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SU(2)-structures in 5-dimensions

Definition

An SU(2)-structure (η, ω1, ω2, ω3) on N5 is given by a 1-form η
and by three 2-forms ωi such that

ωi ∧ ωj = δijv , v ∧ η 6= 0,
iXω3 = iYω1 ⇒ ω2(X ,Y ) ≥ 0,

where iX denotes the contraction by X .

Remark

The pair (η, ω3) defines a U(2)-structure or an almost contact
metric structure on N5, i.e. (η, ξ, ϕ,g) such that

η(ξ) = 1, ϕ2 = −Id + ξ ⊗ η,
g(ϕX , ϕY ) = g(X ,Y )− η(X )η(Y ).
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Sasakian structures

An almost contact metric structure (η, ξ, ϕ,g) on N2n+1 is said
contact metric if 2g(X , ϕY ) = dη(X ,Y ). On N5 the pair (η, ω3)
defines a contact metric structure if dη = −2ω3.

(η, ξ, ϕ,g) is called normal if

Nϕ(X ,Y ) = ϕ2[X ,Y ] + [ϕX , ϕY ]− ϕ[ϕX ,Y ]− ϕ[X , ϕY ],

satisfies the condition Nϕ = −dη ⊗ ξ.

Definition (Sasaki)

A Sasakian structure on N2n+1 is a normal contact metric
structure.

Theorem (Boyer, Galicki)

A Riemannian manifold (N2n+1,g) has a compatible Sasakian
structure if and only if the cone N2n+1 × R+ equipped with the
conic metric g̃ = dr2 + r2g is Kähler.
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Sasaki-Einstein structures

Example

Sasaki-Einstein structure on N5

dη = −2ω3, dω1 = 3η ∧ ω2, dω2 = −3η ∧ ω1.

On S2 × S3 there exist an infinite family of explicit
Sasaki-Einstein metrics [Gauntlett, Martelli, Sparks, Waldram,
...].

Definition (Boyer, Galicki)

(N2n+1,g, η) is Sasaki-Einstein if the conic metric g̃ = dr2 + r2g
on the symplectic cone N2n+1 × R+ is Kähler and Ricci- flat
(CY).

•N2n+1 × R+ has an integrable SU(n + 1)-structure, i.e. an
Hermitian structure (J, g̃), with F = d(r2η), and a
(n + 1,0)-form Ψ = Ψ+ + iΨ− of lenght 1 such that
dF = dΨ = 0 ⇒ g̃ has holonomy in SU(n + 1).
• N2n+1 has a real Killing spinor, i.e. the restriction of a parallel
spinor on the Riemannian cone [Friedrich, Kath].
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Remark

An SU(2)-structure P on N5 induces a spin structure on N5

and P extends to PSpin(5) = P ×SU(2) Spin(5).

The spinor bundle is P ×SU(2) Σ, where Σ ∼= C4 and Spin(5)
acts transitively on the sphere in Σ with stabilizer SU(2) in a
fixed unit spinor u0 ∈ Σ.

Then the SU(2)-structures are in one-to-one correspondence
with the pairs (PSpin(5), ψ), with ψ a unit spinor such that
ψ = [u,u0] for any local section u of P, i.e.
ψ ∈ P ×Spin(5) (Spin(5)u0).
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Hypo structures

Definition

An SU(2)-structure on N5 is hypo if

dω3 = 0, d(η ∧ ω1) = 0, d(η ∧ ω2) = 0.

Proposition (Conti, Salamon)

An SU(2)-structure P on N5 is hypo if and only if the spinor ψ
(defined by P) is generalized Killing (in the sense of Bär,
Gauduchon, Moroianu) , i.e.

∇Xψ =
1
2

O(X ) · ψ,

where O is a section of Sym(TN5) and · is the Clifford
multiplication.

If N5 is simply connected and Sasaki-Einstein, then O = ±Id
[Friedrich, Kath].
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• Any oriented hypersurface N5 of (M6,F ,Ψ) with an integrable
SU(3)-structure (F ,Ψ) has in a natural way a hypo structure.
The generalized Killing spinor ψ on N5 is the restriction of the
parallel spinor on M6 and O is just given by the Weingarten
operator. If ψ is the restriction of a parallel spinor over the
Riemannian cone then O is a constant multiple of the identity.

• Nilmanifolds cannot admit Sasaki-Einstein structures but they
can admit hypo structures.

