Hypo contact and Sasakian structures on Lie groups

"Workshop on CR and Sasakian Geometry", Luxembourg – 24 - 26 March 2008

> Anna Fino Dipartimento di Matematica Università di Torino

Hypo contact

Anna Fino

SU(2)-structures in 5-dimensions

Sasakian structures
Sasaki-Einstein structures
Hypo structures
7-Einstein structures

Hypo-contact structures

Classification
Consequences
New metrics with holonomy
SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions

Generalized Killing spinors
Contact SU(n)-structures
Examples
Contact reduction

An SU(2)-structure $(\eta, \omega_1, \omega_2, \omega_3)$ on N^5 is given by a 1-form η and by three 2-forms ω_i such that

$$\omega_i \wedge \omega_j = \delta_{ij} V, \ V \wedge \eta \neq 0, i_X \omega_3 = i_Y \omega_1 \Rightarrow \omega_2(X, Y) \geq 0,$$

where i_X denotes the contraction by X.

Remark

The pair (η, ω_3) defines a U(2)-structure or an almost contact metric structure on N^5 , i.e. (η, ξ, φ, g) such that

$$\begin{split} &\eta(\xi) = 1, \quad \varphi^2 = -\operatorname{Id} + \xi \otimes \eta, \\ &g(\varphi X, \varphi Y) = g(X, Y) - \eta(X) \eta(Y) \end{split}$$

SU(2)-structures in

Sasakian structures Sasaki-Einstein structures Hypo structures

η-Einstein structures Hypo-contact structures

Classification
Consequences
New metrics with holonomy
SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions

Contact SU(n)-structures Examples Contact reduction

UNIVERSITÀ

An SU(2)-structure $(\eta, \omega_1, \omega_2, \omega_3)$ on N^5 is given by a 1-form η and by three 2-forms ω_i such that

$$\omega_i \wedge \omega_j = \delta_{ij} V, \ V \wedge \eta \neq 0,$$

 $i_X \omega_3 = i_Y \omega_1 \Rightarrow \omega_2(X, Y) \geq 0,$

where i_X denotes the contraction by X.

Remark

The pair (η, ω_3) defines a U(2)-structure or an almost contact metric structure on N^5 , i.e. (η, ξ, φ, g) such that

$$\begin{split} &\eta(\xi) = 1, \quad \varphi^2 = -\operatorname{Id} + \xi \otimes \eta, \\ &g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y) \end{split}$$

SU(2)-structures in

Sasakian structures
Sasaki-Einstein structures
Hypo structures η -Einstein structures

Hypo-contact structures

Classification
Consequences
New metrics with holonomy
SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures

Examples Contact reduction

UNIVERSITĂ DEGLI STUDI DI TORINO

An SU(2)-structure $(\eta, \omega_1, \omega_2, \omega_3)$ on N^5 is given by a 1-form η and by three 2-forms ω_i such that

$$\omega_i \wedge \omega_j = \delta_{ij} V, \ V \wedge \eta \neq 0,$$

 $i_X \omega_3 = i_Y \omega_1 \Rightarrow \omega_2(X, Y) \geq 0,$

where i_X denotes the contraction by X.

Remark

The pair (η, ω_3) defines a U(2)-structure or an almost contact metric structure on N^5 , i.e. (η, ξ, φ, g) such that

$$\begin{aligned} &\eta(\xi) = 1, \quad \varphi^2 = -\mathsf{Id} + \xi \otimes \eta, \\ &g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y). \end{aligned}$$

2)-structures

Sasakian structures Sasaki-Finstein structures Hypo structures η -Einstein structures

Hypo-contact structures Classification

Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors

Contact SU(n)-structures Examples Contact reduction

Sasaki-Finstein structures

Hypo-contact

structures Classification

Sasakian structures on

SU(3)

3-dimensional Lie groups

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors

Contact SU(n)-structures Examples

Contact reduction

SU(2)-structures in

Sasakian structures

Hypo structures η -Einstein structures

Consequences New metrics with holonomy

Lie groups

General results

Classification Consequences New metrics with holonomy

Sasakian structures on

3-dimensional Lie groups General results

SU(n)-structures in (2n + 1)-dimensions

Contact SU(n)-structures Examples

Contact reduction

Sasakian structures

 η -Einstein structures

Hypo-contact structures

SU(3)

Lie groups

5-dimensional Lie groups

Generalized Killing spinors

An almost contact metric structure (η, ξ, φ, g) on N^{2n+1} is said

contact metric if $2g(X, \varphi Y) = d\eta(X, Y)$. On N^5 the pair (η, ω_3)

defines a contact metric structure if $d\eta = -2\omega_3$.

Hypo-contact structures

Classification Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors

Contact SU(n)-structures Examples

Contact reduction

Hypo contact Anna Fino

SU(2)-structures in Sasakian structures

 η -Einstein structures

3-dimensional Lie groups

An almost contact metric structure (η, ξ, φ, g) on N^{2n+1} is said contact metric if $2g(X, \varphi Y) = d\eta(X, Y)$. On N^5 the pair (η, ω_3) defines a contact metric structure if $d\eta = -2\omega_3$.

 (η, ξ, φ, g) is called normal if

$$N_{\varphi}(X, Y) = \varphi^{2}[X, Y] + [\varphi X, \varphi Y] - \varphi[\varphi X, Y] - \varphi[X, \varphi Y],$$

satisfies the condition $N_{\alpha} = -d\eta \otimes \xi$.

Sasaki-Finstein structures Hypo structures

structures Classification Consequences

Sasakian structures on

General results

SU(n)-structures in Generalized Killing spinors

Contact reduction

5-dimensions

Sasakian structures

 η -Einstein structures

Hypo-contact

SU(3)

New metrics with holonomy

Lie groups 3-dimensional Lie groups

5-dimensional Lie groups

(2n + 1)-dimensions Contact SU(n)-structures Examples

An almost contact metric structure (η, ξ, φ, g) on N^{2n+1} is said contact metric if $2g(X, \varphi Y) = d\eta(X, Y)$. On N^5 the pair (η, ω_3) defines a contact metric structure if $d\eta = -2\omega_3$.

 (η, ξ, φ, g) is called normal if

satisfies the condition $N_{\varphi} = -d\eta \otimes \xi$.

 $N_{\varphi}(X,Y) = \varphi^{2}[X,Y] + [\varphi X, \varphi Y] - \varphi[\varphi X,Y] - \varphi[X,\varphi Y],$

Definition (Sasaki)

A Sasakian structure on N^{2n+1} is a normal contact metric structure.

Hypo structures η -Einstein structures

Hypo-contact structures

Classification Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups

Sasakian structures

Sasaki-Finstein structures

General results 5-dimensional Lie groups

SU(n)-structures in

(2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures Examples Contact reduction

Hypo contact

An almost contact metric structure (η, ξ, φ, g) on N^{2n+1} is said contact metric if $2g(X, \varphi Y) = d\eta(X, Y)$. On N^5 the pair (η, ω_3) defines a contact metric structure if $d\eta = -2\omega_3$.

 (η, ξ, φ, g) is called normal if

$$N_{\varphi}(X, Y) = \varphi^{2}[X, Y] + [\varphi X, \varphi Y] - \varphi[\varphi X, Y] - \varphi[X, \varphi Y],$$

satisfies the condition $N_{co} = -d\eta \otimes \xi$.

Definition (Sasaki)

A Sasakian structure on N^{2n+1} is a normal contact metric structure.

Theorem (Boyer, Galicki)

A Riemannian manifold (N^{2n+1}, g) has a compatible Sasakian structure if and only if the cone $N^{2n+1} \times \mathbb{R}^+$ equipped with the conic metric $\tilde{g} = dr^2 + r^2g$ is Kähler.

$$d\eta = -2\omega_3, \ d\omega_1 = 3\eta \wedge \omega_2, \ d\omega_2 = -3\eta \wedge \omega_1.$$

- $\bullet N^{2n+1} \times \mathbb{R}^+$ has an integrable SU(n+1)-structure, i.e. an
- N^{2n+1} has a real Killing spinor, i.e. the restriction of a parallel

SU(2)-structures in 5-dimensions Sasakian structures

Sasaki-Einstein structures Hypo structures

 η -Einstein structures Hypo-contact

structures

Classification Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures

SU(3)

Example

Sasaki-Einstein structure on N⁵

$$d\eta = -2\omega_3, \ d\omega_1 = 3\eta \wedge \omega_2, \ d\omega_2 = -3\eta \wedge \omega_1.$$

On $S^2 \times S^3$ there exist an infinite family of explicit Sasaki-Einstein metrics [Gauntlett, Martelli, Sparks, Waldram, ...].

