CR AND SASAKIAN GEOMETRY LUXEMBOURG - MARCH 24-26, 2008

Beniamino Cappelletti Montano

University of Bari (Italy)

The foliated structure of contact metric (κ,μ) -spaces

A contact manifold is a smooth manifold M endowed with a 1-form η such that

$$\eta \wedge (d\eta)^n \neq 0 \tag{1}$$

everywhere on *M*.

A contact manifold is a smooth manifold M endowed with a 1-form η such that

$$\eta \wedge (d\eta)^n \neq 0 \tag{1}$$

everywhere on M.

• M is necessarily of odd dimension, 2n+1

A contact manifold is a smooth manifold M endowed with a 1-form η such that

$$\eta \wedge (d\eta)^n \neq 0 \tag{1}$$

everywhere on M.

- M is necessarily of odd dimension, 2n+1
- There exists a unique vector field ξ , called Reeb vector field, such that

$$\eta(\xi) = 1$$
 and $d\eta(\xi, \cdot) = 0$.

A contact manifold is a smooth manifold M endowed with a 1-form η such that

$$\eta \wedge (d\eta)^n \neq 0 \tag{1}$$

everywhere on M.

- M is necessarily of odd dimension, 2n+1
- There exists a unique vector field ξ , called Reeb vector field, such that

$$\eta(\xi) = 1$$
 and $d\eta(\xi, \cdot) = 0$.

Remark

(1) implies that the contact distribution $\mathcal{D} := \ker(\eta)$ can not be integrable. In fact the maximal dimension of an integrable subbundle of \mathcal{D} is n.

Legendre foliations

Let (M^{2n+1}, η) be a contact manifold. Then a distribution L on M^{2n+1} is said a Legendre distribution if

- \bullet dim(L) = n
- $L_x \subset \mathcal{D}_x$ for all $x \in M$
- $d\eta(X,X') = 0$ for all $X,X' \in \Gamma(L)$

A Legendre foliation of (M^{2n+1}, η) is an n-dimensional foliation \mathcal{F} on M^{2n+1} such that $L := T\mathcal{F}$ is a Legendre distribution.

The theory of Legendre foliations was developed by Pang, Libermann et al. in '90s

- M.Y. Pang, The structure of Legendre foliations, Trans. Amer. Math. Soc. 1990
- P. Libermann, Legendre foliations on contact manifolds, Different. Geom.
 Appl. 1991

Legendre foliations

A bi-Legendrian manifold is a contact manifold (M,η) foliated by two transversal Legendre foliations \mathcal{F}_1 and \mathcal{F}_2 , so that

$$TM = T\mathcal{F}_1 \oplus T\mathcal{F}_2 \oplus \mathbb{R}\xi$$

 $(\mathcal{F}_1,\mathcal{F}_2)$ is called a bi-Legendrian structure on (M,η) .

Legendre foliations

A bi-Legendrian manifold is a contact manifold (M,η) foliated by two transversal Legendre foliations \mathcal{F}_1 and \mathcal{F}_2 , so that

$$TM = T\mathcal{F}_1 \oplus T\mathcal{F}_2 \oplus \mathbb{R}\xi$$

 $(\mathcal{F}_1,\mathcal{F}_2)$ is called a bi-Legendrian structure on (M,η) .

Theorem (C. M., 2005)

Let $(M,\eta,\mathcal{F}_1,\mathcal{F}_2)$ be a bi-Legendrian manifold. There exists a unique connection ∇^{bl} , called the bi-Legendrian connection associated to $(\mathcal{F}_1,\mathcal{F}_2)$, such that

(i)
$$\nabla^{bl}\mathcal{F}_1 \subset \mathcal{F}_1$$
, $\nabla^{bl}\mathcal{F}_2 \subset \mathcal{F}_2$, $\nabla^{bl}(\mathbb{R}\xi) \subset \mathbb{R}\xi$

(ii)
$$\nabla^{bl}\eta = 0$$
, $\nabla^{bl}d\eta = 0$

(iii)
$$T^{bl}(X,Y) = 2d\eta(X,Y)\xi$$
 for all $X \in \Gamma(T\mathcal{F}_1)$, $Y \in \Gamma(T\mathcal{F}_2)$
 $T^{bl}(Z,\xi) = [\xi, Z_{\mathcal{F}_1}]_{\mathcal{F}_2} + [\xi, Z_{\mathcal{F}_2}]_{\mathcal{F}_1}$ for all $Z \in \Gamma(TM)$.

