Para-CR Geometry. II. Generalizations of a para-CR structure

Dmitri V. Alekseevsky

24th March 2009

An ϵ -quaternionic CR structure

Summary

We define the notion of ϵ -quaternionic CR structure on 4n + 3-dimensional manifold M as a triple $\omega = (\omega_1, \omega_2, \omega_3)$ of 1-forms, which satisfy some structure equations. Here $\epsilon = \pm 1$. It defines a decomposition TM = VM + HMof the tangent bundle into a direct sum of the horizontal subbundle $HM = \text{Ker}\omega$ and a complementary vertical rank 3 subbundle V and an ϵ -hypercomplex structure $\mathbf{J} = (J_1, J_2, J_3 = J_1J_2 = -J_2J_1)$ on HM.

It is a joint work with Y. Kamishima.

- We associate with ω a 1-parameter family of pseudo-Riemannain metrics g_t .
- We show that the metric g_1 is Einstein metric and
- that the ϵ -quaternionic CR structure is equivalent to an ϵ -3-Sasakian structure subordinated to the pseudo-Riemannian manifold (M, g_1) (which is defined as Lie algebra of Killing fields span (ξ_1, ξ_2, ξ_3) isomorphic to $sp(1, \mathbb{R})$ for $\epsilon = 1$ and sp(1) for $\epsilon = -1$ with some properties.)

- The cone $C(M) = \mathbb{R}^+ \times M$, $\hat{g} = dr^2 + r^2 g_1$ over a ϵ -quaternionic CR manifold (M, ω) has a canonical ϵ -hyperKaehler structure (in particular, is Ricci-flat).
- Under assumption that the Killing vectors ξ_{α} are complete and define (almost) free action of the corresponding group $K = Sp(1,\mathbb{R})$ or Sp(1), the orbit manifold Q = M/K has a structure of ϵ -quaternionic Kähler manifold.

- Homogeneous manifolds with ϵ -quaternionic CR structure are described.
- A simple reduction construction, which associates with an ε-quaternionic CR manifold with a symmetry group G a new ε-quaternionic CR manifold M' = μ⁻¹(0)/G is presented.

Definition of ϵ -quaternionic CR structure

Let $\omega = (\omega_1, \omega_2, \omega_3)$ be a triple of 1-forms on a 4n + 3-dimensional manifold M which are linearly independent, i.e. $\omega_1 \wedge \omega_2 \wedge \omega_3 \neq 0$. We associate with ω a triple $\rho = (\rho_1, \rho_2, \rho_3)$ of 2forms by

 $\rho_{1} = d\omega_{1} - 2\varepsilon\omega_{2} \wedge \omega_{3},$ $\rho_{2} = d\omega_{2} + 2\omega_{3} \wedge \omega_{1},$ $\rho_{3} = d\omega_{3} + 2\omega_{1} \wedge \omega_{2},$

where $\varepsilon = +1$ or -1.

A triple $J = (J_1, J_2, J_3)$ of anticommuting endomorphisms of a distribution HM is called an ε -hypercomplex structure if they satisfies ε quaternionic relations

 $J_1^2 = -\varepsilon J_2^2 = -\varepsilon J_3^2 = -1$, $J_3 = J_1 J_2 = -J_2 J_1$. For $\varepsilon = 1$, this means that J_1 is a complex structure and $J_2, J_3 = J_1 J_2$ are para-complex structures. **Definition 1** A triple of 1-forms $\omega = (\omega_{\alpha})$ is called a ϵ -quaternionic CR structure if the associated 2-forms (ρ_{α}) are non degenerate on the distribution

 $H = \operatorname{Ker} \omega = \operatorname{Ker} \omega_1 \cap \operatorname{Ker} \omega_2 \cap \operatorname{Ker} \omega_3,$

have the same 3-dimensional kernel V and three fields of endomorphisms J_{α} on H, defined by

$$J_1 = -\varepsilon(\rho_3|_H)^{-1} \circ \rho_2|_H,$$

 $J_2 = (\rho_1|_H)^{-1} \circ \rho_3|_H, \ J_3 = (\rho_2|_H)^{-1} \circ \rho_1|_H.$

form an ϵ -hypercomplex structure on HM.