- $\bullet N^{2n+1} \times \mathbb{R}^+$ has an integrable SU(n+1)-structure, i.e. an
- N^{2n+1} has a real Killing spinor, i.e. the restriction of a parallel

Example

Sasaki-Einstein structure on N⁵

$$d\eta = -2\omega_3, d\omega_1 = 3\eta \wedge \omega_2, d\omega_2 = -3\eta \wedge \omega_1.$$

On $S^2 \times S^3$ there exist an infinite family of explicit Sasaki-Einstein metrics [Gauntlett, Martelli, Sparks, Waldram, ...].

Definition (Boyer, Galicki)

 (N^{2n+1}, g, η) is Sasaki-Einstein if the conic metric $\tilde{g} = dr^2 + r^2g$ on the symplectic cone $N^{2n+1} \times \mathbb{R}^+$ is Kähler and Ricci-flat (CY).

 $\bullet N^{2n+1} \times \mathbb{R}^+$ has an integrable SU(n+1)-structure, i.e. an

• N^{2n+1} has a real Killing spinor, i.e. the restriction of a parallel

SU(2)-structures in 5-dimensions

Sasakian structures

Sasaki-Einstein structures Hypo structures

 η -Einstein structures Hypo-contact

SU(3)

structures Classification Consequences New metrics with holonomy

Sasakian structures on Lie groups

3-dimensional Lie groups General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures

$$d\eta = -2\omega_3$$
, $d\omega_1 = 3\eta \wedge \omega_2$, $d\omega_2 = -3\eta \wedge \omega_1$.

On $S^2 \times S^3$ there exist an infinite family of explicit Sasaki-Einstein metrics [Gauntlett, Martelli, Sparks, Waldram, ...].

Definition (Boyer, Galicki)

 (N^{2n+1}, q, η) is Sasaki-Einstein if the conic metric $\tilde{q} = dr^2 + r^2q$ on the symplectic cone $N^{2n+1} \times \mathbb{R}^+$ is Kähler and Ricci-flat (CY).

- $N^{2n+1} \times \mathbb{R}^+$ has an integrable SU(n+1)-structure, i.e. an Hermitian structure (J, \tilde{g}) , with $F = d(r^2\eta)$, and a (n+1,0)-form $\Psi = \Psi_+ + i\Psi_-$ of length 1 such that $dF = d\Psi = 0 \Rightarrow \tilde{q}$ has holonomy in SU(n+1).
- N^{2n+1} has a real Killing spinor, i.e. the restriction of a parallel

SU(2)-structures in 5-dimensions Sasakian structures

Sasaki-Einstein structures

Hypo structures η -Einstein structures

Hypo-contact

structures Classification Consequences New metrics with holonomy

Sasakian structures on

SU(3)

Lie groups 3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions

Generalized Killing spinors Contact SU(n)-structures Examples Contact reduction

Example

Sasaki-Einstein structure on N⁵

$$d\eta = -2\omega_3, d\omega_1 = 3\eta \wedge \omega_2, d\omega_2 = -3\eta \wedge \omega_1.$$

On $S^2 \times S^3$ there exist an infinite family of explicit Sasaki-Einstein metrics [Gauntlett, Martelli, Sparks, Waldram, ...].

Definition (Boyer, Galicki)

 (N^{2n+1}, q, η) is Sasaki-Einstein if the conic metric $\tilde{q} = dr^2 + r^2q$ on the symplectic cone $N^{2n+1} \times \mathbb{R}^+$ is Kähler and Ricci-flat (CY).

- $N^{2n+1} \times \mathbb{R}^+$ has an integrable SU(n+1)-structure, i.e. an Hermitian structure (J, \tilde{g}) , with $F = d(r^2\eta)$, and a (n+1,0)-form $\Psi = \Psi_+ + i\Psi_-$ of length 1 such that $dF = d\Psi = 0 \Rightarrow \tilde{g}$ has holonomy in SU(n+1).
- N^{2n+1} has a real Killing spinor, i.e. the restriction of a parallel spinor on the Riemannian cone [Friedrich, Kath].

structures
Classification
Consequences

Consequences

New metrics with holonomy

SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions

Generalized Killing spinors Contact SU(n)-structures Examples

Examples Contact reduction

Remark

An SU(2)-structure P on N^5 induces a spin structure on N^5 and P extends to $P_{Spin(5)} = P \times_{SU(2)} Spin(5)$.

The spinor bundle is $P \times_{SU(2)} \Sigma$, where $\Sigma \cong \mathbb{C}^4$ and Spin(5) acts transitively on the sphere in Σ with stabilizer SU(2) in a fixed unit spinor $u_0 \in \Sigma$.

Then the SU(2)-structures are in one-to-one correspondence with the pairs $(P_{Spin(5)}, \psi)$, with ψ a unit spinor such that $\psi = [u, u_0]$ for any local section u of P, i.e. $\psi \in P \times_{Spin(5)} (Spin(5)u_0)$.

SU(2)-structures in 5-dimensions Sasakian structures

Sasaki-Einstein structures Hypo structures

Sasakian structures on Lie groups 3-dimensional Lie groups General results 5-dimensional Lie groups SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors

 η -Einstein structures

Hypo-contact structures Classification

Consequences New metrics with holonomy

SU(3)

fixed unit spinor $u_0 \in \Sigma$.

An SU(2)-structure P on N^5 induces a spin structure on N^5

and P extends to $P_{Spin(5)} = P \times_{SU(2)} Spin(5)$.

The spinor bundle is $P \times_{SU(2)} \Sigma$, where $\Sigma \cong \mathbb{C}^4$ and Spin(5)

acts transitively on the sphere in Σ with stabilizer SU(2) in a

Contact SU(n)-structures Examples

Contact reduction

and P extends to $P_{Spin(5)} = P \times_{SU(2)} Spin(5)$.

The spinor bundle is $P \times_{SU(2)} \Sigma$, where $\Sigma \cong \mathbb{C}^4$ and Spin(5)acts transitively on the sphere in Σ with stabilizer SU(2) in a fixed unit spinor $u_0 \in \Sigma$.

Then the SU(2)-structures are in one-to-one correspondence with the pairs $(P_{Spin(5)}, \psi)$, with ψ a unit spinor such that $\psi = [u, u_0]$ for any local section u of P, i.e. $\psi \in P \times_{Spin(5)} (Spin(5)u_0).$

SU(2)-structures in Sasakian structures

Sasaki-Einstein structures

Hypo structures

 η -Einstein structures

Hypo-contact structures

5-dimensions

Classification

Consequences

New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups

General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors

Contact SU(n)-structures Examples

Contact reduction

$$d\omega_3=0,\ d(\eta\wedge\omega_1)=0,\ d(\eta\wedge\omega_2)=0$$

$$\nabla_X \psi = \frac{1}{2} O(X) \cdot \psi,$$

[Friedrich, Kath].

Hypo contact

Anna Fino

SU(2)-structures in 5-dimensions Sasakian structures Sasaki-Finstein structures

Hypo structures

 η -Einstein structures

Hypo-contact structures

SU(3)

Classification Consequences New metrics with holonomy

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures

An SU(2)-structure on N^5 is hypo if

$$d\omega_3 = 0, \ d(\eta \wedge \omega_1) = 0, \ d(\eta \wedge \omega_2) = 0.$$

$$\nabla_X \psi = \frac{1}{2} O(X) \cdot \psi,$$

[Friedrich, Kath].

SU(2)-structures in 5-dimensions Sasakian structures

Sasaki-Finstein structures Hypo structures

 η -Einstein structures

Hypo-contact structures

SU(3)

Classification Consequences New metrics with holonomy

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures

$$d\omega_3 = 0$$
, $d(\eta \wedge \omega_1) = 0$, $d(\eta \wedge \omega_2) = 0$.

Proposition (Conti, Salamon)

An SU(2)-structure P on N^5 is hypo if and only if the spinor ψ (defined by P) is generalized Killing (in the sense of Bär, Gauduchon, Moroianu), i.e.

$$\nabla_X \psi = \frac{1}{2} O(X) \cdot \psi,$$

where O is a section of $Sym(TN^5)$ and · is the Clifford multiplication.

If N^5 is simply connected and Sasaki-Einstein, then $O = \pm Id$ [Friedrich, Kath].