Let (M,η) be a contact manifold. A Riemannian metric g on M is called an associated metric if the following two conditions hold:

- (i) $g(X,\xi) = \eta(X)$ for all $X \in \Gamma(TM)$, that is ξ is orthogonal to \mathcal{D} and has unit length,
- (ii) there exists a (1,1)-tensor φ such that

$$\varphi^2 = -I + \eta \otimes \xi$$

and

$$d\eta(X,Y) = g(X,\varphi Y)$$

We refer to (φ, ξ, η, g) as a contact metric structure and to $(M, \varphi, \xi, \eta, g)$ as a contact metric manifold.

A Sasakian manifold is a contact metric manifold such that

$$N := [\varphi, \varphi] + 2d\eta \otimes \xi \equiv 0.$$

A Sasakian manifold is a contact metric manifold such that

$$N := [\varphi, \varphi] + 2d\eta \otimes \xi \equiv 0.$$

A contact metric manifold is Sasakian if and only if

$$(\nabla^g_X \varphi) Y = g(X, Y) \xi - \eta(Y) X.$$

A Sasakian manifold is a contact metric manifold such that

$$N := [\varphi, \varphi] + 2d\eta \otimes \xi \equiv 0.$$

A contact metric manifold is Sasakian if and only if

$$(\nabla^g_X \varphi) Y = g(X, Y) \xi - \eta(Y) X.$$

A contact metric manifold is Sasakian if and only if

$$R^{g}(X,Y)\xi = \eta(Y)X - \eta(X)Y.$$

Contact metric (κ,μ) -spaces

A contact metric (κ,μ) -space is a contact metric manifold (M,ϕ,ξ,η,g) such that

$$R^{g}(X,Y)\xi = \kappa(\eta(Y)X - \eta(X)Y) + \mu(\eta(Y)hX - \eta(X)hY), \qquad (*)$$

for some $\kappa,\mu\in\mathbb{R}$, where

$$h:=\frac{1}{2}\mathscr{L}_{\xi}\varphi.$$

(*) is called " (κ,μ) -nullity condition". If in (*) $\kappa=1$, then $h\equiv 0$ and the manifold is Sasakian.

D.E. Blair, T. Koufogiorgos, B.J. Papantoniou, *Contact metric manifolds* satisfying a nullity condition, Israel J. Math. 1995

1. The condition

 $R^g(X,Y)\xi = \kappa(\eta(Y)X - \eta(X)Y) + \mu(\eta(Y)hX - \eta(X)hY)$ determines the curvature completely. In fact, for all $X,Y,Z \in \Gamma(TM)$

1. The condition

$$R^{g}(X,Y)\xi = \kappa(\eta(Y)X - \eta(X)Y) + \mu(\eta(Y)hX - \eta(X)hY)$$
 determines the curvature completely. In fact, for all $X,Y,Z \in \Gamma(TM)$
$$R^{g}(X,Y)Z = (1 - \mu/2)(g(Y,Z)X - g(X,Z)Y) + \frac{1 - \mu/2}{1 - \kappa}(g(hY,Z)hX - g(hX,Z)hY)) + g(Y,Z)hX - g(X,Z)hY - g(hX,Z)Y + g(hY,Z)X - \mu/2(g(\phi Y,Z)\phi X - g(\phi X,Z)\phi Y) + \frac{\kappa - \mu/2}{1 - \kappa}(g(\phi hY,Z)\phi hX - g(\phi hX,Z)\phi hY) + \eta(X)((\kappa - 1 + \mu/2)g(Y,Z) + (\mu - 1)g(hY,Z))\xi - \eta(Y)((\kappa - 1 + \mu/2)g(X,Z) + (\mu - 1)hY) + \mu g(\phi X,Y)\phi Z + \eta(Y)\eta(Z)((\kappa - 1 + \mu/2)X + (\mu - 1)hX).$$

2. There are non-trivial examples of contact metric (κ,μ) -spaces, the most important being the unit tangent bundle of a Riemannian manifold of constant sectional curvature c $(\kappa = c(2 - c), \mu = -2c)$.