Theorem (Conti, Salamon)

The nilpotent Lie algebras admitting a hypo structure are

(0,0,12,13,14), (0,0,0,12,13 + 24),
(0,0,0,12,13), (0,0,0,0,12 + 34),
(0,0,0,0,12), (0,0,0,0,0).
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• Nilmanifolds cannot admit Sasaki-Einstein structures but they
can admit hypo structures.

Theorem (Conti, Salamon)

The nilpotent Lie algebras admitting a hypo structure are

(0,0,12,13,14), (0,0,0,12,13 + 24),
(0,0,0,12,13), (0,0,0,0,12 + 34),
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Hypo evolution equations

Theorem (Conti, Salamon)

A real analytic hypo structure (η, ωi) on N5 determines an
integrable SU(3)-structure on N5 × I, with I some open
interval, if (η, ωi) belongs to a one-parameter family of hypo
structures (η(t), ωi(t)) which satisfy the evolution equations

∂t ω3(t) = −d̂η(t),
∂t(ω2(t) ∧ η(t)) = d̂ω1(t),
∂t(ω1(t) ∧ η(t)) = −d̂ω2(t).

The SU(3)-structure on N5 × I is given by

F = ω3(t) + η(t) ∧ dt ,
Ψ = (ω1(t) + iω2(t)) ∧ (η(t) + idt).
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η-Einstein structures

Definition

An almost contact metric manifold (N2n+1, η, ξ, ϕ,g) is
η-Einstein if there exist a,b ∈ C∞(N2n+1) such that

Ricg(X ,Y ) = a g(X ,Y ) + b η(X )η(Y ),

where scalg = a(2n + 1) + b and Ricg(ξ, ξ) = a + b.

If b = 0, a Sasaki η-Einstein is Sasaki- Einstein.

Theorem (Conti, Salamon)

A hypo structure on N5 is η-Einstein ⇔ it is Sasakian.

For a Sasaki η-Einstein structure on N5 we have

dη = −2ω3, dω1 = λω2 ∧ η, dω2 = −λω1 ∧ η

and for the associated generalized Killing spinor

O = a Id + b η ⊗ ξ,

with a and b constants [Friedrich, Kim].
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Hypo-contact structures

In general, for a hypo structure the 1-form η is not a contact
form.
A hypo structure is contact if and only if dη = −2ω3.

Problem

Find examples of manifolds N5 with a hypo-contact structure.

Examples

• Sasaki η-Einstein manifolds.

An example is given by the nilmanifold associated to

(0,0,0,0,12 + 34) ∼= h5.

• Contact Calabi-Yau structures, defined by the equations
dη = −2ω3, dω1 = dω2 = 0 [Tomassini, Vezzoni].
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Classification in the hypo-contact case

Theorem (De Andres, Fernandez, –, Ugarte)

A 5-dimensional solvable Lie algebra g has a hypo-contact
structure ⇔ g is isomorphic to one of the following:

g1 : [e1, e4] = [e2, e3] = e5 (nilpotent and η-Einstein);

g2 : 1
2 [e1, e5] = [e2, e3] = e1, [e2, e5] = e2,

[e3, e5] = e3, [e4, e5] = −3e4;

g3 : 1
2 [e1, e4] = [e2, e3] = e1, [e2, e4] = [e3, e5] = e2,

[e2, e5] = −[e3, e4] = −e3 (η-Einstein);

g4 : [e1, e4] = e1, [e2, e5] = e2,

[e3, e4] = [e3, e5] = −e3;

g5 : [e1, e5] = [e2, e4] = e1,

[e3, e4] = e2, [e3, e5] = −e3, [e4, e5] = e4.

⇒ Description of the 5-dimensional solvable Lie algebras
which admit a hypo-contact structure.
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Consequences

• All the 5-dimensional solvable Lie algebras with a
hypo-contact structure are irreducible.

• g1 ∼= h5 is the unique nilpotent Lie algebra with a
hypo-contact structure.

• The Lie algebras of the classification cannot be Einstein
since they are contact [Diatta].

• The unique 5-dimensional solvable Lie algebras with a
η-Einstein hypo-contact structure are g1 and g3.