Hypo contact

Anna Fino

SU(2)-structures in 5-dimensions Sasakian structures Sasaki-Finstein structures

Hypo structures

 η -Einstein structures

Hypo-contact structures Classification Consequences

New metrics with holonomy Sasakian structures on

SU(3)

Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures

5-dimensions Sasakian structures

Sasaki-Finstein structures Hypo structures

 η -Einstein structures Hypo-contact

structures

Classification Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors

Contact SU(n)-structures Examples

Contact reduction

• Any oriented hypersurface N^5 of (M^6, F, Ψ) with an integrable

Nilmanifolds cannot admit Sasaki-Einstein structures but they

Sasaki-Finstein structures Hypo structures

 η -Einstein structures

Hypo-contact structures

Classification

SU(3)

Consequences New metrics with holonomy

Sasakian structures on Lie groups

3-dimensional Lie groups General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors

Contact SU(n)-structures Examples

Contact reduction

• Any oriented hypersurface N^5 of (M^6, F, Ψ) with an integrable SU(3)-structure (F, Ψ) has in a natural way a hypo structure. The generalized Killing spinor ψ on N^5 is the restriction of the parallel spinor on M^6 and O is just given by the Weingarten operator. If ψ is the restriction of a parallel spinor over the Riemannian cone then O is a constant multiple of the identity.

Nilmanifolds cannot admit Sasaki-Einstein structures but they

Sasaki-Finstein structures Hypo structures

 η -Einstein structures

Hypo-contact structures

Classification Consequences

New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors

Contact SU(n)-structures Examples Contact reduction

• Any oriented hypersurface N^5 of (M^6, F, Ψ) with an integrable SU(3)-structure (F, Ψ) has in a natural way a hypo structure.

The generalized Killing spinor ψ on N^5 is the restriction of the parallel spinor on M^6 and O is just given by the Weingarten operator. If ψ is the restriction of a parallel spinor over the Riemannian cone then O is a constant multiple of the identity.

 Nilmanifolds cannot admit Sasaki-Einstein structures but they can admit hypo structures.

Theorem (Conti, Salamon)

The nilpotent Lie algebras admitting a hypo structure are

$$\begin{array}{lll} (0,0,12,13,14), & (0,0,0,12,13+24), \\ (0,0,0,12,13), & (0,0,0,0,12+34), \\ (0,0,0,0,12), & (0,0,0,0,0). \end{array}$$

Theorem (Conti. Salamon)

A real analytic hypo structure (η, ω_i) on N^5 determines an integrable SU(3)-structure on $N^5 \times I$, with I some open interval, if (η, ω_i) belongs to a one-parameter family of hypo structures $(\eta(t), \omega_i(t))$ which satisfy the evolution equations

$$\begin{cases} \partial_t \omega_3(t) = -\hat{d}\eta(t), \\ \partial_t(\omega_2(t) \wedge \eta(t)) = \hat{d}\omega_1(t), \\ \partial_t(\omega_1(t) \wedge \eta(t)) = -\hat{d}\omega_2(t) \end{cases}$$

The SU(3)-structure on $N^5 \times I$ is given by

$$F = \omega_3(t) + \eta(t) \wedge dt,$$

$$\Psi = (\omega_1(t) + i\omega_2(t)) \wedge (\eta(t) + idt)$$

SU(2)-structures in 5-dimensions Sasakian structures

Sasakian structures
Sasaki-Finstein structures

Hypo structures
η-Einstein structures

....

Hypo-contact structures

SU(3)

Classification
Consequences
New metrics with holonomy

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions

(2n + 1)-dimensions
Generalized Killing spinors
Contact SU(n)-structures
Examples

Contact reduction

A real analytic hypo structure (η, ω_i) on N^5 determines an integrable SU(3)-structure on $N^5 \times I$, with I some open interval, if (η, ω_i) belongs to a one-parameter family of hypo structures $(\eta(t), \omega_i(t))$ which satisfy the evolution equations

$$\begin{cases} \partial_t \, \omega_3(t) = -\hat{\mathbf{d}} \eta(t), \\ \partial_t(\omega_2(t) \wedge \eta(t)) = \hat{\mathbf{d}} \omega_1(t), \\ \partial_t(\omega_1(t) \wedge \eta(t)) = -\hat{\mathbf{d}} \omega_2(t). \end{cases}$$

The SU(3)-structure on $N^5 \times I$ is given by

$$F = \omega_3(t) + \eta(t) \wedge dt,$$

$$\Psi = (\omega_1(t) + i\omega_2(t)) \wedge (\eta(t) + idt).$$

SU(2)-structures in 5-dimensions Sasakian structures Sasaki-Einstein structures

Hypo structures
η-Einstein structures

Hypo-contact structures

Consequences

New metrics with holonomy

SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions

Generalized Killing spinors
Contact SU(n)-structures
Examples
Contact reduction

UNIVERSITÀ DEGLI STUDI DI TORINO

$$\operatorname{Ric}_g(X, Y) = a g(X, Y) + b \eta(X) \eta(Y),$$

where
$$\operatorname{scal}_g = a(2n+1) + b$$
 and $\operatorname{Ric}_g(\xi,\xi) = a+b$

$$d\eta = -2\omega_3, \ d\omega_1 = \lambda\omega_2 \wedge \eta, \ d\omega_2 = -\lambda\omega_1 \wedge \eta$$

$$O = a \operatorname{Id} + b \eta \otimes \xi,$$

SU(2)-structures in 5-dimensions Sasakian structures

Sasaki-Finstein structures Hypo structures η -Einstein structures

Hypo-contact structures

Classification Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors

Contact SU(n)-structures Examples Contact reduction

An almost contact metric manifold $(N^{2n+1}, \eta, \xi, \varphi, g)$ is η-Einstein if there exist $a, b \in C^{\infty}(N^{2n+1})$ such that

$$\operatorname{Ric}_g(X,Y) = ag(X,Y) + b\eta(X)\eta(Y),$$

where
$$\operatorname{scal}_g = a(2n+1) + b$$
 and $\operatorname{Ric}_g(\xi,\xi) = a + b$.

If b = 0, a Sasaki η -Einstein is Sasaki- Einstein.

$$d\eta = -2\omega_3, d\omega_1 = \lambda\omega_2 \wedge \eta, d\omega_2 = -\lambda\omega_1 \wedge \eta$$

$$O = a \operatorname{Id} + b \eta \otimes \xi,$$

SU(2)-structures in 5-dimensions

Sasakian structures Sasaki-Finstein structures Hypo structures

 η -Einstein structures

Hypo-contact structures

Classification Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions

Generalized Killing spinors Contact SU(n)-structures Examples

Contact reduction

An almost contact metric manifold $(N^{2n+1}, \eta, \xi, \varphi, g)$ is η-Einstein if there exist $a, b \in C^{\infty}(N^{2n+1})$ such that

$$\operatorname{Ric}_g(X,Y) = ag(X,Y) + b\eta(X)\eta(Y),$$

where
$$\operatorname{scal}_g = a(2n+1) + b$$
 and $\operatorname{Ric}_g(\xi,\xi) = a + b$.

If b = 0, a Sasaki η -Einstein is Sasaki- Einstein.

Theorem (Conti, Salamon)

A hypo structure on N^5 is η -Einstein \Leftrightarrow it is Sasakian.

$$d\eta = -2\omega_3, \ d\omega_1 = \lambda\omega_2 \wedge \eta, \ d\omega_2 = -\lambda\omega_1 \wedge \eta$$

$$O = a \operatorname{Id} + b \eta \otimes \xi,$$

SU(2)-structures in 5-dimensions

Sasakian structures Sasaki-Finstein structures Hypo structures

η-Einstein structures

Hypo-contact structures

Classification Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions

Generalized Killing spinors Contact SU(n)-structures Examples

Contact reduction

An almost contact metric manifold $(N^{2n+1}, \eta, \xi, \varphi, g)$ is η-Einstein if there exist $a, b \in C^{\infty}(N^{2n+1})$ such that

$$\operatorname{Ric}_g(X,Y) = ag(X,Y) + b\eta(X)\eta(Y),$$

where
$$\operatorname{scal}_g = a(2n+1) + b$$
 and $\operatorname{Ric}_g(\xi,\xi) = a + b$.

If b = 0, a Sasaki η -Einstein is Sasaki- Einstein.

Theorem (Conti, Salamon)

A hypo structure on N^5 is η -Einstein \Leftrightarrow it is Sasakian.

For a Sasaki η -Einstein structure on N^5 we have

$$d\eta = -2\omega_3, \ d\omega_1 = \lambda\omega_2 \wedge \eta, \ d\omega_2 = -\lambda\omega_1 \wedge \eta$$

and for the associated generalized Killing spinor

$$O = a \operatorname{Id} + b \eta \otimes \xi$$

with a and b constants [Friedrich, Kim].

SU(2)-structures in 5-dimensions Sasakian structures

Sasaki-Finstein structures Hypo structures

η-Einstein structures

Hypo-contact structures Classification Consequences

New metrics with holonomy Sasakian structures on

SU(3)

Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures

Contact reduction

Examples

SU(3)

Hypo contact

Sasaki η-Einstein manifolds.

$$(0,0,0,0,12+34)\cong \mathfrak{h}_5.$$

Contact Calabi-Yau structures, defined by the equations

Hypo-contact structures

In general, for a hypo structure the 1-form η is not a contact form.

