y} = \tilde{y}(x, y)$$

the forms are transformed by $\tilde{\theta} = a\theta$, $\tilde{\rho} = b\rho + c\theta$, $\tilde{\rho}' = b'\rho + c'\theta$).

This shows that the para-CR structure H_{\pm} is invariant under point transformations.

Solutions of the ODE are integral curves of the (1-dimensional) Lagrangian distribution H_+ . PN-GS considered the 8-dimensional principal bundle $\pi : P \to M$ of adapted frames for the para-CR structure H_{\pm} (G-structure) and constructs an associated para-Fefferman bundle $F \to M$ with a canonical conformal metric of signature (2,2). Using it, they define two fundamental invariants w_1, w_2 of the ODE (known by S.Lie and Segre) and solve the problem of equivalency of ODE under point transformations. The duality between H_- and H_+ leads to a

interesting duality between equivalence classes of ODE, which was known by E. Cartan.

Para *CR* structures and parabolic Monge-Ampere Equations

(-, G. Manno, F. Pugliese)

Let $HM = \text{Ker }\theta$ be a contact distribution on a (2n + 1)-dimensional manifold M.

In Darboux coordinates $(w^a) = (z, x^i, p_i)$,

 $\theta = dz - \sum p_i dx^i$

and we can locally identify M with the manifolds $J^1(\mathbb{R}^n)$ of 1-jets of functions z = z(x). The tangent space $T_w\Sigma$ of any n-dimensional integral submanifold $\Sigma \subset M$ of HM is a Lagrangian subspace of the symplectic space (H_w, ω_w) , where $\omega = d\theta|_H$. The first prolongation of (M, HM) is the set $M^{(1)} = Lagr(TM)$ of all Lagrangian subspaces of TM. It is a bundle over M with a fiber $Lagr(T_wM) = Sp(n, \mathbb{R})/GL(n, \mathbb{R}).$

A 2d order PDE is a submanifold $\mathcal{E} \subset M^{(1)}$ and its solution is an *n*-dimensional integral submanifold $\Sigma \subset M$ of HM which is tangent to \mathcal{E} :

 $T_w \Sigma \in \mathcal{E}, \ w \in \Sigma.$

PDE associated to a subdistribution $D \subset HM$ We associate to an *n*-dimensional subdistribution $D \subset HM$ a PDE

$$\mathcal{E}(D) = \{ L \in M^{(1)}, \ L \cap D_w \neq 0 \}.$$

A solution of $\mathcal{E}(D)$ is an *n*-dimensional integrale submanifold Σ of HM such that $T_w\Sigma \cap D_w \neq 0$.

Let X_i , $i = 1, \dots, n$ be a local basis of the ω orthogonal distribution $D^{\perp} \subset HM$ and $\theta_i := X_i \cdot \theta$.

Consider *n*-form $\rho := \theta_1 \wedge \cdots \wedge \theta_n$.

Equation $\mathcal{E}(D)$ in coordinates

Proposition 1 An integrale submanifold $\Sigma \subset M$ of HM is a solution of $\mathcal{E}(D)$ if and only if $\rho|_{\Sigma} = 0$.

We may assume that $X_i = \hat{\partial}_i + q_{ij}(x^k, p_m, z)\partial_{p_j}$ where $\hat{\partial}_i := \hat{\partial}_i + p_i\partial_z$. Then $\theta_i = \omega \circ X_i = -dp_i + q_{ij}dx^j$. If $\Sigma = \Sigma_z(x)$ is the graph of a function $z = z(x^i)$, then $p_i = z_{,i}$ and

$$\theta_i | \Sigma = (-z_{,ij} + q_{ij}) dx^j.$$

The equation $\rho|\Sigma = 0$ take the form of the Monge-Ampere equation

$$\det ||z_{,ij} - q_{ij}(x^k, z_{,m}, z)|| = 0.$$

Parabolic Monge-Ampere equation associated with a Lagrangian distribution Vector fields $X_i = \hat{\partial}_i + q_{ij}(x^k, p_m, z)\partial_{p_j}$ generate a Lagrangian distribution D if and only if the matrix $||q_{ij}||$ is symmetric. The corresponding equation $\mathcal{E}(D)$ is called the parabolic Monge-Ampere equation (MAE).

Proposition 2 There exist a natural 1-1 correspondence between Lagrangian distributions on (M, HM) and parabolic MAE.

In particular, a non degenerate para-CR structure H_{\pm} defines a pair of dual parabolic Monge-Ampere equations. In the case n = 2, a local classification of Lagrangian distributions and associated parabolic MAE was given by R.Bryant and P.Griffiths in analytic case and R.Alonso Blanco, G. Manno and F.Pugliese in C^{∞} case. **Proposition 3** Any integrable n-dimensional subdistribution D of HM is a Lagrangian distribution, locally given by

 $D = \operatorname{span}\{\partial_{p_1}, \cdots, \partial_{p_n}\}.$

Theorem 4 The equation $det ||z_{,ij}|| = 0$ is contactomorphic to the trivial equation

 $z_{,11} = 0.$

Maximally homogeneous CR structures (-,C.Medori, A. Tomassini)

Summary

We will consider a para-CR structure (HM, K)on a manifold M as a Tanaka structure i.e. a distribution together with a principal bundle of adapted coframes.