- 2. There are non-trivial examples of contact metric (κ,μ) -spaces, the most important being the unit tangent bundle of a Riemannian manifold of constant sectional curvature c $(\kappa = c(2 c), \mu = -2c)$.
- 3. In the non-Sasakian case ($\kappa \neq 1$) the contact metric structure is not "projectable". Thus contact metric (κ,μ)-spaces have no analogues in even dimension.

- 2. There are non-trivial examples of contact metric (κ,μ) -spaces, the most important being the unit tangent bundle of a Riemannian manifold of constant sectional curvature c $(\kappa = c(2 c), \mu = -2c)$.
- 3. In the non-Sasakian case ($\kappa \neq 1$) the contact metric structure is not "projectable". Thus contact metric (κ,μ)-spaces have no analogues in even dimension.

4. A complete classification is known, based on the invariant

$$I_{\mathcal{M}} := \frac{1 - \mu/2}{\sqrt{1 - \kappa}}$$

E. Boeckx, A full classification of contact (κ,μ) -spaces, Illinois J. Math. 2000

The bi-Legendrian structure of a contact (κ,μ) -space

Theorem (Blair, Koufogiorgos, Papantoniou)

Let $(M, \varphi, \xi, \eta, g)$ be a contact metric (κ, μ) -space. Then $\kappa \leq 1$ and $\kappa = 1$ if and only if $(M, \varphi, \xi, \eta, g)$ is Sasakian. Furthermore, in the case $\kappa < 1$, the operator h admits 3 eigenvalues λ , $-\lambda$, 0 and the tangent bundle of M splits as the orthogonal sum

$$TM = \mathcal{D}(\lambda) \oplus \mathcal{D}(-\lambda) \oplus \mathcal{D}(0),$$

where

$$\lambda = \sqrt{1 - \kappa}$$

and

 $\mathcal{D}(\lambda)$, $\mathcal{D}(-\lambda)$, $\mathcal{D}(0)$ are the eigendistributions corresponding to the eigenvalues λ , $-\lambda$, 0, respectively.

The bi-Legendrian structure of a contact (κ,μ) -space

Remarks

- 1. $\mathcal{D}(0) = \mathbb{R}\xi$
- 2. $\mathcal{D}(\lambda)$ and $\mathcal{D}(-\lambda)$ are integrable distributions
- 3. $\dim(\mathcal{D}(\lambda)) = \dim(\mathcal{D}(-\lambda)) = n$
- 4. For all $X,X' \in \Gamma(\mathcal{D}(\lambda))$ and for all $Y,Y' \in \Gamma(\mathcal{D}(-\lambda))$ $d\eta(X,X') = 0, \quad d\eta(Y,Y') = 0.$

Hence $\mathcal{D}(\lambda)$ and $\mathcal{D}(-\lambda)$ define two transversal (orthogonal) Legendre foliations on M.

The bi-Legendrian structure of a contact (κ,μ) -space

Remarks

- 1. $\mathcal{D}(0) = \mathbb{R}\xi$
- 2. $\mathcal{D}(\lambda)$ and $\mathcal{D}(-\lambda)$ are integrable distributions
- 3. $\dim(\mathcal{D}(\lambda)) = \dim(\mathcal{D}(-\lambda)) = n$
- 4. For all $X,X' \in \Gamma(\mathcal{D}(\lambda))$ and for all $Y,Y' \in \Gamma(\mathcal{D}(-\lambda))$ $d\eta(X,X') = 0, \quad d\eta(Y,Y') = 0.$

Hence $\mathcal{D}(\lambda)$ and $\mathcal{D}(-\lambda)$ define two transversal (orthogonal) Legendre foliations on M.