A hypo structure is contact if and only if $d\eta = -2\omega_3$.

• Sasaki η -Einstein manifolds.

$$(0,0,0,0,12+34)\cong \mathfrak{h}_5.$$

Contact Calabi-Yau structures, defined by the equations

Anna Fino

SU(2)-structures in 5-dimensions

Sasakian structures Sasaki-Finstein structures Hypo structures η -Einstein structures

Classification Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures

Examples

Contact reduction

Hypo-contact structures

In general, for a hypo structure the 1-form η is not a contact form.

A hypo structure is contact if and only if $d\eta = -2\omega_3$.

Problem

Find examples of manifolds N^5 with a hypo-contact structure.

• Sasaki η -Einstein manifolds.

$$(0,0,0,0,12+34)\cong \mathfrak{h}_5.$$

Contact Calabi-Yau structures, defined by the equations

SU(2)-structures in 5-dimensions

Sasakian structures Sasaki-Finstein structures Hypo structures η -Einstein structures

Classification Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors

Contact SU(n)-structures Examples Contact reduction

Hypo-contact structures

In general, for a hypo structure the 1-form η is not a contact form.

A hypo structure is contact if and only if $d\eta = -2\omega_3$.

Problem

Find examples of manifolds N^5 with a hypo-contact structure.

Examples

Sasaki η-Einstein manifolds.

An example is given by the nilmanifold associated to

$$(0,0,0,0,12+34)\cong \mathfrak{h}_5.$$

 Contact Calabi-Yau structures, defined by the equations $d\eta = -2\omega_3$, $d\omega_1 = d\omega_2 = 0$ [Tomassini, Vezzoni].

Anna Fino

SU(2)-structures in 5-dimensions Sasakian structures

Sasaki-Finstein structures Hypo structures η -Einstein structures

Classification Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures

$$\mathfrak{g}_1: [e_1,e_4]=[e_2,e_3]=e_5$$
 (nilpotent and η -Einstein)

$$g_2: \frac{1}{2}[e_1, e_5] = [e_2, e_3] = e_1, [e_2, e_5] = e_2,$$

:
$$\frac{1}{2}[e_1, e_4] = [e_2, e_3] = e_1, [e_2, e_4] = [e_3, e_5]$$

$$[e_2, e_5] = -[e_3, e_4] = -e_3 (\eta - Einstein);$$

$$g_4$$
: $[e_1, e_4] = e_1, [e_2, e_5] = e_2,$
 $[e_3, e_4] = [e_3, e_5] = -e_3;$

$$g_5: [e_1, e_5] = [e_2, e_4] = e_1,$$

 $[e_3, e_4] = e_2, [e_3, e_5] = -$

Anna Fino

SU(2)-structures in 5-dimensions

Sasakian structures Sasaki-Finstein structures Hypo structures η -Einstein structures

Hypo-contact structures

Classification

Consequences

New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures

A 5-dimensional solvable Lie algebra \mathfrak{g} has a hypo-contact structure $\Leftrightarrow \mathfrak{g}$ is isomorphic to one of the following:

$$g_1 : [e_1, e_4] = [e_2, e_3] = e_5$$
 (nilpotent and η -Einstein);

$$\mathfrak{g}_2$$
: $\frac{1}{2}[e_1, e_5] = [e_2, e_3] = e_1, [e_2, e_5] = e_2,$
 $[e_3, e_5] = e_3, [e_4, e_5] = -3e_4;$

$$\mathfrak{g}_3$$
: $\frac{1}{2}[e_1, e_4] = [e_2, e_3] = e_1, [e_2, e_4] = [e_3, e_5] = e_2,$
 $[e_2, e_5] = -[e_3, e_4] = -e_3 (\eta$ -Einstein);

$$\mathfrak{g}_4$$
: $[e_1, e_4] = e_1, [e_2, e_5] = e_2,$
 $[e_3, e_4] = [e_3, e_5] = -e_3;$

$$\mathfrak{g}_5 : [e_1, e_5] = [e_2, e_4] = e_1,$$

$$[e_3, e_4] = e_2, [e_3, e_5] = -e_3, [e_4, e_5] = e_4.$$

 \Rightarrow Description of the 5-dimensional solvable Lie algebras which admit a hypo-contact structure.

SU(2)-structures in 5-dimensions

Sasaki-Einstein structures
Hypo structures

η-Einstein structures

Hypo-contact

structures

Classification

Consequences

New metrics with holonomy

SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures

Examples Contact reduction

11

A 5-dimensional solvable Lie algebra g has a hypo-contact structure $\Leftrightarrow \mathfrak{g}$ is isomorphic to one of the following:

$$g_1 : [e_1, e_4] = [e_2, e_3] = e_5$$
 (nilpotent and η -Einstein);

$$\mathfrak{g}_2$$
: $\frac{1}{2}[e_1, e_5] = [e_2, e_3] = e_1, [e_2, e_5] = e_2,$
 $[e_3, e_5] = e_3, [e_4, e_5] = -3e_4;$

$$\mathfrak{g}_3$$
: $\frac{1}{2}[e_1, e_4] = [e_2, e_3] = e_1, [e_2, e_4] = [e_3, e_5] = e_2,$
 $[e_2, e_5] = -[e_3, e_4] = -e_3 (\eta$ -Einstein);

$$\mathfrak{g}_4$$
: $[e_1, e_4] = e_1, [e_2, e_5] = e_2,$
 $[e_3, e_4] = [e_3, e_5] = -e_3;$

$$\mathfrak{g}_5$$
: $[e_1, e_5] = [e_2, e_4] = e_1,$
 $[e_3, e_4] = e_2, [e_3, e_5] = -e_3, [e_4, e_5] = e_4.$

Anna Fino

SU(2)-structures in 5-dimensions Sasakian structures

Sasaki-Finstein structures Hypo structures

 η -Einstein structures Hypo-contact structures

Classification

Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions

Generalized Killing spinors Contact SU(n)-structures Examples

Contact reduction

⇒ Description of the 5-dimensional solvable Lie algebras which admit a hypo-contact structure.

Consequences

SU(2)-structures in 5-dimensions

Sasakian structures
Sasaki-Einstein structures
Hypo structures
η-Einstein structures

Hypo-contact structures

Classification

Consequences

New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors

Contact SU(n)-structures
Examples

Contact reduction

All the 5-dimensional solvable Lie algebras with a hypo-contact structure are irreducible.

- $\mathfrak{g}_1\cong\mathfrak{h}_5$ is the unique nilpotent Lie algebra with a hypo-contact structure.
- The Lie algebras of the classification cannot be Einstein since they are contact [Diatta].
- The unique 5-dimensional solvable Lie algebras with a η -Einstein hypo-contact structure are \mathfrak{g}_1 and \mathfrak{g}_3 .
- If $\mathfrak g$ is such that $[\mathfrak g,\mathfrak g] \neq \mathfrak g$ and admits a contact Calabi-Yau structure then $\mathfrak g$ is isomorphic to $\mathfrak g_1$.

Consequences

Hypo-contact structures

Classification

Consequences

New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions

Generalized Killing spinors Contact SU(n)-structures Examples

- All the 5-dimensional solvable Lie algebras with a hypo-contact structure are irreducible.
- $\mathfrak{g}_1\cong\mathfrak{h}_5$ is the unique nilpotent Lie algebra with a hypo-contact structure.
- The Lie algebras of the classification cannot be Einstein since they are contact [Diatta].
- The unique 5-dimensional solvable Lie algebras with a η -Einstein hypo-contact structure are \mathfrak{g}_1 and \mathfrak{g}_3 .
- If $\mathfrak g$ is such that $[\mathfrak g,\mathfrak g] \neq \mathfrak g$ and admits a contact Calabi-Yau structure then $\mathfrak g$ is isomorphic to $\mathfrak g_1$.

Sasaki-Finstein structures Hypo structures η -Einstein structures

Hypo-contact structures

Classification

3-dimensional Lie groups

SU(n)-structures in Generalized Killing spinors

Examples

Sasakian structures

Consequences

New metrics with holonomy

Sasakian structures on Lie groups

General results

5-dimensional Lie groups

(2n + 1)-dimensions Contact SU(n)-structures

Contact reduction

13

New metrics with holonomy SU(3)

Hypo contact Anna Fino

5-dimensions Sasakian structures Sasaki-Finstein structures

Hypo structures η -Einstein structures

Hypo-contact structures

Classification

New metrics with holonomy

General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions

Contact SU(n)-structures Examples

SU(2)-structures in

Consequences

Sasakian structures on Lie groups

3-dimensional Lie groups

Generalized Killing spinors

Contact reduction

13

Studying the Conti-Salamon evolution equations for the left-invariant hypo-contact structures on the simply-connected solvable Lie groups G_i (1 < i < 5) with Lie algebra g_i :

New metrics with holonomy SU(3)

Studying the Conti-Salamon evolution equations for the left-invariant hypo-contact structures on the simply-connected solvable Lie groups G_i (1 < i < 5) with Lie algebra g_i :

Theorem (De Andres, Fernandez, –, Ugarte)

Any left-invariant hypo-contact structure on any G_i (1 < i < 5) determines a Riemannian metric with holonomy SU(3) on $G_i \times I$, for some open interval I.