We associate with any point $x \in M$ of a para-CR manifold a non positively graded Lie algebra $\mathfrak{m} + \mathfrak{g}_0$ and consider its full prolongation $\mathfrak{g} = (\mathfrak{m} + \mathfrak{g}_0)^{\infty}$.

A para-CR structure is of a semisimple type if g is a finite dimensional semisimple Lie algebra. We give a classification of maximally homogeneous para-CR manifolds of semisimple type in terms of graded real semisimple Lie algebras.

Gradations of a Lie algebra

Recall that a gradation of depth k of a Lie algebra \mathfrak{g} is a direct sum decomposition

$$\mathfrak{g} = \sum_{i \in \mathbb{Z}} \mathfrak{g}^i = \mathfrak{g}^{-k} + \mathfrak{g}^{-k+1} + \dots + \mathfrak{g}^0 + \dots + \mathfrak{g}^j + \dots$$

such that $[\mathfrak{g}^i,\mathfrak{g}^j] \subset \mathfrak{g}^{i+j}$, for any $i,j \in \mathbb{Z}$ and $\mathfrak{g}^{-k} \neq \{0\}$. Note that \mathfrak{g}^0 is a subalgebra and \mathfrak{g}^i is a \mathfrak{g}^0 -module. An element $x \in \mathfrak{g}^j$ has degree j and we write d(x) = j. The gradation is determined by a derivation δ of \mathfrak{g} defined by $\delta_{|\mathfrak{g}_j} = j \cdot id$.

Special types of gradations

Definition 5 A gradation $\mathfrak{g} = \sum \mathfrak{g}^i$ of a Lie algebra is called

- 1. fundamental, if the negative part $\mathfrak{m} = \sum_{i < 0} \mathfrak{g}^i$ is generated by \mathfrak{g}^{-1} ;
- 2. effective or transitive, if the non-negative part

$$\mathfrak{g}^{\geq 0} = \mathfrak{p} = \mathfrak{g}^0 + \mathfrak{g}^1 + \cdots$$

contains no non-trivial ideal of g;

3. non-degenerate, if

 $X \in \mathfrak{g}^{-1}, \ [X, \mathfrak{g}^{-1}] = 0 \implies X = 0.$

Fundamental algebra of a distribution We associate to a distribution \mathcal{H} and a point $x \in M$ a graded Lie algebra $\mathfrak{m}(x)$. We have a filtration of the Lie algebra $\mathcal{X}(M)$ of vector fields defined inductively by

$$\begin{split} \Gamma(\mathcal{H})_{-1} &= \Gamma(\mathcal{H}), \\ \Gamma(\mathcal{H})_{-i} &= \Gamma(\mathcal{H})_{-i+1} + [\Gamma(\mathcal{H}), \Gamma(\mathcal{H})_{-i+1}], \text{for } i > 1. \\ \text{Evaluating vector fields at a point } x \in M, \text{ we} \end{split}$$

get a flag

 $T_x M = \mathcal{H}_{-d}(x) \supseteq \mathcal{H}_{-d+1}(x) \supset \cdots \supset \mathcal{H}_{-2}(x) \supset \mathcal{H}_x$ in $T_x M$, where $\mathcal{H}_{-i}(x) = \{X_{|_x} \mid X \in \Gamma(\mathcal{H})_{-i}\}.$

The commutators of vector fields induce a structure of fundamental negatively graded Lie algebra on the associated graded space

$$\begin{split} \mathfrak{m}(x) &= \mathfrak{gr}(T_x M) = \mathfrak{m}^{-d}(x) + \mathfrak{m}^{-d+1}(x) + \dots + \mathfrak{m}^{-1}(x) \,, \\ \text{where } \mathfrak{m}^{-j}(x) &= \mathcal{H}_{-j}(x) / \mathcal{H}_{-j+1}(x) \,. \\ \text{A distribution } \mathcal{H} \text{ is called a regular of depth } d \end{split}$$

and type \mathfrak{m} if all graded Lie algebras $\mathfrak{m}(x)$ are isomorphic to a given fundamental Lie algebra

$$\mathfrak{m} = \mathfrak{m}^{-d} + \mathfrak{m}^{-d+1} + \dots + \mathfrak{m}^{-1}$$

A distribution \mathcal{H} is called **non-degenerate** if the Lie algebra \mathfrak{m} is non-degenerate.

Para-CR algebras

Definition 6 A pair (\mathfrak{m}, K_o) , where $\mathfrak{m} = \mathfrak{m}^{-d} + \cdots + \mathfrak{m}^{-1}$ is a negatively graded fundamental Lie algebra and K_o is an involutive endomorphism of \mathfrak{m}^{-1} , is called a para-CR algebra of depth d. If, moreover, the ± 1 -eigenspaces \mathfrak{m}_{\pm}^{-1} of K_o on \mathfrak{m}^{-1} are commutative subalgebras of \mathfrak{m} , then (\mathfrak{m}, K_o) is called an integrable para-CR structure.