Associated metric and the canonical vector fields We define

1) one-parameter family of pseudo-Riemannian metrics g_t on a ϵ -quaternionic CR manifold M by

$$g_t = g_V^t + g_H \tag{1}$$

where

$$g_V^t = t(\omega_1 \otimes \omega_1 - \varepsilon \omega_2 \otimes \omega_2 - \varepsilon \omega_3 \otimes \omega_3)$$

= $t \sum \varepsilon_\alpha \omega_\alpha \otimes \omega_\alpha$ (2)

$$g_H = \rho_1 \circ J_1 = \rho_2 \circ J_2 = -\varepsilon \rho_3 \circ J_3,$$

and $\varepsilon_1 = 1$, $\varepsilon_2 = \varepsilon_3 = -\varepsilon$.

2) Three vertical vector fields $\xi_{\alpha} \in VM$ dual to the 1-forms ω_{α} :

$$\omega_{\beta}(\xi_{\alpha}) = \delta_{\alpha\beta}.$$

Then

$$g_t \circ \xi_\alpha = t\varepsilon_\alpha \omega_\alpha, \tag{3}$$

Properties of the canonical vector fields We will denote by \mathcal{L}_X the Lie derivative in direction of X.

(1) The vector fields ξ_{α} preserves the decomposition $TM = V \oplus H$ and span a 3-dimensional Lie algebra $\mathfrak{a}_{\varepsilon}$ of Killing fields of the metric g_t for t > 0, which is isomorphic to $\mathfrak{s}p(1,\mathbb{R})$ for $\varepsilon = 1$ and $\mathfrak{s}p(1)$ for $\varepsilon = -1$. More precisely, the following cyclic relations hold:

 $[\xi_1,\xi_2] = 2\xi_3, \ [\xi_2,\xi_3] = -2\varepsilon\xi_1, \ [\xi_3,\xi_1] = 2\xi_2.$

(2) The vector field ξ_{α} preserves the forms ω_{α} and ρ_{α} for $\alpha = 1, 2, 3$. Moreover, the following relations hold :

$$\mathcal{L}_{\xi_2}\omega_3 = -\mathcal{L}_{\xi_3}\omega_2 = \omega_1, \ \mathcal{L}_{\xi_3}\omega_1 = \varepsilon \mathcal{L}_{\xi_1}\omega_3 = -\varepsilon \omega_2,$$
$$\mathcal{L}_{\xi_1}\omega_2 = \varepsilon \mathcal{L}_{\xi_2}\omega_1 = \omega_3,$$

and similar relations for ρ_{α} .

Extension of the endomorphisms J_{α}

We extend endomorphisms J_{α} of H to endomorphisms \bar{J}_{α} of the tangent bundle TM by :

$$\overline{J}_{\alpha}\xi_{\alpha} = 0, \quad \overline{J}_{\alpha}|_{H} = J_{\alpha}$$

$$\overline{J}_{1}\xi_{2} = -\varepsilon\xi_{3}, \quad \overline{J}_{1}\xi_{3} = \varepsilon\xi_{2},$$

$$\overline{J}_{2}\xi_{3} = \xi_{1}, \quad \overline{J}_{2}\xi_{1} = \varepsilon\xi_{3},$$

$$\overline{J}_{3}\xi_{1} = \xi_{2}, \quad \overline{J}_{3}\xi_{2} = \varepsilon\xi_{1}.$$
(4)

The endomorphisms \overline{J}_{α} , $\alpha = 1, 2, 3$ at a point xconstitute the standard basis of the Lie algebra $sp(1)_{\varepsilon} \subset \operatorname{End}(T_{x}M)$ where $sp(1)_{-1} = sp(1), \ sp(1)_{+1} = sp(1,\mathbb{R}).$

Integrability of extended endomorphisms $ar{J}_{lpha}$

Proposition 2 Let (M, ω) be an ϵ -quaternionic CR manifold. Then $T_{\alpha} := \text{Ker } \omega_{\alpha}, \overline{J}_{\alpha})$ is a Levi-non-degenerate $(-\epsilon_{\alpha})$ -CR structure.

This means that T_{α} is a contact distribution, and J_{α} is an integrable ϵ_{α} -complex structure, i.e. J_1 is a complex structure and J_2, J_3 are para-complex structure.