Hypo contact

Anna Fino

SU(2)-structures in 5-dimensions

Sasakian structures Sasaki-Finstein structures Hypo structures η -Einstein structures

Hypo-contact structures

Classification Consequences

New metrics with holonomy

Sasakian structures on

Lie groups 3-dimensional Lie groups

General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures

New metrics with holonomy SU(3)

Studying the Conti-Salamon evolution equations for the left-invariant hypo-contact structures on the simply-connected solvable Lie groups G_i (1 < i < 5) with Lie algebra g_i :

Theorem (De Andres, Fernandez, –, Ugarte)

Any left-invariant hypo-contact structure on any G_i (1 < i < 5) determines a Riemannian metric with holonomy SU(3) on $G_i \times I$, for some open interval I.

For the nilpotent Lie group G_1 we get the metric found by Gibbons, Lü, Pope and Stelle.

Hypo contact

Anna Fino

SU(2)-structures in 5-dimensions

Sasakian structures Sasaki-Finstein structures Hypo structures η -Einstein structures

Hypo-contact structures

Classification Consequences

New metrics with holonomy

Sasakian structures on Lie groups

3-dimensional Lie groups General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures Examples

Consequences

New metrics with holonomy SU(3)Sasakian structures on

Lie groups

3-dimensional Lie groups

General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures

Examples

Contact reduction

A Sasakian manifold $(N^{2n+1}, \eta, \xi, \varphi, g)$ is called homogeneous Sasakian if (η, ξ, φ, g) are invariant under the group of isometries acting transitively on the manifold

Theorem (Perrone)

A homogeneous 3-dimensional Sasakian manifold has to be a Lie group endowed with a left-invariant Sasakian structure.

Theorem (Geiges, Cho-Chung)

Any 3-dimensional Sasakian Lie algebra is isomorphic to one of the following: $\mathfrak{su}(2)$, $\mathfrak{sl}(2,\mathbb{R})$, $\mathfrak{aff}(\mathbb{R}) \times \mathbb{R}$, \mathfrak{h}_3 , where $\mathfrak{aff}(\mathbb{R})$ is the Lie algebra of the Lie group of affine motions of \mathbb{R} .

Problem

Classify 5-dimensional Lie groups with a left-invariant Sasakian structure.

Classification Consequences

Sasakian structures on

3-dimensional Lie groups

General results

SU(n)-structures in (2n + 1)-dimensions

Contact SU(n)-structures Examples

Contact reduction

A Sasakian manifold $(N^{2n+1}, \eta, \xi, \varphi, g)$ is called homogeneous 5-dimensions

> Sasakian structures Sasaki-Finstein structures Hypo structures

Hypo-contact structures

New metrics with holonomy SU(3)

Lie groups

5-dimensional Lie groups

Generalized Killing spinors

Sasakian if (η, ξ, φ, g) are invariant under the group of

isometries acting transitively on the manifold.

Anna Fino

SU(2)-structures in 5-dimensions

Sasakian structures Sasaki-Finstein structures Hypo structures η -Einstein structures

Hypo-contact structures

Classification Consequences New metrics with holonomy

SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups

General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions

Generalized Killing spinors Contact SU(n)-structures

Examples Contact reduction

A Sasakian manifold $(N^{2n+1}, \eta, \xi, \varphi, g)$ is called homogeneous Sasakian if (η, ξ, φ, g) are invariant under the group of isometries acting transitively on the manifold.

Theorem (Perrone)

A homogeneous 3-dimensional Sasakian manifold has to be a Lie group endowed with a left-invariant Sasakian structure.

Theorem (Perrone)

A homogeneous 3-dimensional Sasakian manifold has to be a Lie group endowed with a left-invariant Sasakian structure.

Theorem (Geiges, Cho-Chung)

Any 3-dimensional Sasakian Lie algebra is isomorphic to one of the following: $\mathfrak{su}(2)$, $\mathfrak{sl}(2,\mathbb{R})$, $\mathfrak{aff}(\mathbb{R}) \times \mathbb{R}$, \mathfrak{h}_3 , where $\mathfrak{aff}(\mathbb{R})$ is the Lie algebra of the Lie group of affine motions of \mathbb{R} .

SU(2)-structures in 5-dimensions

Sasakian structures Sasaki-Finstein structures Hypo structures η -Einstein structures

Hypo-contact structures Classification

Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups

General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures

A Sasakian manifold $(N^{2n+1}, \eta, \xi, \varphi, g)$ is called homogeneous Sasakian if (η, ξ, φ, g) are invariant under the group of isometries acting transitively on the manifold.

Theorem (Perrone)

A homogeneous 3-dimensional Sasakian manifold has to be a Lie group endowed with a left-invariant Sasakian structure.

Theorem (Geiges, Cho-Chung)

Any 3-dimensional Sasakian Lie algebra is isomorphic to one of the following: $\mathfrak{su}(2)$, $\mathfrak{sl}(2,\mathbb{R})$, $\mathfrak{aff}(\mathbb{R}) \times \mathbb{R}$, \mathfrak{h}_3 , where $\mathfrak{aff}(\mathbb{R})$ is the Lie algebra of the Lie group of affine motions of \mathbb{R} .

Problem

Classify 5-dimensional Lie groups with a left-invariant Sasakian structure.

SU(2)-structures in 5-dimensions

Sasakian structures Sasaki-Finstein structures Hypo structures η -Einstein structures

Hypo-contact structures Classification Consequences

New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups

General results

5-dimensional Lie groups SU(n)-structures in (2n + 1)-dimensions

Generalized Killing spinors Contact SU(n)-structures Examples

- If dim $\mathfrak{z}(\mathfrak{g})=1$, then $\mathfrak{z}(\mathfrak{g})=\mathbb{R}\,\xi$ and $(\ker\eta,\theta,\varphi,g)$ is a Kähler
- If $\mathfrak{z}(\mathfrak{g}) = \{0\}$, then $\mathrm{ad}_{\varepsilon} \varphi = \varphi \, \mathrm{ad}_{\varepsilon}$, and one has the orthogonal

$$\mathfrak{g} = \ker \operatorname{ad}_{\xi} \oplus (\operatorname{Im} \operatorname{ad}_{\xi}).$$

SU(2)-structures in 5-dimensions

Sasakian structures Sasaki-Finstein structures Hypo structures η -Einstein structures

Hypo-contact structures

Classification Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups

General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions

Generalized Killing spinors Contact SU(n)-structures Examples

Proposition (Andrada,-, Vezzoni)

Let $(\mathfrak{g}, \eta, \xi)$ be a contact Lie algebra. Then $\dim \mathfrak{z}(\mathfrak{g}) \leq 1$.

Proposition (Andrada,-, Vezzoni)

Let $(\mathfrak{g}, \eta, \xi, \varphi, g)$ be a Sasakian Lie algebra

- If dim $\mathfrak{z}(\mathfrak{g})=1$, then $\mathfrak{z}(\mathfrak{g})=\mathbb{R}\,\xi$ and $(\ker\eta,\theta,\varphi,g)$ is a Kähler Lie algebra, where θ is the component of the Lie bracket of \mathfrak{g} on $\ker\eta$.
- If $\mathfrak{z}(\mathfrak{g})=\{0\}$, then $\mathrm{ad}_{\xi}\varphi=\varphi\,\mathrm{ad}_{\xi}$, and one has the orthogonal decomposition

$$\mathfrak{g}=\mathsf{ker}\,\mathrm{ad}_{\xi}\oplus(\mathrm{Im}\,\mathrm{ad}_{\xi}).$$

If \mathfrak{g} is a (2n+1)-dimensional Sasakian nilpotent Lie algebra, then $\mathfrak{g}\cong\mathfrak{h}_{2n+1}.$

SU(2)-structures in 5-dimensions

Sasakian structures
Sasaki-Einstein structures
Hypo structures

7-Einstein structures

Hypo-contact structures

SU(3)

Classification
Consequences
New metrics with holonomy

Sasakian structures on Lie groups

3-dimensional Lie groups

General results

5-dimensional Lie groups

SU(n)-structures in

(2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures

Examples Contact reduction

Proposition (Andrada,-, Vezzoni)

Let $(\mathfrak{g}, \eta, \xi)$ be a contact Lie algebra. Then $\dim \mathfrak{z}(\mathfrak{g}) \leq 1$.

