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An ε-quaternionic CR structure

Summary

We define the notion of ε-quaternionic CR struc-

ture on 4n + 3-dimensional manifold M as a

triple ω = (ω1, ω2, ω3) of 1-forms, which satisfy

some structure equations. Here ε = ±1.

It defines a decomposition TM = VM + HM

of the tangent bundle into a direct sum of the

horizontal subbundle HM = Kerω and a com-

plementary vertical rank 3 subbundle V and an

ε-hypercomplex structure

J = (J1, J2, J3 = J1J2 = −J2J1) on HM .

It is a joint work with Y. Kamishima.
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• We associate with ω a 1-parameter family

of pseudo-Riemannain metrics gt.

• We show that the metric g1 is Einstein

metric and

• that the ε-quaternionic CR structure is equiv-

alent to an ε-3-Sasakian structure subordi-

nated to the pseudo-Riemannian manifold

(M, g1) (which is defined as Lie algebra of

Killing fields span(ξ1, ξ2, ξ3) isomorphic to

sp(1,R) for ε = 1 and sp(1) for ε = −1 with

some properties.)
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• The cone C(M) = R+ ×M, ĝ = dr2 + r2g1

over a ε-quaternionic CR manifold (M,ω)

has a canonical ε-hyperKaehler structure

(in particular, is Ricci-flat).

• Under assumption that the Killing vectors

ξα are complete and define (almost) free

action of the corresponding group K =

Sp(1,R) or Sp(1), the orbit manifold Q =

M/K has a structure of ε-quaternionic Kähler

manifold.
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• Homogeneous manifolds with ε-quaternionic

CR structure are described.

• A simple reduction construction, which as-

sociates with an ε-quaternionic CR man-

ifold with a symmetry group G a new ε-

quaternionic CR manifold M ′ = µ−1(0)/G

is presented.
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Definition of ε-quaternionic CR structure

Let ω = (ω1, ω2, ω3) be a triple of 1-forms on

a 4n + 3-dimensional manifold M which are

linearly independent, i.e. ω1 ∧ ω2 ∧ ω3 6= 0. We

associate with ω a triple ρ = (ρ1, ρ2, ρ3) of 2-

forms by

ρ1 = dω1 − 2εω2 ∧ ω3,

ρ2 = dω2 + 2ω3 ∧ ω1,

ρ3 = dω3 + 2ω1 ∧ ω2,

where ε = +1 or −1.
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A triple J = (J1, J2, J3) of anticommuting en-

domorphisms of a distribution HM is called an

ε-hypercomplex structure if they satisfies ε-

quaternionic relations

J2
1 = −εJ2

2 = −εJ2
3 = −1, J3 = J1J2 = −J2J1.

For ε = 1, this means that J1 is a complex

structure and J2, J3 = J1J2 are para-complex

structures.
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Definition 1 A triple of 1-forms ω = (ωα) is

called a ε-quaternionic CR structure if the

associated 2-forms (ρα) are non degenerate on

the distribution

H = Kerω = Kerω1 ∩Kerω2 ∩Kerω3,

have the same 3-dimensional kernel V

and three fields of endomorphisms Jα on H,

defined by

J1 = −ε(ρ3|H)−1 ◦ ρ2|H ,

J2 = (ρ1|H)−1 ◦ ρ3|H , J3 = (ρ2|H)−1 ◦ ρ1|H .

form an ε-hypercomplex structure on HM .
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Associated metric and the canonical vector fields

We define

1) one-parameter family of pseudo-Riemannian

metrics gt on a ε-quaternionic CR manifold M

by

gt = gtV + gH (1)

where

gtV = t(ω1 ⊗ ω1 − εω2 ⊗ ω2 − εω3 ⊗ ω3)

= t
∑

εαωα ⊗ ωα
(2)

gH = ρ1 ◦ J1 = ρ2 ◦ J2 = −ερ3 ◦ J3,

and ε1 = 1, ε2 = ε3 = −ε.
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2) Three vertical vector fields ξα ∈ VM dual to

the 1-forms ωα:

ωβ(ξα) = δαβ.

Then

gt ◦ ξα = tεαωα, (3)
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Properties of the canonical vector fields

We will denote by LX the Lie derivative in di-

rection of X.