Integrability means that the Nijenhuis tensor $N(\bar{J}_{\alpha}, \bar{J}_{\alpha})_{T_{\alpha}} = 0$ or, equivalently, the eigendistributions T_{α}^{\pm} of $\bar{J}_{\alpha}|_{T_{\alpha}}$ are involutive.

Contact metric 3-structure

Let (M, g) be a (4n + 3)-dimensional manifold with a pseudo-Riemannian metric g of signature (3 + 4p, 4q).

A contact metric 3-structure is $(\xi_{\alpha}, \phi_{\alpha}), \alpha = 1, 2, 3$ where ξ_{α} are three orthonormal vector fields which define contact forms $\eta_{\alpha} := g \circ \xi_{\alpha}$, and ϕ_{α} are skew-symmetric endomorphisms with kernel Ker $\phi_{\alpha} = \mathbb{R}\xi_{\alpha}$ such that

(1)
$$\phi_{\alpha}^{2}|_{\xi_{\alpha}^{\perp}} = -\mathrm{Id}, \ \phi_{\alpha}(\xi_{\alpha}) = 0;$$

(2)
$$\phi_{\alpha} = \phi_{\beta}\phi_{\gamma} - \xi_{\beta}\otimes\eta_{\gamma} = -\phi_{\gamma}\phi_{\beta} + \xi_{\gamma}\otimes\eta_{\beta}.$$

K-contact structures

A contact metric 3-structure is called a *K*-contact 3-structure if ξ_{α} are Killing fields.

3-Sasakian structure

A *K*-contact 3-structure is called Sasakian 3structure if it is normal, i. e. if the following tensors $N_{\eta_{\alpha}}(\cdot, \cdot)$, ($\alpha = 1, 2, 3$) vanish:

$$N^{\eta_{\alpha}}(X,Y) := N_{\phi_{\alpha}}(X,Y) + (X\eta_{\alpha}(Y) - Y\eta_{\alpha}(X))\xi_{\alpha}$$
(5)

 $(\forall X, Y \in TM)$. Here

$$N_{\phi_{\alpha}}(X,Y) =$$

 $[\phi_{\alpha}X,\phi_{\alpha}Y] - [X,Y] - \phi_{\alpha}[\phi_{\alpha}X,Y] - \phi_{\alpha}[X,\phi_{\alpha}Y]$

is the usual Nijenhuis tensor of a field of endomorphisms ϕ_{α} . Theorem The following three structures on a (4n + 3)-dimensional manifold M are equivalent: contact pseudo-metric 3-structures, quaternionic CR structures and pseudo-Sasakian 3-structures.

If ω is a quaternionic CR structure, then the associated 3-Sasakian metric is

$$g = g_1 = \sum \omega_\alpha \otimes \omega_\alpha + \rho_1 \circ J_1,$$

the Killing vectors are vertical vectors ξ_{α} dual to 1-forms ω_{α} and $\phi_{\alpha} = \overline{J}_{\alpha}$. The metric g is an Einstein metric.

ε -quaternionic Kähler manifolds

Recall that a (pseudo-Riemannian) quaternionic Kähler manifold (respectively, para-quaternionic Kähler manifold) is defined as a 4n-dimensional pseudo-Riemannian manifold (M,g) with the holonomy group

 $H \subset Sp(1)Sp(p,q)$ (respectively, $H \subset Sp(1,\mathbb{R}) \cdot Sp(n,\mathbb{R})$). This means that the manifold M admits a parallel 3-dimensional subbundle Q (quaternionic subbundle) of the bundle of endomorphisms which is locally generated by three skew-symmetric endomorphisms J_1, J_2, J_3 which satisfy the quaternionic relations (respectively, para-quaternionic relations). To unify the notations, we will call a quaternionic Kähler manifold also a ($\varepsilon =$ -1)-quaternionic Kähler manifold and a paraquaternionic Kähler manifold a ($\varepsilon =$ 1)-quaternionic Kähler manifold. Any ε -quaternionic Kähler manifold is Einstein and its curvature tensor has the form