Proposition (Andrada,-, Vezzoni)

Let $(\mathfrak{g}, \eta, \xi, \varphi, g)$ be a Sasakian Lie algebra.

- If $\dim \mathfrak{z}(\mathfrak{g}) = 1$, then $\mathfrak{z}(\mathfrak{g}) = \mathbb{R} \xi$ and $(\ker \eta, \theta, \varphi, g)$ is a Kähler Lie algebra, where θ is the component of the Lie bracket of \mathfrak{g} on $\ker \eta$.
- If $\mathfrak{z}(\mathfrak{g})=\{0\}$, then $\mathrm{ad}_{\xi}\varphi=\varphi\,\mathrm{ad}_{\xi}$, and one has the orthogonal decomposition

$$\mathfrak{g} = \ker \operatorname{ad}_{\xi} \oplus (\operatorname{Im} \operatorname{ad}_{\xi}).$$

If \mathfrak{g} is a (2n + 1)-dimensional Sasakian nilpotent Lie algebra, then $\mathfrak{g}\cong\mathfrak{h}_{2n+1}.$

SU(2)-structures in 5-dimensions

Sasakian structures
Sasaki-Einstein structures
Hypo structures η -Einstein structures

Hypo-contact structures Classification Consequences

New metrics with holonomy SU(3)Sasakian structures on

Lie groups

3-dimensional Lie groups

General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures Examples

Proposition (Andrada, -, Vezzoni)

Let $(\mathfrak{g}, \eta, \xi)$ be a contact Lie algebra. Then $\dim_{\mathfrak{F}}(\mathfrak{g}) \leq 1$.

Proposition (Andrada, -, Vezzoni)

Let $(\mathfrak{g}, \eta, \xi, \varphi, g)$ be a Sasakian Lie algebra.

- If $\dim_{\mathfrak{Z}}(\mathfrak{g})=1$, then $\mathfrak{Z}(\mathfrak{g})=\mathbb{R}\,\xi$ and $(\ker\eta,\theta,\varphi,g)$ is a Kähler Lie algebra, where θ is the component of the Lie bracket of \mathfrak{q} on ker η .
- If $\mathfrak{z}(\mathfrak{g}) = \{0\}$, then $\mathrm{ad}_{\mathcal{E}}\varphi = \varphi \,\mathrm{ad}_{\mathcal{E}}$, and one has the orthogonal decomposition

$$\mathfrak{g} = \ker \operatorname{ad}_{\xi} \oplus (\operatorname{Im} \operatorname{ad}_{\xi}).$$

If g is a (2n + 1)-dimensional Sasakian nilpotent Lie algebra, then $\mathfrak{q} \cong \mathfrak{h}_{2n+1}$.

SU(2)-structures in 5-dimensions Sasakian structures Sasaki-Finstein structures Hypo structures

 η -Einstein structures Hypo-contact structures Classification

Consequences New metrics with holonomy SU(3) Sasakian structures on

Lie groups

3-dimensional Lie groups

General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures Examples

- g is either solvable or a direct sum.
- A 5-dimensional Sasakian solvmanifold is either a compact

$$(0, -13, 12, 0, 14 + 23).$$

• A 5-dimensional Sasakian η -Einstein Lie algebra is

SU(2)-structures in 5-dimensions

Sasakian structures Sasaki-Finstein structures Hypo structures η -Einstein structures

Hypo-contact structures

Classification Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures Examples

Let g be a 5-dimensional Sasakian Lie algebra. Then

- 1 if $\mathfrak{z}(\mathfrak{g}) \neq \{0\}$, \mathfrak{g} is solvable with dim $\mathfrak{z}(\mathfrak{g}) = 1$ and the quotient $\mathfrak{g}/\mathfrak{z}(\mathfrak{g})$ carries an induced Kähler structure;
- 2 if $\mathfrak{z}(\mathfrak{g}) = \{0\}$, \mathfrak{g} is isomorphic to $\mathfrak{sl}(2,\mathbb{R}) \times \mathfrak{aff}(\mathbb{R})$, or $\mathfrak{su}(2) \times \mathfrak{aff}(\mathbb{R})$, or $\mathfrak{g}_3 \cong \mathbb{R}^2 \ltimes \mathfrak{h}_3$.
- g is either solvable or a direct sum.
- A 5-dimensional Sasakian solvmanifold is either a compact

$$(0, -13, 12, 0, 14 + 23).$$

• A 5-dimensional Sasakian η -Einstein Lie algebra is

SU(2)-structures in 5-dimensions Sasakian structures

Sasaki-Finstein structures Hypo structures η -Einstein structures

Hypo-contact structures

Classification Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures

Theorem (Andrada, -, Vezzoni)

Let g be a 5-dimensional Sasakian Lie algebra. Then

- 1 if $\mathfrak{z}(\mathfrak{g}) \neq \{0\}$, \mathfrak{g} is solvable with $\dim \mathfrak{z}(\mathfrak{g}) = 1$ and the quotient $\mathfrak{g}/\mathfrak{z}(\mathfrak{g})$ carries an induced Kähler structure;
- 2 if $\mathfrak{z}(\mathfrak{g}) = \{0\}$, \mathfrak{g} is isomorphic to $\mathfrak{sl}(2,\mathbb{R}) \times \mathfrak{aff}(\mathbb{R})$, or $\mathfrak{su}(2) \times \mathfrak{aff}(\mathbb{R})$, or $\mathfrak{g}_3 \cong \mathbb{R}^2 \ltimes \mathfrak{h}_3$.
- g is either solvable or a direct sum.
- A 5-dimensional Sasakian solvmanifold is either a compact quotient of H_5 or of $\mathbb{R} \ltimes (H_3 \times \mathbb{R})$ with structure equations

$$(0, -13, 12, 0, 14 + 23).$$

• A 5-dimensional Sasakian η -Einstein Lie algebra is isomorphic either to $\mathfrak{g}_1 \cong \mathfrak{h}_5$, or \mathfrak{g}_3 or to $\mathfrak{sl}(2,\mathbb{R}) \times \mathfrak{aff}(\mathbb{R})$.

SU(2)-structures in 5-dimensions Sasakian structures Sasaki-Einstein structures

Sasaki-Einstein structures
Hypo structures η -Einstein structures

Hypo-contact structures Classification

Classification
Consequences
New metrics with holonomy
SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures

SU(2)-structures in

Theorem (Andrada, -, Vezzoni)

Let a be a 5-dimensional Sasakian Lie algebra. Then

- 1 if $\mathfrak{z}(\mathfrak{g}) \neq \{0\}$, \mathfrak{g} is solvable with dim $\mathfrak{z}(\mathfrak{g}) = 1$ and the quotient $\mathfrak{g}/\mathfrak{z}(\mathfrak{g})$ carries an induced Kähler structure;
- 2 if $\mathfrak{z}(\mathfrak{g}) = \{0\}$, \mathfrak{g} is isomorphic to $\mathfrak{sl}(2,\mathbb{R}) \times \mathfrak{aff}(\mathbb{R})$, or $\mathfrak{su}(2) \times \mathfrak{aff}(\mathbb{R})$, or $\mathfrak{g}_3 \cong \mathbb{R}^2 \ltimes \mathfrak{h}_3$.
- g is either solvable or a direct sum.
- A 5-dimensional Sasakian solvmanifold is either a compact quotient of H_5 or of $\mathbb{R} \ltimes (H_3 \times \mathbb{R})$ with structure equations

$$(0, -13, 12, 0, 14 + 23).$$

• A 5-dimensional Sasakian η -Einstein Lie algebra is isomorphic either to $\mathfrak{g}_1 \cong \mathfrak{h}_5$, or \mathfrak{g}_3 or to $\mathfrak{sl}(2,\mathbb{R}) \times \mathfrak{aff}(\mathbb{R})$. 5-dimensions Sasakian structures Sasaki-Finstein structures Hypo structures η -Einstein structures

Hypo-contact structures

Classification Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors

Contact SU(n)-structures Examples Contact reduction

SU(2)-structures in 5-dimensions

Sasakian structures Sasaki-Finstein structures Hypo structures η -Einstein structures

Hypo-contact structures

Classification Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

Generalized Killing spinors Contact SU(n)-structures Examples Contact reduction

An SU(n)-structure (η, ϕ, Ω) on N^{2n+1} is determined by the forms

$$\begin{array}{ll} \eta = \mathbf{e}^{2n+1}, & \phi = \mathbf{e}^1 \wedge \mathbf{e}^2 + \ldots + \mathbf{e}^{2n-1} \wedge \mathbf{e}^{2n}, \\ \Omega = \left(\mathbf{e}^1 + i\mathbf{e}^2\right) \wedge \ldots \wedge \left(\mathbf{e}^{2n-1} + i\mathbf{e}^{2n}\right). \end{array}$$

$$P_{SU} = \{ u \in P_{Spin} \mid [u, u_0] = \psi \}.$$

SU(2)-structures in 5-dimensions

Sasakian structures Sasaki-Finstein structures Hypo structures η -Einstein structures