(1) The vector fields ξα preserves the decom-

position TM = V⊕H and span a 3-dimensional

Lie algebra aε of Killing fields of the metric

gt for t > 0, which is isomorphic to sp(1,R)

for ε = 1 and sp(1) for ε = −1. More pre-

cisely, the following cyclic relations hold:

[ξ1, ξ2] = 2ξ3, [ξ2, ξ3] = −2εξ1, [ξ3, ξ1] = 2ξ2.
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(2) The vector field ξα preserves the forms ωα
and ρα for α = 1,2,3. Moreover, the fol-

lowing relations hold :

Lξ2
ω3 = −Lξ3

ω2 = ω1, Lξ3
ω1 = εLξ1

ω3 = −εω2,

Lξ1
ω2 = εLξ2

ω1 = ω3,

and similar relations for ρα.
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Extension of the endomorphisms Jα
We extend endomorphisms Jα of H to endo-

morphisms J̄α of the tangent bundle TM by

:

J̄αξα = 0, J̄α|H = Jα

J̄1ξ2 = −εξ3, J̄1ξ3 = εξ2,

J̄2ξ3 = ξ1, J̄2ξ1 = εξ3,

J̄3ξ1 = ξ2, J̄3ξ2 = εξ1.

(4)

The endomorphisms J̄α, α = 1,2,3 at a point x

constitute the standard basis of the Lie algebra

sp(1)ε ⊂ End(TxM) where

sp(1)−1 = sp(1), sp(1)+1 = sp(1,R).
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Integrability of extended endomorphisms J̄α

Proposition 2 Let (M,ω) be an ε-quaternionic

CR manifold. Then Tα := Kerωα, J̄α) is a

Levi-non-degenerate (−εα)-CR structure.

This means that Tα is a contact distribution,

and Jα is an integrable εα-complex structure,

i.e. J1 is a complex structure and J2, J3 are

para-complex structure.

Integrability means that the Nijenhuis tensor

N(J̄α, J̄α)Tα = 0 or, equivalently, the eigendis-

tributions T±α of J̄α|Tα are involutive.
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Contact metric 3-structure

Let (M, g) be a (4n+ 3)-dimensional manifold

with a pseudo-Riemannian metric g of signa-

ture (3 + 4p,4q).

A contact metric 3-structure is (ξα, φα), α =

1,2,3} where ξα are three orthonormal vec-

tor fields which define contact forms ηα :=

g ◦ ξα, and φα are skew-symmetric endomor-

phisms with kernel Ker φα = Rξα such that

(1) φ2
α|ξ⊥α = −Id, φα(ξα) = 0;

(2) φα = φβφγ − ξβ ⊗ ηγ = −φγφβ + ξγ ⊗ ηβ.
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K-contact structures

A contact metric 3-structure is called a

K-contact 3-structure if ξα are Killing fields.
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3-Sasakian structure

A K-contact 3-structure is called Sasakian 3-

structure if it is normal, i. e. if the following

tensors Nηα(·, ·), (α = 1,2,3) vanish:

Nηα(X,Y ) := Nφα(X,Y )+(Xηα(Y )−Y ηα(X))ξα
(5)

(∀ X,Y ∈ TM). Here

Nφα(X,Y ) =

[φαX,φαY ]− [X,Y ]− φα[φαX,Y ]− φα[X,φαY ]

is the usual Nijenhuis tensor of a field of endo-

morphisms φα.
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Theorem The following three structures on a

(4n + 3)-dimensional manifold M are equiva-

lent: contact pseudo-metric 3-structures, quater-

nionic CR structures and pseudo-Sasakian 3-

structures.

If ω is a quaternionic CR structure, then the

associated 3-Sasakian metric is

g = g1 =
∑

ωα ⊗ ωα + ρ1 ◦ J1,

the Killing vectors are vertical vectors ξα dual

to 1-forms ωα and φα = J̄α.