Regular para-CR structures

Definition 7 Let (\mathfrak{m}, K_o) be a para-CR algebra of depth d. A almost para-CR structure (HM, K) on M is called regular of type (\mathfrak{m}, K_o) and depth d if, for any $x \in M$, the pair $(\mathfrak{m}(x), K_x)$ is isomorphic to (\mathfrak{m}, K_o) . We say that the regular almost para-CR structure is non-degenerate if the graded algebra \mathfrak{m} is non-degenerate.

A regular almost para-CR structure of type (\mathfrak{m}, K_0) is integrable if and only the Lie algebra (\mathfrak{m}, K_0) is integrable.

Prolongations of negatively graded Lie algebras

The full prolongation of a negatively graded fundamental Lie algebra $\mathfrak{m} = \mathfrak{m}^{-d} + \cdots + \mathfrak{m}^{-1}$ is defined as a maximal graded Lie algebra

 $\mathfrak{g}(\mathfrak{m}) = \mathfrak{g}^{-d}(\mathfrak{m}) + \cdots + \mathfrak{g}^{-1}(\mathfrak{m}) + \mathfrak{g}^{0}(\mathfrak{m}) + \mathfrak{g}^{1}(\mathfrak{m}) + \cdots$ with the negative part

$$\mathfrak{g}^{-d}(\mathfrak{m}) + \cdots + \mathfrak{g}^{-1}(\mathfrak{m}) = \mathfrak{m}$$

such that $\forall k \geq 0, X \in \mathfrak{g}^k(\mathfrak{m})$

$$[X,\mathfrak{g}^{-1}(\mathfrak{m})] = \{0\} \Rightarrow X = 0$$

N.Tanaka proved that the full prolongation $\mathfrak{g}(\mathfrak{m})$ always exists and it is unique up to an isomorphism. Moreover, it can be defined inductively by

$$\mathfrak{g}^{i}(\mathfrak{m}) = \begin{cases} \mathfrak{m}^{i} \\ \{A \in \mathsf{Der}(\mathfrak{m},\mathfrak{m}) : A(\mathfrak{m}^{j}) \subset \mathfrak{m}^{j}, \forall j < 0\} \\ \{A \in \mathsf{Der}(\mathfrak{m}, \sum_{h < i} \mathfrak{g}^{h}(\mathfrak{m})) : A(\mathfrak{m}^{j}) \subset \mathfrak{g}(\mathfrak{m})^{i+j}, \end{cases}$$

where $Der(\mathfrak{m}, V)$ is the space of derivations of Lie algebra \mathfrak{m} with values in the \mathfrak{m} -module V.

Prolongations of non-positively graded Lie algebras

The full prolongation of a non-positively graded Lie algebra $\mathfrak{m} + \mathfrak{g}^0 = \mathfrak{m}^{-d} + \cdots + \mathfrak{m}^{-1} + \mathfrak{g}^0$ is a graded Lie subalgebra

 $(\mathfrak{m} + \mathfrak{g}^0)^\infty = \mathfrak{m}^{-d} + \cdots + \mathfrak{m}^{-1} + \mathfrak{g}^0 + \mathfrak{g}^1 + \mathfrak{g}^2 + \cdots$ of $\mathfrak{g}(\mathfrak{m})$, defined inductively by

$$\mathfrak{g}^i = \{X \in \mathfrak{g}(\mathfrak{m})^i : [X, \mathfrak{m}^{-1}] \subset \mathfrak{g}^{i-1}\}.$$

A graded Lie algebra $\mathfrak{m} + \mathfrak{g}^0$ has finite type (resp.,semisimple type) if $\mathfrak{g} = (\mathfrak{m} + \mathfrak{g}^0)^\infty$ is a finite dimensional (resp., finite dimensional semisimple) Lie algebra.

Lemma 8 Let $(\mathfrak{m} = \sum_{i < 0} \mathfrak{m}^i, K_o)$ be an integrable para-CR algebra and \mathfrak{g}^0 the subalgebras of $\mathfrak{g}^0(\mathfrak{m})$ consisting of any $A \in \mathfrak{g}^0(\mathfrak{m})$ such that $A|_{\mathfrak{m}^{-1}}$ commutes with K_o . Then the graded Lie algebra $(\mathfrak{m} + \mathfrak{g}^0)$ is of finite type if and only if \mathfrak{m} is non-degenerate.

A regular almost para-CR structure of type (\mathfrak{m}, K_0) is of finite type or, respectively, of semisimple type, if the Lie algebra $(\mathfrak{m} + \mathfrak{g}^0)^{\infty}$ is finite-dimensional or, respectively, semisimple.