Hypo-contact structures

Classification Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

Generalized Killing spinors Contact SU(n)-structures Examples Contact reduction

An SU(n)-structure (η, ϕ, Ω) on N^{2n+1} is determined by the forms

$$\begin{array}{ll} \eta = \textbf{e}^{2n+1}, & \phi = \textbf{e}^1 \wedge \textbf{e}^2 + \ldots + \textbf{e}^{2n-1} \wedge \textbf{e}^{2n}, \\ \Omega = (\textbf{e}^1 + i\textbf{e}^2) \wedge \ldots \wedge (\textbf{e}^{2n-1} + i\textbf{e}^{2n}). \end{array}$$

As for the case of SU(2)-structures in dimensions 5 we have that an SU(n)-structure P_{SU} on N^{2n+1} induces a spin structure P_{Spin} and if we fix a unit element $u_0 \in \Sigma = (\mathbb{C}^2)^{\otimes 2n}$ we have that

$$P_{SU} = \{ u \in P_{Spin} \mid [u, u_0] = \psi \}.$$

The pair (η, ϕ) defines a U(n)-structure or an almost contact metric structure on N^{2n+1} .

The $\mathit{U}(\mathit{n})$ -structure is a contact metric structure if $d\eta = -2\phi$

SU(2)-structures in 5-dimensions

Sasakian structures
Sasaki-Einstein structures
Hypo structures η -Einstein structures

Hypo-contact structures

Classification
Consequences
New metrics with holonomy
SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SH(n)-structures in

(2n + 1)-dimensions
Generalized Killing spinors

Contact SU(n)-structures Examples Contact reduction

$$\begin{array}{ll} \eta = \textbf{e}^{2n+1}, & \phi = \textbf{e}^1 \wedge \textbf{e}^2 + \ldots + \textbf{e}^{2n-1} \wedge \textbf{e}^{2n}, \\ \Omega = (\textbf{e}^1 + i\textbf{e}^2) \wedge \ldots \wedge (\textbf{e}^{2n-1} + i\textbf{e}^{2n}). \end{array}$$

As for the case of SU(2)-structures in dimensions 5 we have that an SU(n)-structure P_{SU} on N^{2n+1} induces a spin structure P_{Spin} and if we fix a unit element $u_0 \in \Sigma = (\mathbb{C}^2)^{\otimes 2n}$ we have that

$$P_{SU} = \{ u \in P_{Spin} \mid [u, u_0] = \psi \}.$$

The pair (η, ϕ) defines a U(n)-structure or an almost contact metric structure on N^{2n+1} .

The U(n)-structure is a contact metric structure if $d\eta = -2\phi$.

SU(2)-structures in 5-dimensions

Sasakian structures
Sasaki-Einstein structures
Hypo structures η -Einstein structures

Hypo-contact structures

Classification
Consequences
New metrics with holonomy
SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in

Contact reduction

(2n + 1)-dimensions
Generalized Killing spinors
Contact SU(n)-structures
Examples

17

Anna Fino

SU(2)-structures in 5-dimensions

Sasakian structures Sasaki-Finstein structures Hypo structures η -Einstein structures

Hypo-contact structures

Classification Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions

Generalized Killing spinors Contact SU(n)-structures

 $N^{2n+1} \hookrightarrow M^{2n+2}$ (with holonomy in SU(n+1)).

Then the restriction of the parallel spinor defines an SU(n)-structure (η, ϕ, Ω) where the forms ϕ and $\Omega \wedge \eta$ are the pull-back of the Kähler form and the complex volume form on the CY manifold M^{2n+2} .

SU(2)-structures in 5-dimensions

Sasakian structures Sasaki-Finstein structures Hypo structures η -Einstein structures

Hypo-contact

structures

Classification Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results

5-dimensional Lie groups SU(n)-structures in

(2n + 1)-dimensions Generalized Killing spinors

Contact SU(n)-structures

Then the restriction of the parallel spinor defines an SU(n)-structure (η,ϕ,Ω) where the forms ϕ and $\Omega \wedge \eta$ are the pull-back of the Kähler form and the complex volume form on the CY manifold M^{2n+2} .

Proposition (Conti, –)

Let N^{2n+1} be a real analytic manifold with a real analyte SU(n)-structure P_{SU} defined by (η, ϕ, Ω) . The following are equivalent:

- 1 The spinor ψ associated to P_{SU} is a generalized Killing spinor, i.e. $\nabla_X \psi = \frac{1}{2} O(X) \cdot \psi$.
- 2 $d\phi = 0$ and $d(\eta \wedge \Omega) = 0$.
- **3** A neighbourhood of $M \times \{0\}$ in $M \times \mathbb{R}$ has a CY structure which restricts to P_{SU} .

SU(2)-structures in 5-dimensions

Sasakian structures
Sasaki-Einstein structures
Hypo structures η -Einstein structures

Hypo-contact structures

Classification
Consequences
New metrics with holonomy
SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors

Contact SU(n)-structures

structures Classification Consequences

New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions

Generalized Killing spinors Contact SU(n)-structures

$$\eta(t) \wedge dt + \phi(t), \quad (\eta(t) + idt) \wedge \Omega(t)$$

$$\frac{\partial}{\partial t}\phi(t) = -\hat{d}\eta(t), \quad \frac{\partial}{\partial t}(\eta(t)\wedge\Omega(t)) = i\hat{d}\Omega(t)$$

The assumption of real analycity is certainly necessary to prove that (1) or (2) implies (3), but the fact that (1) implies (2) does not require this hypothesis.

$$\eta(t) \wedge dt + \phi(t), \quad (\eta(t) + idt) \wedge \Omega(t)$$

$$rac{\partial}{\partial t}\phi(t)=-\hat{m{d}}\eta(t),\quad rac{\partial}{\partial t}(\eta(t)\wedge\Omega(t))=i\hat{m{d}}\Omega(t)$$

SU(2)-structures in 5-dimensions

Sasakian structures Sasaki-Finstein structures Hypo structures η -Einstein structures

Hypo-contact structures

Classification Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in

(2n + 1)-dimensions Generalized Killing spinors

Contact SU(n)-structures

The assumption of real analycity is certainly necessary to prove that (1) or (2) implies (3), but the fact that (1) implies (2) does not require this hypothesis.

 $(2) \Rightarrow (3)$ can be described in terms of evolution equations in the sense of Hitchin. Indeed, suppose that there is a family $(\eta(t), \phi(t), \Omega(t))$ of SU(n)-structures on N^{2n+1} , with t in some interval I, then the forms

$$\eta(t) \wedge dt + \phi(t), \quad (\eta(t) + idt) \wedge \Omega(t)$$

define a CY structure on $N^{2n+1} \times I$ if and only if (2) holds for t=0 and the evolution equations

$$\frac{\partial}{\partial t}\phi(t) = -\hat{\mathbf{d}}\eta(t), \quad \frac{\partial}{\partial t}(\eta(t)\wedge\Omega(t)) = i\hat{\mathbf{d}}\Omega(t)$$

are satisfied.

SU(2)-structures in 5-dimensions Sasakian structures

Sasaki-Finstein structures Hypo structures η -Einstein structures

Hypo-contact structures

Classification Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions

Generalized Killing spinors

Contact SU(n)-structures

An SU(n)-structure (η, ϕ, Ω) on N^{2n+1} is contact if $d\eta = -2\phi$.

In this case N^{2n+1} is contact metric with contact form η and we may consider the symplectic cone over (N^{2n+1}, η) as the symplectic manifold $(N^{2n+1} \times \mathbb{R}^+, -\frac{1}{2}d(r^2\eta))$.

If N^{2n+1} is Sasaki-Einstein, we know that the symplectic cone is CY with the cone metric $r^2g + dr^2$ and the Kähler form equal to the conical symplectic form.

Problem

If one thinks the form ϕ as the pullback to $N^{2n+1} \cong N^{2n+1} \times \{1\}$ of the conical symplectic form, which types of contact SU(n)-structures give rise to a CY symplectic cone but not necessarily with respect to the cone metric?

SU(2)-structures in 5-dimensions

Sasakian structures
Sasaki-Einstein structures
Hypo structures η -Einstein structures

Hypo-contact structures

Classification
Consequences
New metrics with holonomy
SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors

Contact SU(n)-structures
Examples

An SU(n)-structure (η, ϕ, Ω) on N^{2n+1} is contact if $d\eta = -2\phi$.