Consequently,

Any contact metric (κ,μ) -space is a "bi-Legendrian manifold"

Contact (κ,μ) -spaces as bi-Legendrian manifolds

Theorem (C.M. - Di Terlizzi, 2008)

A non-Sasakian contact metric manifold $(M, \varphi, \xi, \eta, g)$ is a contact metric (κ, μ) -space if and only if it admits

- \blacktriangleright two mutually orthogonal Legendre distributions L_1 and L_2
- ightharpoonup a (unique) linear connection ∇

satisfying the following properties:

(i)
$$\nabla L_1 \subset L_1, \ \nabla L_2 \subset L_2,$$

(ii)
$$\nabla \eta = 0$$
, $\nabla d\eta = 0$, $\nabla g = 0$, $\nabla \varphi = 0$, $\nabla h = 0$,

(iii)
$$T(X,Y) = 2d\eta(X,Y)\xi$$
 for all $X \in \Gamma(L_1)$, $Y \in \Gamma(L_2)$
 $T(Z,\xi) = [\xi, Z_{L_1}]_{L_2} + [\xi, Z_{L_2}]_{L_1}$ for all $Z \in \Gamma(TM)$.

Furthermore, L_1 and L_2 are integrable and coincide with the eigendistributions of h, and ∇ coincides with the bi-Legendrian connection ∇^{bl} associated to (L_1,L_2) .

Contact (κ,μ) -spaces as bi-Legendrian manifolds

Corollary (C.M. - Di Terlizzi - Tripathi, 2008) Every invariant submanifold of a non-Sasakian contact metric (κ,μ) -

space is totally geodesic.

A submanifold M' of a contact metric manifold $(M, \varphi, \xi, \eta, g)$ is said to be invariant if $\varphi(T_xM') \subset T_xM'$.

Remark

The same result does not hold, in general, for Sasakian manifolds, for which one has the following well-known result:

An invariant submanifold of a Sasakian manifold is totally geodesic provided that the second fundamental form of the immersion is covariantly constant (Kon, 1973).

Pang provided a classification of Legendre foliations based on the bilinear symmetric form

$$\Pi_{\mathcal{F}}(X,X'):=-(\mathcal{L}_{X}\mathcal{L}_{X'}\eta)(\xi).$$

Pang provided a classification of Legendre foliations based on the bilinear symmetric form

$$\Pi_{\mathcal{F}}(X,X'):=-(\mathcal{L}_{X}\mathcal{L}_{X'}\eta)(\xi).$$

A Legendre foliation \mathcal{F} is called

- flat is $\Pi_{\mathcal{F}} \equiv 0$ or, equivalently, $[\xi,X] \in \Gamma(T\mathcal{F})$ for all $X \in \Gamma(T\mathcal{F})$
- **degenerate** if $\Pi_{\mathcal{F}}$ is degenerate
- non-degenerate if $\Pi_{\mathcal{F}}$ is non-degenerate
- positive (negative) definite if $\Pi_{\mathcal{F}}$ is positive (negative) definite

Pang provided a classification of Legendre foliations based on the bilinear symmetric form

$$\Pi_{\mathcal{F}}(X,X') := -(\mathcal{L}_X \mathcal{L}_{X'} \eta)(\xi).$$

A Legendre foliation \mathcal{F} is called

- flat is $\Pi_{\mathcal{F}} \equiv 0$ or, equivalently, $[\xi,X] \in \Gamma(T\mathcal{F})$ for all $X \in \Gamma(T\mathcal{F})$
- **degenerate** if $\Pi_{\mathcal{F}}$ is degenerate
- non-degenerate if $\Pi_{\mathcal{F}}$ is non-degenerate
- positive (negative) definite if $\Pi_{\mathcal{F}}$ is positive (negative) definite

When \mathcal{F} is non-degenerate, Libermann defined $\Lambda_{\mathcal{F}}: TM \to T\mathcal{F}$ such that

$$\Pi_{\mathcal{F}}(\Lambda_{\mathcal{F}}Z,X) = d\eta(Z,X)$$

for all $Z \in \Gamma(TM)$, $X \in \Gamma(T\mathcal{F})$. Then we extend $\Pi_{\mathcal{F}}$ to a symmetric bilinear form on TM by setting

$$\overline{\Pi}_{\mathcal{F}} := \begin{cases} \Pi_{\mathcal{F}}(Z, Z') & \text{if } Z, Z' \in \Gamma(T\mathcal{F}) \\ \Pi_{\mathcal{F}}(\Lambda_{\mathcal{F}}Z, \Lambda_{\mathcal{F}}Z') & \text{otherwise} \end{cases}$$

What about the canonical Legendre foliations of contact (κ,μ) -spaces?

What about the canonical Legendre foliations of contact (κ,μ) -spaces?