Tanaka structures

Definition 9 Let $\mathfrak{m} = \mathfrak{m}^{-d} + \cdots + \mathfrak{m}^{-1}$ be a negatively graded Lie algebra generated by \mathfrak{m}^{-1} and G^0 a closed Lie subgroup of (grading preserving) automorphisms of \mathfrak{m} . A Tanaka structure of type (\mathfrak{m}, G^0) on a manifold M is a regular distribution $\mathcal{H} \subset TM$ of type \mathfrak{m} together with a principal G^0 -bundle $\pi : Q \to M$ of adapted coframes of \mathcal{H} . A coframe $\varphi : \mathcal{H}_x \to$ \mathfrak{m}^{-1} is called adapted if it can be extended to an isomorphism $\varphi : \mathfrak{m}_x \to \mathfrak{m}$ of Lie algebra. We say that the Tanaka structure of type (\mathfrak{m}, G^0) is of finite type (respectively semisimple type (\mathfrak{m}, G^0)), if the graded Lie algebra $\mathfrak{m} + \mathfrak{g}^0$ is of finite type (respectively semisimple type). Let *P* be a Lie subgroup of a connected Lie group *G* and \mathfrak{p} (respectively, \mathfrak{g}) the Lie algebra of *P* (respectively, *G*).

Maximally homogeneous Tanaka structures

Theorem 10 Let $(\pi : Q \to M, \mathcal{H})$ be a Tanaka structure on M of semisimple type (\mathfrak{m}, G^0) . Then the Tanaka prolongation of (π, \mathcal{H}) is a P-principal bundle $\mathcal{G} \to M$, with the parabolic structure group P, equipped with a Cartan connection $\kappa : T\mathcal{G} \to \mathfrak{g}$, where \mathfrak{g} is the full prolongation of $\mathfrak{m} + \mathfrak{g}^0$ and $\operatorname{Lie} P = \mathfrak{p} = \sum_{i \ge 0} \mathfrak{g}_i$. Moreover, $\operatorname{Aut}(\mathcal{H}, \pi)$ is a Lie group and dim $\operatorname{Aut}(\mathcal{H}, \pi) \le \dim \mathfrak{g}$.

If the equality holds, the Tanaka structure is called to be maximally homogeneous.

Tanaka structures of semisimple type

Let $\mathfrak{g} = \mathfrak{m} + \mathfrak{g}^0 + \mathfrak{g}^+$ be a fundamental graded Lie algebra, \tilde{G} the simply connected Lie group defined by \mathfrak{g} and $\tilde{P} = \tilde{G}^0 \cdot \tilde{G}^+$ the parabolic subgroup generated by $\mathfrak{p} = \mathfrak{g}^0 + \mathfrak{g}^+$.

Then the flag manifold $F = \tilde{G}/\tilde{P}$ has invariant Tanaka structure $(\mathcal{H}, \pi : Q \to G/P)$ of type (\mathfrak{m}, G^0) where $G^0 \subset GL(\mathfrak{m})$ is the adjoint representation of \tilde{G}^0 on \mathfrak{m} .

It is called the standard maximally homogeneous Tanaka structure.

Any maximally homogeneous Tanaka structure is locally isomorphic to the standard one.

Standard maximally homogeneous almost para-CR manifolds

Let $\mathfrak{g} = \sum_{-d}^{d} \mathfrak{g}^{i} = \mathfrak{g}^{-} + \mathfrak{g}^{0} + \mathfrak{g}^{+}$ be an effective fundamental gradation of a semisimple Lie algebra \mathfrak{g} with negative part $\mathfrak{m} = \mathfrak{g}^{-}$ and positive part \mathfrak{g}^{+} . Let $F = \tilde{G}/\tilde{P}$ be associated the simply connected real flag manifold, where $\operatorname{Lie} \tilde{P} = \mathfrak{p} = \mathfrak{g}_{0} + \mathfrak{g}_{+}$.

A decomposition

$$\mathfrak{g}^{-1} = \mathfrak{g}_+^{-1} + \mathfrak{g}_-^{-1} \tag{2}$$

of \mathfrak{g}_0 -module \mathfrak{g}_{-1} into two submodules determines invariant almost para-CR structure (HF, K) on $F = \tilde{G}/\tilde{P}$. It is called standard almost para-CR manifold.

Theorem 11 Let $F = \tilde{G}/\tilde{P}$ be the simply connected flag manifold associated with a (real) semisimple effective fundamental graded Lie algebra g.

A decomposition

 $\mathfrak{g}^{-1} = \mathfrak{g}_+^{-1} + \mathfrak{g}_-^{-1}$

of \mathfrak{g}^{-1} into complementary G^0 -submodules \mathfrak{g}_{\pm}^{-1} determines an invariant almost para-CR structure (HM, K) such that ± 1 -eigenspaces $H_{\pm}M$ of K are subdistributions of HM associated with \mathfrak{g}_{\pm}^{-1} .