• If g is such that [g, g] 6= g and admits a contact Calabi-Yau
structure then g is isomorphic to g1.
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New metrics with holonomy SU(3)

Studying the Conti-Salamon evolution equations for the left-invariant
hypo-contact structures on the simply-connected solvable Lie groups
Gi (1 ≤ i ≤ 5) with Lie algebra gi :

Theorem (De Andres, Fernandez, –, Ugarte)

Any left-invariant hypo-contact structure on any Gi (1 ≤ i ≤ 5)
determines a Riemannian metric with holonomy SU(3) on
Gi × I, for some open interval I.

For the nilpotent Lie group G1 we get the metric found by
Gibbons, Lü, Pope and Stelle.



Hypo contact

Anna Fino

SU(2)-structures in
5-dimensions
Sasakian structures

Sasaki-Einstein structures

Hypo structures

η-Einstein structures

Hypo-contact
structures
Classification

Consequences

New metrics with holonomy
SU(3)

Sasakian structures on
Lie groups
3-dimensional Lie groups

General results

5-dimensional Lie groups

SU(n)-structures in
(2n + 1)-dimensions
Generalized Killing spinors

Contact SU(n)-structures

Examples

Contact reduction

13

New metrics with holonomy SU(3)

Studying the Conti-Salamon evolution equations for the left-invariant
hypo-contact structures on the simply-connected solvable Lie groups
Gi (1 ≤ i ≤ 5) with Lie algebra gi :

Theorem (De Andres, Fernandez, –, Ugarte)

Any left-invariant hypo-contact structure on any Gi (1 ≤ i ≤ 5)
determines a Riemannian metric with holonomy SU(3) on
Gi × I, for some open interval I.

For the nilpotent Lie group G1 we get the metric found by
Gibbons, Lü, Pope and Stelle.



Hypo contact

Anna Fino

SU(2)-structures in
5-dimensions
Sasakian structures

Sasaki-Einstein structures

Hypo structures

η-Einstein structures

Hypo-contact
structures
Classification

Consequences

New metrics with holonomy
SU(3)

Sasakian structures on
Lie groups
3-dimensional Lie groups

General results

5-dimensional Lie groups

SU(n)-structures in
(2n + 1)-dimensions
Generalized Killing spinors

Contact SU(n)-structures

Examples

Contact reduction

13

New metrics with holonomy SU(3)

Studying the Conti-Salamon evolution equations for the left-invariant
hypo-contact structures on the simply-connected solvable Lie groups
Gi (1 ≤ i ≤ 5) with Lie algebra gi :

Theorem (De Andres, Fernandez, –, Ugarte)

Any left-invariant hypo-contact structure on any Gi (1 ≤ i ≤ 5)
determines a Riemannian metric with holonomy SU(3) on
Gi × I, for some open interval I.

For the nilpotent Lie group G1 we get the metric found by
Gibbons, Lü, Pope and Stelle.



Hypo contact

Anna Fino

SU(2)-structures in
5-dimensions
Sasakian structures

Sasaki-Einstein structures

Hypo structures

η-Einstein structures

Hypo-contact
structures
Classification

Consequences

New metrics with holonomy
SU(3)

Sasakian structures on
Lie groups
3-dimensional Lie groups

General results

5-dimensional Lie groups

SU(n)-structures in
(2n + 1)-dimensions
Generalized Killing spinors

Contact SU(n)-structures

Examples

Contact reduction

13

New metrics with holonomy SU(3)

Studying the Conti-Salamon evolution equations for the left-invariant
hypo-contact structures on the simply-connected solvable Lie groups
Gi (1 ≤ i ≤ 5) with Lie algebra gi :

Theorem (De Andres, Fernandez, –, Ugarte)

Any left-invariant hypo-contact structure on any Gi (1 ≤ i ≤ 5)
determines a Riemannian metric with holonomy SU(3) on
Gi × I, for some open interval I.

For the nilpotent Lie group G1 we get the metric found by
Gibbons, Lü, Pope and Stelle.



Hypo contact

Anna Fino

SU(2)-structures in
5-dimensions
Sasakian structures

Sasaki-Einstein structures

Hypo structures

η-Einstein structures

Hypo-contact
structures
Classification

Consequences

New metrics with holonomy
SU(3)

Sasakian structures on
Lie groups
3-dimensional Lie groups

General results

5-dimensional Lie groups

SU(n)-structures in
(2n + 1)-dimensions
Generalized Killing spinors

Contact SU(n)-structures

Examples

Contact reduction

14

A Sasakian manifold (N2n+1, η, ξ, ϕ,g) is called homogeneous
Sasakian if (η, ξ, ϕ,g) are invariant under the group of
isometries acting transitively on the manifold.