The metric g is an Einstein metric.
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ε-quaternionic Kähler manifolds

Recall that a (pseudo-Riemannian) quaternionic

Kähler manifold (respectively, para-quaternionic

Kähler manifold) is defined as a 4n-dimensional

pseudo-Riemannian manifold (M, g) with the

holonomy group

H ⊂ Sp(1)Sp(p, q)

(respectively, H ⊂ Sp(1,R) · Sp(n,R)).
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This means that the manifold M admits a par-

allel 3-dimensional subbundle Q (quaternionic

subbundle) of the bundle of endomorphisms

which is locally generated by three skew-symmetric

endomorphisms J1, J2, J3 which satisfy the quater-

nionic relations (respectively, para-quaternionic

relations). To unify the notations, we will call

a quaternionic Kähler manifold also a (ε =

−1)-quaternionic Kähler manifold and a para-

quaternionic Kähler manifold a (ε = 1)-quaternionic

Kähler manifold.
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Any ε-quaternionic Kähler manifold is Einstein

and its curvature tensor has the form

R = νR1 +W

,
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ε-quaternionic Kähler manifold associated with

a ε-quaternionic CR manifolds

Let (M,ω) be a ε-quaternionic CR manifold.

We will assume that the Lie algebra sp(1)ε =

span(ξα) of vector fields is complete and gen-

erates a free action of the group Sp(1)ε on M .

Then the orbit space B = M/Sp(1)ε is a smooth

manifold and π : M → B is a principal bundle.

Moreover, the pseudo-Riemannian metric g1 of

(M,ω) induces a pseudo-Riemannian metric gB
on B such that π : M → B is a Riemannian

submersion with totally geodesic fibers.
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Theorem 3 The space of orbit N = M/Sp(1)ε
has a natural structure of ε-quaternionic Kähler

manifold.

Conversely, The bundle of orthonormal frames

over a ε-quaternionic Kähler manifold N has a

structure of ε-quaternionic CR manifold.
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Examples of homogeneous ε-quaternionic CR

manifolds of classical Lie groups:

(Cn) ε = +1, SH′n,n = Spn+1(R)/Spn(R);

ε = −1, Sp,qH = Spp+1,q/Spp,q

( An) ε = +1, SUp+1,q+1/Up,q;

ε = −1, SUp+2,q/Up,q;

(BDn )ε = +1, SOp+2,q+2/SOp,q,

ε = −1, SOp+4,q/SOp,q.
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Momentum map of a ε-quaternionic CR manifold

with a symmetry group

Let (M,ω) be a ε-quaternionic CR manifold

and G be a Lie group of its authomorphisms,

i.e. transformations which preserves 1-forms

ω. We denote by g∗ the dual space of the Lie

algebra g of G and we will consider elements

X ∈ g as vector fields on M . We define a mo-

mentum map as

µ : M → R3 ⊗ g∗, x 7→ µx,

µx(X) = ω(Xx) = (ω1(Xx), ω2(Xx), ω3(Xx)) ∈ R3.
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Lemma 4 The momentum map is G-equivariant,

where G acts on R3 ⊗ g∗ by the coadjoint rep-

resentation on the second factor.

Reduction of ε-quaternionic CR manifold with

a symmetry group

Let M ′ = µ−1(0) be the zero level set of the

momentum map. It consists of all point x ∈M
such that the tangent space gx to the orbit

Gx is horizontal: gx ⊂ Hx. In general, it is a

stratified manifold.
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Lemma 5 (1) dimGx ≤ dimTx(M ′) ≤ 3 dimGx;

(2) If the group G is one dimensional group

without fixed point, then M ′ is a smooth

regular (i.e. closed imbedded) submanifold

of dimension 4n.
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Theorem 6 Let (M,ωα) be an ε-quaternionic

CR manifold and G a connected Lie group of

its authomorphisms. Assume that G acts prop-

erly on the manifold M ′ = µ−1(0). Then the

ε-quaternionic CR structure of M induces a

ε-quaternionic CR structure ω̂α on the orbit

space M̂ = M ′reg/G.
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ε-hyperKähler structure on the cone over an

ε-quaternionic CR manifold

Theorem 7 Let (M,ωα) be a ε-quaternionic

CR manifold and gt is the natural metric. Then

the cone N = R+ ×M with the metric gN =

dr2 + r2g1 is a ε-hyperKähler manifold. Con-

versely, if the cone metric gN on the cone

N over a manifold M is ε-hyperKähler with a

parallel ε-hypercomplex structure Jα, then the

manifold M has the canonical ε-quaternionic

CR structure ωα = dr ◦ Jα such that g1 is the

associated natural metric.
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