Conversely, any standard almost para-CR structure (HM, K) on F can be obtained in such a way. Moreover, (HM, K) is:

- 1. an almost para-CR structure if \mathfrak{g}_+^{-1} and \mathfrak{g}_-^{-1} have the same dimensions,
- 2. a para-CR structure if and only if \mathfrak{g}_+^{-1} and \mathfrak{g}_-^{-1} are commutative subalgebras of \mathfrak{g} ,
- 3. non-degenerate if and only if \mathfrak{g} has no graded ideals of depth one.

The classification of maximally homogeneous almost para-CR structures of semisimple type, up to local isomorphisms (i.e. up to coverings), reduces to the description of all gradation of semisimple Lie algebras g and to decomposition of the g⁰-module g⁻¹ into irreducible submodules.

Fundamental gradations of a semisimple Lie algebra

A \mathbb{Z} -gradation

$$\mathfrak{g} = \mathfrak{g}^{-k} + \dots + \mathfrak{g}^{-1} + \mathfrak{g}^{0} + \mathfrak{g}^{1} + \dots + \mathfrak{g}^{k} \quad [\mathfrak{g}^{i}, \mathfrak{g}^{j}] \subset \mathfrak{g}^{i+j}$$
(3)

of a (real or complex) semi-simple Lie algebra \mathfrak{g} is called fundamental if the subalgebra

$$\mathfrak{g}^{\pm} = \mathfrak{g}^{\pm k} + \dots + \mathfrak{g}^{\pm 1}$$

is generated by $\mathfrak{g}^{\pm 1}.$

Examples. Fundamental gradations of sl(V)Let V be a (complex or real) vector space and $V = V^1 + \cdots + V^k$ a decomposition of V into a direct sum of subspaces. It defines a fundamental gradation $sl(V) = \sum_{i=-k}^{k} \mathfrak{g}^i$ of the Lie algebra sl(V), where

$$\mathfrak{g}^{i} = \{A \in sl(V), \, AV^{j} \subset V^{i+j}, \, j = 1, \dots, k \} .$$

Fundamental gradations of a complex semisimple Lie algebra ${\mathfrak g}$

Let $\mathfrak{g} = \mathfrak{h} + \sum_{\alpha \in R} \mathfrak{g}_{\alpha}$ be a root space decomposition of a complex semisimple Lie algebra \mathfrak{g} with respect to a Cartan subalgebra \mathfrak{h} .

We fix a system of simple roots $\Pi = \{\alpha_1, \cdots, \alpha_\ell\} \subset R.$

Any disjoint decomposition

 $\Pi = \Pi^0 \cup \Pi^1$ of Π

defines a fundamental gradation of ${\mathfrak g}$ as follows.

We define the function $d: R \to \mathbb{Z}$ by

$$d|_{\Pi^0} = 0, d|_{\Pi^1} = 1, d(\alpha) = \sum k_i d(\alpha_i), \forall \alpha = \sum k_i \alpha_i.$$

Then the fundamental gradation is given by

$$\mathfrak{g}^{\mathsf{O}} = \mathfrak{h} + \sum_{\alpha \in R, \ d(\alpha) = 0} \mathfrak{g}_{\alpha}, \qquad \mathfrak{g}^{i} = \sum_{\alpha \in R, \ d(\alpha) = i} \mathfrak{g}_{\alpha}.$$

Any fundamental gradation of \mathfrak{g} is conjugated to a unique gradation of such form.

Fundamental gradations of a real semisimple Lie algebra

Any real semisimple Lie algebra $\hat{\mathfrak{g}}$ is a real form of a complex semisimple Lie algebra \mathfrak{g} , that is it is the fixed point set $\hat{\mathfrak{g}} = \mathfrak{g}^{\sigma}$ of some antilinear involution σ of \mathfrak{g} , i.e. an antilinear involutive map $\sigma : \mathfrak{g} \to \mathfrak{g}$, which is an automorphism of \mathfrak{g} as a Lie algebra over \mathbb{R} . We can always assume that σ preserves a Cartan subalgebra \mathfrak{h} of \mathfrak{g} and induces an automorphism of the root system R. A root $\alpha \in R$ is called compact (or black) if $\sigma \alpha = -\alpha$. It is always possible to choose a system of simple roots $\Pi = \{\alpha_1, \dots, \alpha_\ell\}$ such that, for any non compact root $\alpha_i \in \Pi$, the corresponding root $\sigma \alpha_i$ is a sum of one non-compact root $\alpha_j \in \Pi$ and a linear combination of compact roots from Π . The roots α_i and α_j called to be equivalent. **Theorem 12** Let \mathfrak{g} be a complex semisimple Lie algebra $\mathfrak{g}, \sigma : \mathfrak{g} \to \mathfrak{g}$ an antilinear involution and \mathfrak{g}^{σ} the corresponding real form. The gradation of \mathfrak{g} , associated with a decomposition $\Pi = \Pi^0 \cup \Pi^1$, defines a gradation $\mathfrak{g}^{\sigma} = \sum (\mathfrak{g}^i)^{\sigma}$ of \mathfrak{g}^{σ} if and only if Π^1 consists of non compact roots and any two equivalent roots are either both in Π^0 or both in Π^1 . Decomposition of a \mathfrak{g}^0 -module \mathfrak{g}^1 into irreducible submodules