Theorem (C.M. - Di Terlizzi, 2008)

For the canonical bi-Legendrian structure $(\mathcal{D}(\lambda), \mathcal{D}(-\lambda))$ of a contact metric (κ, μ) -space one has

$$\Pi_{\mathcal{D}(\lambda)} = (2\sqrt{1-\kappa} - \mu + 2)g|_{\mathcal{D}(\lambda)\times\mathcal{D}(\lambda)}$$

$$\Pi_{\mathcal{D}(-\lambda)} = (-2\sqrt{1-\kappa} - \mu + 2)g|_{\mathcal{D}(-\lambda)\times\mathcal{D}(-\lambda)}$$

Hence $\nabla \Pi_{\mathcal{D}(\lambda)} = \nabla \Pi_{\mathcal{D}(-\lambda)} = 0$, and only one among the following cases occurs:

(I)	Both $\mathcal{D}(\lambda)$ and $\mathcal{D}(-\lambda)$ are positive definite	$I_{\mathcal{M}} > 1$
(II)	$\mathcal{D}(\lambda)$ is positive def. and $\mathcal{D}(-\lambda)$ is negative def.	$-1 < I_M < 1$
(III)	Both $\mathcal{D}(\lambda)$ and $\mathcal{D}(-\lambda)$ are negative definite	$I_M < -1$
(IV)	$\mathcal{D}(\lambda)$ is positive definite and $\mathcal{D}(-\lambda)$ is flat	$I_{\mathcal{M}} = 1$
(V)	$\mathcal{D}(\lambda)$ is flat and $\mathcal{D}(-\lambda)$ is negative definite	$I_{\mathcal{M}} = -1$

A well-known problem in contact geometry ...

A well-known problem in contact geometry ...

... given a contact manifold (M,η) , to find a Sasakian structure compatible with η

A well-known problem in contact geometry ...

... given a contact manifold (M,η) , to find a Sasakian structure compatible with η

... or to find conditions ensuring the existence of a Sasakian structure compatible with η

A well-known problem in contact geometry ...

... given a contact manifold (M,η) , to find a Sasakian structure compatible with η

... or to find conditions ensuring the existence of a Sasakian structure compatible with η

We generalize ...

A well-known problem in contact geometry ...

... given a contact manifold (M,η) , to find a Sasakian structure compatible with η

... or to find conditions ensuring the existence of a Sasakian structure compatible with η

We generalize ...

Question

Let (M,η) be a contact manifold. Does M admit a contact metric (κ,μ) -structure compatible with η ?

Which assumptions ensure the existence of a compatible contact metric (κ,μ) -structure?

Theorem (C.M.)

Let (M,η) be a contact manifold endowed with a bi-Legendrian structure $(\mathcal{F}_1,\mathcal{F}_2)$ such that $\nabla^{bl}\Pi_{\mathcal{F}_1} = \nabla^{bl}\Pi_{\mathcal{F}_2} = 0$. Assume that one of the following conditions holds:

- (I) \mathcal{F}_1 and \mathcal{F}_2 are positive definite and there exist a,b>0 such that $\overline{\Pi}_{\mathcal{F}_1}=ab\overline{\Pi}_{\mathcal{F}_2}$ on $T\mathcal{F}_1$ and $\overline{\Pi}_{\mathcal{F}_2}=ab\overline{\Pi}_{\mathcal{F}_1}$ on $T\mathcal{F}_2$;
- (II) \mathcal{F}_1 is positive definite, \mathcal{F}_2 negative definite and there exist a>0, b<0 such that $\overline{\Pi}_{\mathcal{F}_1}=ab\overline{\Pi}_{\mathcal{F}_2}$ on $T\mathcal{F}_1$ and $\overline{\Pi}_{\mathcal{F}_2}=ab\overline{\Pi}_{\mathcal{F}_1}$ on $T\mathcal{F}_2$;
- (III) \mathcal{F}_1 and \mathcal{F}_2 are negative definite and there exist a,b < 0 such that $\overline{\Pi}_{\mathcal{F}_1} = ab\overline{\Pi}_{\mathcal{F}_2}$ on $T\mathcal{F}_1$ and $\overline{\Pi}_{\mathcal{F}_2} = ab\overline{\Pi}_{\mathcal{F}_1}$ on $T\mathcal{F}_2$.