$$R = \nu R_1 + W$$

,

ε -quaternionic Kähler manifold associated with a ε -quaternionic CR manifolds

Let (M, ω) be a ε -quaternionic CR manifold. We will assume that the Lie algebra $sp(1)_{\varepsilon} = span(\xi_{\alpha})$ of vector fields is complete and generates a free action of the group $Sp(1)_{\varepsilon}$ on M. Then the orbit space $B = M/Sp(1)_{\varepsilon}$ is a smooth manifold and $\pi : M \to B$ is a principal bundle. Moreover, the pseudo-Riemannian metric g_1 of (M, ω) induces a pseudo-Riemannian metric g_B on B such that $\pi : M \to B$ is a Riemannian submersion with totally geodesic fibers. **Theorem 3** The space of orbit $N = M/Sp(1)_{\varepsilon}$ has a natural structure of ε -quaternionic Kähler manifold.

Conversely, The bundle of orthonormal frames over a ε -quaternionic Kähler manifold N has a structure of ε -quaternionic CR manifold. Examples of homogeneous ϵ -quaternionic CR manifolds of classical Lie groups:

(C_n)
$$\varepsilon = +1$$
, $S\mathbb{H}'^{n,n} = Sp_{n+1}(\mathbb{R})/Sp_n(\mathbb{R})$;
 $\varepsilon = -1$, $S^{p,q}_{\mathbb{H}} = Sp_{p+1,q}/Sp_{p,q}$

(
$$A_n$$
) $\varepsilon = +1$, $SU_{p+1,q+1}/U_{p,q}$;
 $\varepsilon = -1$, $SU_{p+2,q}/U_{p,q}$;

$$(BD_n)\varepsilon = +1, SO_{p+2,q+2}/SO_{p,q},$$

 $\varepsilon = -1, SO_{p+4,q}/SO_{p,q}.$

Momentum map of a ϵ -quaternionic CR manifold with a symmetry group

Let (M, ω) be a ϵ -quaternionic CR manifold and G be a Lie group of its authomorphisms, i.e. transformations which preserves 1-forms ω . We denote by \mathfrak{g}^* the dual space of the Lie algebra \mathfrak{g} of G and we will consider elements $X \in \mathfrak{g}$ as vector fields on M. We define a momentum map as

$$\mu: M \to \mathbb{R}^3 \otimes \mathfrak{g}^*, \, x \mapsto \mu_x,$$

 $\mu_x(X) = \omega(X_x) = (\omega_1(X_x), \omega_2(X_x), \omega_3(X_x)) \in \mathbb{R}^3.$

Lemma 4 The momentum map is G-equivariant, where G acts on $\mathbb{R}^3 \otimes \mathfrak{g}^*$ by the coadjoint representation on the second factor.

Reduction of ϵ -quaternionic CR manifold with a symmetry group

Let $M' = \mu^{-1}(0)$ be the zero level set of the momentum map. It consists of all point $x \in M$ such that the tangent space gx to the orbit Gx is horizontal: $gx \subset H_x$. In general, it is a stratified manifold.

Lemma 5 (1) dim $Gx \leq \dim T_x(M') \leq 3 \dim Gx$;

(2) If the group G is one dimensional group without fixed point, then M' is a smooth regular (i.e. closed imbedded) submanifold of dimension 4n. **Theorem 6** Let (M, ω_{α}) be an ϵ -quaternionic CR manifold and G a connected Lie group of its authomorphisms. Assume that G acts properly on the manifold $M' = \mu^{-1}(0)$. Then the ϵ -quaternionic CR structure of M induces a ϵ -quaternionic CR structure $\hat{\omega}_{\alpha}$ on the orbit space $\hat{M} = M'_{\text{reg}}/G$.

ε -hyperKähler structure on the cone over an ϵ -quaternionic CR manifold

Theorem 7 Let (M, ω_{α}) be a ϵ -quaternionic CR manifold and g_t is the natural metric. Then the cone $N = \mathbb{R}^+ \times M$ with the metric $g^N =$ $dr^2 + r^2g_1$ is a ϵ -hyperKähler manifold. Conversely, if the cone metric g^N on the cone N over a manifold M is ϵ -hyperKähler with a parallel ϵ -hypercomplex structure J_{α} , then the manifold M has the canonical ϵ -quaternionic CR structure $\omega_{\alpha} = dr \circ J_{\alpha}$ such that g_1 is the associated natural metric.