Let $\mathfrak{g} = \sum \mathfrak{g}^i$ be a fundamental gradation of a complex semisimple Lie algebra \mathfrak{g} . We set

$$R^{i} = \{ \alpha \in R \mid d(\alpha) = i \} = \{ \alpha \in R \mid \mathfrak{g}_{\alpha} \subset \mathfrak{g}^{i} \}$$

and

$$\Pi^{i} = \Pi \cap R^{i} = \{ \alpha \in \Pi \mid d(\alpha) = i \}.$$

For any simple root $\gamma \in \Pi$, we put

$$R(\gamma) = \{\gamma + (R^0 \cup \{0\})\} \cap R = \{\alpha = \gamma + \phi^0 \in R, \ \phi^0 \in R^0 \cup \{0\}\}.$$

We associate to any set of roots $Q \subset R$ a subspace

$$\mathfrak{g}(Q) = \sum_{\alpha \in Q} \mathfrak{g}_{\alpha} \subset \mathfrak{g}.$$

Proposition 13 The decomposition of a \mathfrak{g}^0 -module \mathfrak{g}^1 into irreducible submodules is given by

$$\mathfrak{g}^1 = \sum_{\gamma \in \Pi^1} \mathfrak{g}(R(\gamma)).$$

Moreover, γ is a lowest weight of the irreducible submodule $\mathfrak{g}(R(\gamma))$. In particular, the number of the irreducible components = $\#\Pi^1$. **Proposition 14** For any simple root $\gamma \in \Pi^1$ of label one, there are two possibilities:

- i) $\sigma^* \gamma = \gamma + \sum_{\beta \in \Pi_{\bullet}} k_{\beta}\beta$. Then $\sigma^* \gamma \in R(\gamma)$ and the \mathfrak{g}^0 -module $\mathfrak{g}(R(\gamma))$ is σ -invariant;
- ii) $\sigma^*\gamma = \gamma' + \sum_{\beta \in \Pi_{\bullet}} k_{\beta}\beta$, where $\gamma \neq \gamma' \in \Pi^1$. Then, $\sigma^*R(\gamma) = R(\gamma')$ and the two irreducible \mathfrak{g}^0 -modules $\mathfrak{g}(R(\gamma))$ and $\mathfrak{g}(R(\gamma'))$ determine one irreducible submodule $\mathfrak{g}^{\sigma} \cap$ $(\mathfrak{g}(R(\gamma)) + \mathfrak{g}(R(\gamma')))$ of \mathfrak{g}^{σ} .

Corollary 15 Let $\mathfrak{g}^{\sigma} = \sum (\mathfrak{g}^{\sigma})^i$ be a graded real semisimple Lie algebra. Then irreducible submodules of the $(\mathfrak{g}^{\sigma})^0$ -module $(\mathfrak{g}^{\sigma})^{-1}$ correspond to vertices γ with label one without curved arrow and to pairs (γ, γ') of equivalent vertices with label one. In particular, decompositions $\Pi^1 = \Pi^1_- \cup \Pi^1_+$ such that equivalent roots belong to the same component correspond to decomposition

$$(\mathfrak{g}^{\sigma})^{-1} = (\mathfrak{g}^{\sigma})^{-1}_{-} + (\mathfrak{g}^{\sigma})^{-1}_{+}$$

of $(\mathfrak{g}^{\sigma})^{0}$ -module $(\mathfrak{g}^{\sigma})^{-1}$ into submodules, where

$$(\mathfrak{g}^{\sigma})_{\pm}^{-1} = \mathfrak{g}^{\sigma} \cap \sum_{\gamma \in \Pi_{\pm}^{1}} \mathfrak{g}(R(-\gamma)).$$
(4)

Maximally homogeneous para-CR manifolds

Let \mathfrak{g}^{σ} be a real semisimple Lie algebra associated with a Satake diagram ($\Pi = \Pi_{\bullet} \cup \Pi', \sim$) with the fundamental gradation defined by a subset $\Pi^1 \subset \Pi'$ and $F = \tilde{G}/\tilde{P}$ the associated flag manifold.

An almost para-CR structure on $F = \tilde{G}/\tilde{P}$ associated with a decomposition $\Pi^1 = \Pi^1_+ \cup$ Π^1_- is integrable i.e. is a CR structure if and only if $(\mathfrak{g}^{\sigma})^0$ -submodules $(\mathfrak{g}^{\sigma})^{-1}_+$ and $(\mathfrak{g}^{\sigma})^{-1}_-$ are Abelian subalgebras of \mathfrak{g}^{σ} . We give now a simple criterion for this. We need the following definitions.