Then (M,η) admits a compatible contact metric structure (φ,ξ,η,g) such that

- (i) if a = b then $(M, \varphi, \xi, \eta, g)$ is Sasakian,
- (ii) if $a \neq b$ then $(M, \varphi, \xi, \eta, g)$ is a contact metric (κ, μ) -space with $\kappa = 1 \frac{1}{16}(a b)^2$, $\mu = 2 \frac{1}{2}(a + b)$.

Theorem (C.M.)

Let (M,η) be a contact manifold endowed with a bi-Legendrian structure $(\mathcal{F}_1,\mathcal{F}_2)$. Assume that one of the following conditions holds:

- (IV) \mathcal{F}_1 is positive definite, $\nabla^{bl} \Pi_{\mathcal{F}_1} = 0$ and \mathcal{F}_2 is flat;
- (V) \mathcal{F}_1 is flat, \mathcal{F}_2 is negative definite and $\nabla^{bl} \Pi_{\mathcal{F}_2} = 0$.

Then

- for each $0 < c \le 4$ in the case (IV)
- for each $-4 \le c < 0$ in the case (V)

 (M,η) admits a compatible contact metric (κ,μ) -structure, where

$$\kappa = 1 - c^2/16$$
, $\mu = 2(1 - c/4)$.

Existence of contact metric (κ,μ) -structures

Corollary 1

Any contact metric (κ,μ) -space such that $|I_M|>1$ admits a compatible Sasakian structure.

Consequently the Betti numbers b_i , $1 \le i \le 2n$, of a compact contact metric (κ,μ) -space with $|I_M|>1$ are even.

Existence of contact metric (κ,μ) -structures

Corollary 1

Any contact metric (κ,μ) -space such that $|I_M|>1$ admits a compatible Sasakian structure.

Consequently the Betti numbers b_i , $1 \le i \le 2n$, of a compact contact metric (κ,μ) -space with $|I_M|>1$ are even.

Corollary 2

Any contact metric (κ,μ) -space such that $|I_M|<1$ admits a compatible Tanaka-Webster parallel structure.

A Tanaka-Webster parallel structure is a contact metric structure (φ, ξ, η, g) such that the Tanaka-Webster connection $\hat{\nabla}$ satisfies

$$\hat{\nabla}\hat{T}=0$$
, $\hat{\nabla}\hat{R}=0$.

E. Boeckx, J.T. Cho, *Pseudo-Hermitian symmetries*, Israel J. Math. 2008

Let (M,η) be a contact manifold. Then if there exist

- lacksquare a (1,1)-tensor \overline{arphi}
- lacksquare a semi-Riemannian metric \overline{g}

such that

- $ightharpoons \overline{\varphi}^2 = I \eta \otimes \xi,$
- $ightharpoonup \overline{\varphi}$ induces an almost paracomplex structure on $\mathcal{D} = \ker(\eta)$,

An almost paracomplex structure on a 2n-dim. manifold is a (1,1) tensor $J \neq I$ such that

$$J^2 = I$$
, dim $(T^+) = n = dim(T^-)$,

where T^+ , T^- are the eigendistributions corresponding to 1 and -1

we say that $(\overline{\varphi}, \xi, \eta, \overline{g})$ is a paracontact metric structure.

A paracontact metric structure is called:

- integrable if, for each $X,Y \in \Gamma(\mathcal{D})$, $N_{\overline{\varphi}}(X,Y) \in \Gamma(\mathbb{R}\xi)$, where $N_{\overline{\varphi}}(X,Y) := \overline{\varphi}^2[X,Y] + [\overline{\varphi}X,\overline{\varphi}Y] \overline{\varphi}[\overline{\varphi}X,Y] \overline{\varphi}[X,\overline{\varphi}Y] 2d\eta(X,Y)\xi$
- K-paracontact if ξ is Killing (or, equivalently, the tensor field $\overline{h} := \frac{1}{2} \mathcal{L}_{\xi} \overline{\varphi}$ vanishes identically)
- para-Sasakian manifolds if $N_{\overline{\omega}} \equiv 0$.

para-Sasakian \Rightarrow K-paracontact

Theorem (Zamkovoy, Ann. Glob. Anal. Geom. 2009)