Theorem (Perrone)

A homogeneous 3-dimensional Sasakian manifold has to be a
Lie group endowed with a left-invariant Sasakian structure.

Theorem (Geiges, Cho-Chung)

Any 3-dimensional Sasakian Lie algebra is isomorphic to one
of the following: su(2), sl(2,R), aff(R)× R, h3, where aff(R) is
the Lie algebra of the Lie group of affine motions of R.

Problem

Classify 5-dimensional Lie groups with a left-invariant Sasakian
structure.
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A Sasakian manifold (N2n+1, η, ξ, ϕ,g) is called homogeneous
Sasakian if (η, ξ, ϕ,g) are invariant under the group of
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General results

Proposition (Andrada,–, Vezzoni)

Let (g, η, ξ) be a contact Lie algebra. Then dim z(g) ≤ 1.

Proposition (Andrada,–, Vezzoni)

Let (g, η, ξ, ϕ,g) be a Sasakian Lie algebra.
• If dim z(g) = 1, then z(g) = R ξ and (ker η, θ, ϕ,g) is a Kähler
Lie algebra, where θ is the component of the Lie bracket of g
on ker η.
• If z(g) = {0}, then adξϕ = ϕ adξ, and one has the orthogonal
decomposition

g = ker adξ ⊕ (Im adξ).

If g is a (2n + 1)-dimensional Sasakian nilpotent Lie algebra,
then g ∼= h2n+1.
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Sasakian 5-dimensional Lie algebras

Theorem (Andrada, –, Vezzoni)

Let g be a 5-dimensional Sasakian Lie algebra. Then
1 if z(g) 6= {0}, g is solvable with dim z(g) = 1 and the

quotient g/z(g) carries an induced Kähler structure;
2 if z(g) = {0}, g is isomorphic to sl(2,R)× aff(R), or

su(2)× aff(R), or g3 ∼= R2 n h3.

• g is either solvable or a direct sum.
• A 5-dimensional Sasakian solvmanifold is either a compact
quotient of H5 or of R n (H3 × R) with structure equations

(0,−13,12,0,14 + 23).

• A 5-dimensional Sasakian η-Einstein Lie algebra is
isomorphic either to g1 ∼= h5, or g3 or to sl(2,R)× aff(R).
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SU(n)-structures in (2n + 1)-dimensions

Definition

An SU(n)-structure (η, φ,Ω) on N2n+1 is determined by the
forms

η = e2n+1, φ = e1 ∧ e2 + . . .+ e2n−1 ∧ e2n,
Ω = (e1 + ie2) ∧ . . . ∧ (e2n−1 + ie2n).

As for the case of SU(2)-structures in dimensions 5 we have
that an SU(n)-structure PSU on N2n+1 induces a spin structure
PSpin and if we fix a unit element u0 ∈ Σ = (C2)⊗2n we have that

PSU = {u ∈ PSpin | [u,u0] = ψ}.

The pair (η, φ) defines a U(n)-structure or an almost contact
metric structure on N2n+1.
The U(n)-structure is a contact metric structure if dη = −2φ.
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Generalized Killing spinors

Example

N2n+1 ↪→ M2n+2 (with holonomy in SU(n + 1)).
Then the restriction of the parallel spinor defines an
SU(n)-structure (η, φ,Ω) where the forms φ and Ω ∧ η are the
pull-back of the Kähler form and the complex volume form on
the CY manifold M2n+2.

Proposition (Conti, –)

Let N2n+1 be a real analytic manifold with a real analytc
SU(n)-structure PSU defined by (η, φ,Ω). The following are
equivalent:

1 The spinor ψ associated to PSU is a generalized Killing
spinor, i.e. ∇Xψ = 1

2 O(X ) · ψ.
2 dφ = 0 and d(η ∧ Ω) = 0.
3 A neighbourhood of M × {0} in M × R has a CY structure

which restricts to PSU .
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The assumption of real analycity is certainly necessary to
prove that (1) or (2) implies (3), but the fact that (1) implies (2)
does not require this hypothesis.
(2) ⇒ (3) can be described in terms of evolution equations in
the sense of Hitchin. Indeed, suppose that there is a family
(η(t), φ(t),Ω(t)) of SU(n)-structures on N2n+1, with t in some
interval I, then the forms

η(t) ∧ dt + φ(t), (η(t) + idt) ∧ Ω(t)

define a CY structure on N2n+1 × I if and only if (2) holds for
t = 0 and the evolution equations

∂

∂t
φ(t) = −d̂η(t),

∂

∂t
(η(t) ∧ Ω(t)) = i d̂Ω(t)

are satisfied.
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Contact SU(n)-structures

Definition

An SU(n)-structure (η, φ,Ω) on N2n+1 is contact if dη = −2φ.