Definition 16 We say that a subset $\Pi^1 \subset \Pi$ of a system Π of simple roots of a root system R is admissible if there is no root of R of the form

 $2\alpha + \sum k_i \phi_i, \ \alpha \in \Pi^1, \phi_i \in \Pi_0 = \Pi \setminus \Pi^1.$ (5)

Definition 17 Let \mathfrak{g}^{σ} be a real semisimple Lie algebra with a fundamentally gradation defined by a subset $\Pi^1 \subset \Pi$. We say that a decomposition $\Pi^1 = \Pi^1_+ \cup \Pi^1_-$ is alternate, if the vertices from Π^1_+ and Π^1_- appear in the Satake diagram in alternate order.

More precisely, this means that after deleting vertices from Π^1_+ (respectively, Π^1_-), one gets a graph, each connected component of which has not more then one vertex from Π^1_- (respectively, from Π^1_+).

Proposition 18 Let \mathfrak{g}^{σ} be a semisimple real Lie algebra with the fundamental gradation associated to a subset $\Pi^1 \subset \Pi$ and $F = \tilde{G}/\tilde{P}$ the associated flag manifold. A decomposition $\Pi^1 = \Pi^1_+ \cup \Pi^1_-$

defines a para-CR structure on the flag manifold F if and only if the subset Π^1 is admissible and the decomposition of Π^1 is alternate.

The following Proposition describes admissible subsystems Π^1 of a system Π of simple roots for any indecomposable root system R.

We denote by $\Pi = \{\alpha_1, \cdots, \alpha_\ell\}$ the simple roots of $\mathfrak{g}.$

If $(\Pi = \Pi_{\bullet} \cup \Pi', \sim)$ is a Satake diagram which defines a real form \mathfrak{g}^{σ} of \mathfrak{g} we denote elements of a subset $\Pi^1 \subset \Pi'$ which defines a fundamental gradation

of \mathfrak{g}^σ by

$$\alpha_{i_1}, \cdots, \alpha_{i_k}, \ i_1 < i_2 < \cdots < i_k.$$

Proposition 19 A subset $\Pi^1 \subset \Pi$ of a system Π of simple roots of a root system R is admissible in the following cases:

- For $R = A_{\ell}$, in all cases;
- For $R = B_{\ell}$ and C_{ℓ} , under the additional condition : if $i_k = \ell$, then $i_{k-1} = \ell 1$;
- For $\mathfrak{g} = D_{\ell}$, under the condition: if $i_k < \ell 1$, then $i_{k-1} = i_k 1$;
- For $\mathfrak{g} = E_6$, in all cases except the following ones:

 $\Pi^{1} = \{\alpha_{1}, \alpha_{4}\}, \{\alpha_{1}, \alpha_{5}\}, \{\alpha_{3}, \alpha_{6}\}, \{\alpha_{4}, \alpha_{6}\}, \{\alpha_{1}, \alpha_{5}\}, \{\alpha_{2}, \alpha_{5}\}, \{\alpha_{2}, \alpha_{5}\}, \{\alpha_{2}, \alpha_{5}\}, \{\alpha_{3}, \alpha_{5}\}, \{\alpha_{4}, \alpha_{5}\}, \{\alpha_{5}, \alpha_{5}\}, \{\alpha_{$

• For $\mathfrak{g} = E_7$, in all cases except the following ones:

$$\Pi^{1} = \{\alpha_{1}, \alpha_{4}\}, \{\alpha_{1}, \alpha_{5}\}, \{\alpha_{1}, \alpha_{6}\}$$

• For $\mathfrak{g} = E_8$, in all cases except the following ones:

 $\Pi^{1} = \{\alpha_{1}, \alpha_{4}\}, \{\alpha_{1}, \alpha_{5}\}, \{\alpha_{1}, \alpha_{6}\}, \{\alpha_{1}, \alpha_{7}\}$

For g = F₄, in all cases except the following ones:
Π¹ = {α₁, α₃}, {α₁, α₄}, {α₂, α₄}, {α₃, α₄}, {α₁, α₅

• For
$$\mathfrak{g} = G_2$$
, in the case

$$\mathsf{\Pi}^{\mathsf{I}} = \{\alpha_1, \alpha_2\}.$$

Theorem 20 Let $(\Pi = \Pi_{\bullet} \cup \Pi', \sim)$ be a Satake diagram of a simple real Lie algebra \mathfrak{g}^{σ} and $\Pi^1 \subset \Pi'$ an admissible subset described in Proposition 19. Let \tilde{G} be the simply connected Lie group with the Lie algebra \mathfrak{g}^{σ} and \tilde{P} the parabolic subgroup of \tilde{G} generated by the non-negatively graded subalgebra

$$\mathfrak{p} = \sum_{i \ge 0} (\mathfrak{g}^{\sigma})^i$$

with the grading element \vec{d}_{Π^1} . Then the alternate decomposition $\Pi^1 = \Pi^1_+ \cup \Pi^1_-$ defines a decomposition

$$(\mathfrak{g}^{\sigma})^1 = (\mathfrak{g}^{\sigma})^1_+ + (\mathfrak{g}^{\sigma})^1_-$$

of $(\mathfrak{g}^{\sigma})^{0}$ -module $(\mathfrak{g}^{\sigma})^{1}$ into a sum of two commutative subalgebras. This decomposition determines an invariant para-CR structure on the simply connected flag manifold $F = \tilde{G}/\tilde{P}$. Moreover, any simply connected maximally homogeneous para-CR manifolds of semisimple type is a direct product of such manifolds.