On a paracontact metric manifold there exists a unique connection ∇^{pc} , called canonical paracontact connection, satisfying the following conditions:

(i)
$$\nabla^{pc}\eta = 0$$
, $\nabla^{pc}\xi = 0$, $\nabla^{pc}\overline{g} = 0$,

(ii)
$$(\nabla_X^{pc}\overline{\varphi})Y = (\nabla_X^{\overline{g}}\overline{\varphi})Y - \eta(Y)(X - \overline{h}X) + \overline{g}(X - \overline{h}X,Y)\xi,$$

(iii)
$$T^{pc}(\xi, \overline{\varphi} Y) = -\overline{\varphi} T^{pc}(\xi, Y),$$

(iv)
$$T^{pc}(X,Y) = 2d\eta(X,Y)\xi$$
 on $\mathcal{D} = \ker(\eta)$.

Moreover, the paracontact metric manifold is integrable if and only if $\nabla^{pc}\overline{\varphi}=0$.

What is the link between paracontact geometry and the theory of contact metric (κ,μ) -spaces?

What is the link between paracontact geometry and the theory of contact metric (κ,μ) -spaces?

Theorem (C.M. 2009)

There is a biunivocal correspondence

 Ψ : {almost bi-Legendrian str.} \rightarrow {paracontact metric str.}

between almost bi-Legendrian structures and paracontact metric structures on the same contact manifold (M,η) .

What is the link between paracontact geometry and the theory of contact metric (κ,μ) -spaces?

Theorem (C.M. 2009)

There is a biunivocal correspondence

```
\Psi: {almost bi-Legendrian str.} \rightarrow {paracontact metric str.}
```

between almost bi-Legendrian structures and paracontact metric structures on the same contact manifold (M,η) .

```
\Psi(\{\text{flat almost bi-Legendrian str.}\}) = \{\text{K-paracontact str.}\}
```

What is the link between paracontact geometry and the theory of contact metric (κ,μ) -spaces?

```
Theorem (C.M. 2009)
```

There is a biunivocal correspondence

```
\Psi: {almost bi-Legendrian str.} \rightarrow {paracontact metric str.}
```

between almost bi-Legendrian structures and paracontact metric structures on the same contact manifold (M,η) .

```
\Psi(\{\text{flat almost bi-Legendrian str.}\}) = \{\text{K-paracontact str.}\}
```

 $\Psi(\{bi-Legendrian str.\}) = \{integrable paracontact metric str.\}$

What is the link between paracontact geometry and the theory of contact metric (κ,μ) -spaces?

```
Theorem (C.M. 2009)
```

There is a biunivocal correspondence

```
\Psi: {almost bi-Legendrian str.} \rightarrow {paracontact metric str.}
```

between almost bi-Legendrian structures and paracontact metric structures on the same contact manifold (M,η) .

```
\Psi(\{\text{flat almost bi-Legendrian str.}\}) = \{\text{K-paracontact str.}\}

\Psi(\{\text{bi-Legendrian str.}\}) = \{\text{integrable paracontact metric str.}\}

\Psi(\{\text{flat bi-Legendrian str.}\}) = \{\text{para-Sasakian str.}\}
```

What is the link between paracontact geometry and the theory of contact metric (κ,μ) -spaces?

Theorem (C.M. 2009)

There is a biunivocal correspondence

 Ψ : {almost bi-Legendrian str.} \rightarrow {paracontact metric str.}

between almost bi-Legendrian structures and paracontact metric structures on the same contact manifold (M,η) .

```
\Psi(\{\text{flat almost bi-Legendrian str.}\}) = \{\text{K-paracontact str.}\}

\Psi(\{\text{bi-Legendrian str.}\}) = \{\text{integrable paracontact metric str.}\}

\Psi(\{\text{flat bi-Legendrian str.}\}) = \{\text{para-Sasakian str.}\}
```

Moreover,

$$\nabla^{bI} = \nabla^{pc}$$
.

Let $(M, \varphi, \xi, \eta, g)$ be a contact metric (κ, μ) -space and $(\mathcal{D}(\lambda), \mathcal{D}(-\lambda))$ the bi-Legendrian structure associated to $(M, \varphi, \xi, \eta, g)$.