In this case N2n+1 is contact metric with contact form η and we
may consider the symplectic cone over (N2n+1, η) as the
symplectic manifold (N2n+1 × R+,− 1

2 d(r2η)).

If N2n+1 is Sasaki-Einstein, we know that the symplectic cone
is CY with the cone metric r2g + dr2 and the Kähler form equal
to the conical symplectic form.

Problem

If one thinks the form φ as the pullback to N2n+1 ∼= N2n+1 × {1}
of the conical symplectic form, which types of contact
SU(n)-structures give rise to a CY symplectic cone but not
necessarily with respect to the cone metric?



Hypo contact

Anna Fino

SU(2)-structures in
5-dimensions
Sasakian structures

Sasaki-Einstein structures

Hypo structures

η-Einstein structures

Hypo-contact
structures
Classification

Consequences

New metrics with holonomy
SU(3)

Sasakian structures on
Lie groups
3-dimensional Lie groups

General results

5-dimensional Lie groups

SU(n)-structures in
(2n + 1)-dimensions
Generalized Killing spinors

Contact SU(n)-structures

Examples

Contact reduction

20

Contact SU(n)-structures

Definition

An SU(n)-structure (η, φ,Ω) on N2n+1 is contact if dη = −2φ.

In this case N2n+1 is contact metric with contact form η and we
may consider the symplectic cone over (N2n+1, η) as the
symplectic manifold (N2n+1 × R+,− 1

2 d(r2η)).

If N2n+1 is Sasaki-Einstein, we know that the symplectic cone
is CY with the cone metric r2g + dr2 and the Kähler form equal
to the conical symplectic form.

Problem

If one thinks the form φ as the pullback to N2n+1 ∼= N2n+1 × {1}
of the conical symplectic form, which types of contact
SU(n)-structures give rise to a CY symplectic cone but not
necessarily with respect to the cone metric?



Hypo contact

Anna Fino

SU(2)-structures in
5-dimensions
Sasakian structures

Sasaki-Einstein structures

Hypo structures

η-Einstein structures

Hypo-contact
structures
Classification

Consequences

New metrics with holonomy
SU(3)

Sasakian structures on
Lie groups
3-dimensional Lie groups

General results

5-dimensional Lie groups

SU(n)-structures in
(2n + 1)-dimensions
Generalized Killing spinors

Contact SU(n)-structures

Examples

Contact reduction

20

Contact SU(n)-structures

Definition

An SU(n)-structure (η, φ,Ω) on N2n+1 is contact if dη = −2φ.

In this case N2n+1 is contact metric with contact form η and we
may consider the symplectic cone over (N2n+1, η) as the
symplectic manifold (N2n+1 × R+,− 1

2 d(r2η)).

If N2n+1 is Sasaki-Einstein, we know that the symplectic cone
is CY with the cone metric r2g + dr2 and the Kähler form equal
to the conical symplectic form.

Problem

If one thinks the form φ as the pullback to N2n+1 ∼= N2n+1 × {1}
of the conical symplectic form, which types of contact
SU(n)-structures give rise to a CY symplectic cone but not
necessarily with respect to the cone metric?