Maximal homogeneous para-CR manifolds of depth 2

Theorem 21 Let M be a non degenerate maximally homogeneous weak para-CR manifold of semisimple type (\mathfrak{m}, K_0) and depth 2. Then, up to coverings, M is isomorphic to a direct product of the following flag manifolds F = G/P of a simple Lie group G associated with a graded Lie algebra $\mathfrak{g} = (\mathfrak{m} + \mathfrak{g}^0)^\infty$ equipped with an invariant para-CR structure: \mathfrak{g} is of type A_{ℓ} :

- i) $\mathfrak{g} = \mathfrak{sl}_{\ell+1}(\mathbb{R})$ and $F = F_{p,q}(\mathbb{R}) = SL_{\ell+1}(\mathbb{R})/P$ is the manifold of (p,q)-flags in the space $V = \mathbb{R}^{\ell+1}$;
- ii) $\mathfrak{g} = \mathfrak{sl}_{\ell+1}(\mathbb{C})$ and $F = F_{p,q}(\mathbb{C}) = SL_{\ell+1}(\mathbb{C})/P$ is the manifold of (p,q)-flags in the space $V = \mathbb{C}^{\ell+1}$;
- iii) $\mathfrak{g} = \mathfrak{sl}_{\ell+1}(\mathbb{H})$ and $F = F_{p,q}(\mathbb{H}) = SL_{\ell+1}(\mathbb{H})/P$ is the manifold of (p,q)-flags in the space $V = \mathbb{H}^{\ell+1}$;

\mathfrak{g} is of type D_ℓ .

- i) $\mathfrak{g} = \mathfrak{so}_{2\ell}(\mathbb{C})$ and $F = \mathrm{SO}_{2\ell}^+(\mathbb{C})/P$ is the manifold of all isotropic $(1,\ell)$ -flags in the complex Euclidean space $V = (\mathbb{C}^{2\ell}, <, >)$, where P is the standard $(1,\ell)$ -flag $f_0 = \mathbb{C} \subset \mathbb{C}^{\ell}$;
- ii) $\mathfrak{g} = \mathfrak{so}_{2\ell}(\mathbb{C})$ and $F = \mathrm{SO}_{2\ell}^+(\mathbb{C})/P$ is the manifold of all isotropic $(\ell 1, \ell)$ -flags in the complex Euclidean space $V = (\mathbb{C}^{2\ell}, < , >)$, where P is the standard $(\ell 1, \ell)$ -flag $f_0 = \mathbb{C}^{\ell-1} \subset \mathbb{C}^{\ell}$;

- iii) $\mathfrak{g} = \mathfrak{so}_{\ell,\ell}$ (the normal form of D_{ℓ}) and $F = F_{1,\ell} = SO_{\ell,\ell}/P$ is the manifold of isotropic $(1,\ell)$ -flags in the pseudo-Euclidean space $\mathbb{R}^{\ell,\ell}$;
- iv) $\mathfrak{g} = \mathfrak{so}_{\ell,\ell}$ (the normal form of D_{ℓ}) and $F = F_{\ell-1,\ell} = SO_{\ell,\ell}/P$ is the manifold of isotropic $(\ell-1,\ell)$ -flags in the pseudo-Euclidean space $\mathbb{R}^{\ell,\ell}$.

\mathfrak{g} is of type E_6 :

- i) $\mathfrak{g} = \mathfrak{e}_6$ (see subsection 6.2 for the description of the manifold F);
- ii) $\mathfrak{g} = \mathfrak{e}_6^{\text{norm}} = EI$ (the normal form of E_6) with the maximal compact subalgebra \mathfrak{sp}_4 and $F = \mathbb{E}_6^{\text{norm}}/P$ is the flag manifold described like in the complex case;
- iii) $\mathfrak{g} = \mathfrak{e}_6(\mathfrak{f}_4) = E IV$ the real form of \mathfrak{e}_6 with maximal compact subalgebra \mathfrak{f}_4 and $F = E_6(\mathfrak{f}_4)/P$ is the flag manifold described like in the complex case.

Moreover, we have

	$\dim HF$	$\dim H_+F$	codimHF
$A_\ell i) - iii)$	p(q-p)	$(q-p)(\ell+1-q)$	$p(\ell+1-q)$
$D_{\ell}i), iii)$	$rac{(\ell-1)(\ell-2)}{2}$	$\ell-1$	$\ell-1$
ii), iv)	$\ell-1$	$\ell-1$	$rac{(\ell-1)(\ell-2)}{2}$
$E_6i) - iii)$	8	8	8

where the dimensions have to be intended over \mathbb{C} whenever \mathfrak{g} has a complex structure). In particular, the weak para-CR structure is a para-CR structure in cases A_{ℓ} for $p+q = \ell+1$, D_{ℓ} *ii*) and *iv*) and E_6 .