Then $\Psi(\mathcal{D}(\lambda), \mathcal{D}(-\lambda))$ is called the canonical paracontact metric structure associated to $(M, \varphi, \xi, \eta, g)$.

Question

 $\Psi(\mathcal{D}(\lambda), \mathcal{D}(-\lambda)) = ????$

Theorem (C.M. - Di Terlizzi)

Let $(M, \varphi, \xi, \eta, g)$ be a non-Sasakian contact metric (κ, μ) -space. Then the canonical paracontact metric structure associated to $(M, \varphi, \xi, \eta, g)$ is given by

$$\overline{\varphi} = \frac{1}{2\sqrt{1-\kappa}} \mathcal{L}_{\xi} \varphi, \quad \overline{g} = d\eta(\cdot, \overline{\varphi}) + \eta \otimes \eta$$

Moreover, $(\overline{\varphi}, \xi, \eta, \overline{g})$ satisfies a " $(\overline{\kappa}, \overline{\mu})$ -nullity condition"

$$R^{\overline{g}}(X,Y)\xi = \overline{\kappa}(\eta(Y)X - \eta(X)Y) + \overline{\mu}(\eta(Y)\overline{h}X - \eta(X)\overline{h}Y)$$

where

$$\overline{\kappa} = \kappa - 2 + (1 - \mu/2)^2, \quad \overline{\mu} = 2.$$

Furthermore

.... the canonical paracontact structure $(\overline{\varphi}, \xi, \eta, \overline{g})$ induces on (M, η)

• If $|I_M| < 1$ a (new) contact metric (κ_1, μ_1) -structure (ϕ_1, ξ, η, g_1)

$$\varphi_1 = \frac{1}{2\sqrt{1-\kappa-(1-\mu/2)^2}} \mathcal{L}_{\xi}\overline{\varphi}, \qquad g_1 = -d\eta(\cdot,\varphi_1) + \eta\otimes\eta,$$

with

$$\kappa_1 = \kappa + (1 - \mu/2)^2, \quad \mu_1 = 2.$$

.... the canonical paracontact structure $(\overline{\varphi}, \xi, \eta, \overline{g})$ induces on (M, η)

• If $|I_M| < 1$ a (new) contact metric (κ_1, μ_1) -structure (ϕ_1, ξ, η, g_1)

$$\varphi_1 = \frac{1}{2\sqrt{1-\kappa-(1-\mu/2)^2}} \mathcal{L}_{\xi}\overline{\varphi}, \qquad g_1 = -d\eta(\cdot,\varphi_1) + \eta\otimes\eta,$$

with

$$\kappa_1 = \kappa + (1 - \mu/2)^2, \quad \mu_1 = 2.$$

• If $|I_M| > 1$ a (new) paracontact metric structure (ϕ_1, ξ, η, g_1)

$$\varphi_1 = \frac{1}{2\sqrt{(1-\mu/2)^2-(1-\kappa)}} \mathcal{L}_{\xi}\overline{\varphi}, \quad g_1 = d\eta(\cdot,\varphi_1) + \eta\otimes\eta,$$

satisfying a (κ_1, μ_1) -nullity condition with

$$\kappa_1 = \kappa - 2 + (1 - \mu/2)^2, \quad \mu_1 = 2.$$

References

- **1.** B. Cappelletti Montano, Some remarks on the generalized Tanaka-Webster connection of a contact metric manifold, Rocky Mountain J. Math., in press
- **2.** B. Cappelletti Montano, *Bi-Legendrian structures and paracontact geometry*, Int. J. Geom. Meth. Mod. Phys., in press
- **3.** B. Cappelletti Montano, L. Di Terlizzi, *Contact metric* (κ,μ)-spaces as bi-Legendrian manifolds, Bull. Austral. Math. Soc. 77 (2008), 373–386
- **4.** B. Cappelletti Montano, L. Di Terlizzi, M.M. Tripathi, *Invariant subma-nifolds of contact* (κ,μ) -manifolds, Glasgow Math. J. 50 (2008), 499–507
- **5.** B. Cappelletti Montano, *The structure of contact metric* (κ,μ) -spaces Part I, submitted.
- **6.** B. Cappelletti Montano, L. Di Terlizzi *The structure of contact metric* (κ,μ) -spaces Part II, submitted.