Hypo contact

Anna Fino

SU(2)-structures in
5-dimensions
Sasakian structures

Sasaki-Einstein structures

Hypo structures

η-Einstein structures

Hypo-contact
structures
Classification

Consequences

New metrics with holonomy
SU(3)

Sasakian structures on
Lie groups
3-dimensional Lie groups

General results

5-dimensional Lie groups

SU(n)-structures in
(2n + 1)-dimensions
Generalized Killing spinors

Contact SU(n)-structures

Examples

Contact reduction

21

The answer is given by the following

Proposition (Conti, –)

Let N2n+1 be a real analytic manifold with a real analytc contact
SU(n)-structure PSU defined by (η, φ,Ω). The following are
equivalent:

1 The spinor ψ associated to PSU is generalized Killing, i.e.
∇Xψ = 1

2 O(X ) · ψ.
2 dη = −2φ and η ∧ dΩ = 0.
3 A neighbourhood of M × {1} in the symplectic cone

M × R+ has a CY metric which restricts to PSU .
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Examples

• 5-dimensional hypo-contact solvable Lie groups [De Andres,
Fernandez, –, Ugarte].
• The (2n + 1)-dimensional real Heisenberg Lie group H2n+1

dei = 0, i = 1, . . . ,2n,
de2n+1 = e1 ∧ e2 + . . .+ e2n−1 ∧ e2n.

• A two-parameter family of examples in the sphere bundle in
TCP2 [Conti].
• A 7-dimensional compact example, quotient of the Lie group
SU(2) n R4, which has a weakly integrable generalized
G2-structure [–, Tomassini].
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Proposition (Conti, –)

H: compact Lie group
ρ a representation of H on V .
Then H nρ V has a left-invariant contact structure if and only if
H nρ V is either SU(2) n R4 or U(1) n C.

Then, if H is compact, the example SU(2) n R4 is unique in
dimensions > 3.
If H is solvable we have

Proposition (Conti, –)

H : 3-dimensional solvable Lie group.
There exists H n R4 admitting a contact SU(3)-structure whose
associated spinor is generalized Killing if and only if the Lie
algebra of H is isomorphic to one of the following

(0,0,0), (0,±13,12),
(0,12,13), (0,0,13).
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Contact reduction

Let N2n+1 be a (2n + 1)-dimensional manifold endowed with a
contact metric structure (η, φ,g) and a spin structure
compatible with the metric g and the orientation.
We say that a spinor ψ on N2n+1 is compatible if

η · ψ = i2n+1ψ, φ · ψ = −niψ.

Suppose that S1 acts on N2n+1 preserving both metric and
contact form, so that the fundamental vector field X satisfies

LXη = 0 = LXφ.

and denote by t its norm.
The moment map is given by µ = η(X ).
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Assume that 0 is a regular value of µ and consider the
hypersurface ι : µ−1(0) → N2n+1.
Then the contact reduction is given by N2n+1//S1 = µ−1(0)/S1

[Geiges, Willett].
• The contact U(n)-structure on N2n+1 induces a contact
U(n − 1)-structure on N2n+1//S1.

Let ν be the unit normal vector field, dual to the 1-form it−1Xφ.
• The choice of an invariant compatible spinor ψ on N2n+1

determines a spinor

ψπ = ι∗ψ + iν · ι∗ψ.

on N2n+1//S1.
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Theorem (Conti, –)

N2n+1 with a contact U(n)-structure (g, η, φ) and a compatible
generalized Killing spinor ψ.
Suppose that S1 acts on N2n+1 preserving both structure and
spinor and acts freely on µ−1(0) with 0 regular value. Then the
induced spinor ψπ on N2n+1//S1 is generalized Killing if and
only if at each point of µ−1(0) we have

dt ∈ span < iXφ, η >,

where X is the fundamental vector field associated to the
S1-action, and t is the norm of X.

Example

If we apply the previous theorem to SU(2) n R4 we get a new
hypo-contact structure on S2 × T3.
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From a result by Grantcharov and Ornea the contact reduction
of a η-Einstein-Sasaki structure is Sasaki.

Corollary (Conti, –)

N2n+1 with an η-Einstein-Sasaki structure (g, η, φ, ψ), and let
S1 act on M preserving the structure in such a way that 0 is a
regular value for the moment map µ and S1 acts freely on
µ−1(0). Then the Sasaki quotient M//S1 is also η-Einstein if
and only if

dt ∈ span < iXφ, η > .
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From a result by Grantcharov and Ornea the contact reduction
of a η-Einstein-Sasaki structure is Sasaki.

Corollary (Conti, –)

N2n+1 with an η-Einstein-Sasaki structure (g, η, φ, ψ), and let
S1 act on M preserving the structure in such a way that 0 is a
regular value for the moment map µ and S1 acts freely on
µ−1(0). Then the Sasaki quotient M//S1 is also η-Einstein if
and only if

dt ∈ span < iXφ, η > .