In this case N^{2n+1} is contact metric with contact form η and we may consider the symplectic cone over (N^{2n+1}, η) as the symplectic manifold $(N^{2n+1} \times \mathbb{R}^+, -\frac{1}{2}d(r^2\eta))$.

If N^{2n+1} is Sasaki-Einstein, we know that the symplectic cone is CY with the cone metric $r^2g + dr^2$ and the Kähler form equal to the conical symplectic form.

Problem

If one thinks the form ϕ as the pullback to $N^{2n+1} \cong N^{2n+1} \times \{1\}$ of the conical symplectic form, which types of contact SU(n)-structures give rise to a CY symplectic cone but not necessarily with respect to the cone metric?

SU(2)-structures in 5-dimensions

Sasakian structures
Sasaki-Einstein structures
Hypo structures η -Einstein structures

Hypo-contact structures

Classification
Consequences
New metrics with holonomy
SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors

Contact SU(n)-structures

Examples

An SU(n)-structure (η, ϕ, Ω) on N^{2n+1} is contact if $d\eta = -2\phi$.

In this case N^{2n+1} is contact metric with contact form η and we may consider the symplectic cone over (N^{2n+1}, η) as the symplectic manifold $(N^{2n+1} \times \mathbb{R}^+, -\frac{1}{2}d(r^2\eta))$.

If N^{2n+1} is Sasaki-Einstein, we know that the symplectic cone is CY with the cone metric $r^2g + dr^2$ and the Kähler form equal to the conical symplectic form.

Problem

If one thinks the form ϕ as the pullback to $N^{2n+1} \cong N^{2n+1} \times \{1\}$ of the conical symplectic form, which types of contact SU(n)-structures give rise to a CY symplectic cone but not necessarily with respect to the cone metric?

SU(2)-structures in 5-dimensions Sasakian structures Sasaki-Finstein structures Hypo structures η -Einstein structures

Hypo-contact structures Classification

Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors

Contact SU(n)-structures

Examples

Proposition (Conti, –)

Let N^{2n+1} be a real analytic manifold with a real analytic contact SU(n)-structure P_{SU} defined by (η, ϕ, Ω) . The following are equivalent:

- 1 The spinor ψ associated to P_{SU} is generalized Killing, i.e. $\nabla_X \psi = \frac{1}{2} O(X) \cdot \psi$.
- 2 $d\eta = -2\phi$ and $\eta \wedge d\Omega = 0$
- ③ A neighbourhood of M × {1} in the symplectic cone M × ℝ⁺ has a CY metric which restricts to P_{SU}.

SU(2)-structures in 5-dimensions

Sasakian structures
Sasaki-Einstein structures
Hypo structures η -Einstein structures

Hypo-contact structures

Classification
Consequences
New metrics with holonomy
SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors

Contact SU(n)-structures Examples

Proposition (Conti, -)

Let N^{2n+1} be a real analytic manifold with a real analyte contact SU(n)-structure P_{SU} defined by (η, ϕ, Ω) . The following are equivalent:

- 1 The spinor ψ associated to P_{SU} is generalized Killing, i.e. $\nabla_X \psi = \frac{1}{2} O(X) \cdot \psi$.
- 2 $d\eta = -2\phi$ and $\eta \wedge d\Omega = 0$.
- 3 A neighbourhood of $M \times \{1\}$ in the symplectic cone $M \times \mathbb{R}^+$ has a CY metric which restricts to P_{SU} .

SU(2)-structures in 5-dimensions

Sasakian structures
Sasaki-Einstein structures
Hypo structures

7-Einstein structures

Hypo-contact structures Classification Consequences

New metrics with holonomy SU(3)Sasakian structures on

Баѕакіап structures or Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors

Contact SU(n)-structures

- 5-dimensional hypo-contact solvable Lie groups [De Andres,
- The (2n+1)-dimensional real Heisenberg Lie group H_{2n+1}

$$de^{i} = 0, \quad i = 1, \dots, 2n,$$

 $de^{2n+1} = e^{1} \wedge e^{2} + \dots + e^{2n-1} \wedge e^{2n}.$

- A two-parameter family of examples in the sphere bundle in
- A 7-dimensional compact example, quotient of the Lie group

SU(2)-structures in 5-dimensions

Sasakian structures Sasaki-Finstein structures Hypo structures η -Einstein structures

Hypo-contact structures

Classification Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures

Examples

- 5-dimensional hypo-contact solvable Lie groups [De Andres, Fernandez, –, Ugarte].
- The (2n+1)-dimensional real Heisenberg Lie group H_{2n+1}

$$de^{i} = 0, \quad i = 1, \dots, 2n,$$

 $de^{2n+1} = e^{1} \wedge e^{2} + \dots + e^{2n-1} \wedge e^{2n}.$

- A two-parameter family of examples in the sphere bundle in $T\mathbb{CP}^2$ [Conti].
- A 7-dimensional compact example, quotient of the Lie group $SU(2) \ltimes \mathbb{R}^4$, which has a weakly integrable generalized G_2 -structure [–, Tomassini].

SU(2)-structures in 5-dimensions

Sasakian structures
Sasaki-Einstein structures
Hypo structures
7-Einstein structures

Hypo-contact structures

Classification
Consequences
New metrics with holonomy
SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors

Contact SU(n)-structures

Examples

Contact reduction

• 5-dimensional hypo-contact solvable Lie groups [De Andres, Fernandez, –, Ugarte].

• The (2n+1)-dimensional real Heisenberg Lie group H_{2n+1}

$$de^{i} = 0, \quad i = 1, \dots, 2n,$$

 $de^{2n+1} = e^{1} \wedge e^{2} + \dots + e^{2n-1} \wedge e^{2n}.$

- A two-parameter family of examples in the sphere bundle in $T\mathbb{CP}^2$ [Conti].
- A 7-dimensional compact example, quotient of the Lie group $SU(2) \ltimes \mathbb{R}^4$, which has a weakly integrable generalized G_2 -structure [–, Tomassini].

SU(2)-structures in 5-dimensions

Sasakian structures
Sasaki-Einstein structures
Hypo structures

7-Einstein structures

Hypo-contact structures

SU(3)

Classification
Consequences
New metrics with holonomy

Sasakian structures on Lie groups

3-dimensional Lie groups General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures

Examples

• 5-dimensional hypo-contact solvable Lie groups [De Andres, Fernandez, –, Ugarte].

• The (2n+1)-dimensional real Heisenberg Lie group H_{2n+1}

$$de^{i} = 0, \quad i = 1, \dots, 2n,$$

 $de^{2n+1} = e^{1} \wedge e^{2} + \dots + e^{2n-1} \wedge e^{2n}.$

- A two-parameter family of examples in the sphere bundle in $T\mathbb{CP}^2$ [Conti].
- A 7-dimensional compact example, quotient of the Lie group $SU(2) \ltimes \mathbb{R}^4$, which has a weakly integrable generalized G_2 -structure [–, Tomassini].

SU(2)-structures in 5-dimensions

Sasakian structures
Sasaki-Einstein structures
Hypo structures
7-Einstein structures

Hypo-contact structures

Classification
Consequences
New metrics with holonomy
SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures

Examples

$$(0,0,0), (0,\pm 13,12), (0,12,13), (0,0,13).$$

SU(2)-structures in 5-dimensions

Sasakian structures Sasaki-Finstein structures Hypo structures η -Einstein structures

Hypo-contact structures

Classification Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures

Examples

Proposition (Conti, -)

H: compact Lie group ρ a representation of H on V.

Then $H \ltimes_a V$ has a left-invariant contact structure if and only if $H \ltimes_{\alpha} V$ is either $SU(2) \ltimes \mathbb{R}^4$ or $U(1) \ltimes \mathbb{C}$.

Then, if *H* is compact, the example $SU(2) \ltimes \mathbb{R}^4$ is unique in dimensions > 3.

$$(0,0,0), (0,\pm 13,12), (0,12,13), (0,0,13).$$

SU(2)-structures in 5-dimensions

Sasakian structures Sasaki-Finstein structures Hypo structures η -Einstein structures

Hypo-contact structures

Classification Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures

Examples

Proposition (Conti, -)

H: compact Lie group

 ρ a representation of H on V.

Then $H \ltimes_{\rho} V$ has a left-invariant contact structure if and only if $H \ltimes_{\rho} V$ is either $SU(2) \ltimes \mathbb{R}^4$ or $U(1) \ltimes \mathbb{C}$.

Then, if H is compact, the example $SU(2) \ltimes \mathbb{R}^4$ is unique in dimensions > 3.

If *H* is solvable we have

Proposition (Conti, -)

H : 3-dimensional solvable Lie group.

There exists $H \ltimes \mathbb{R}^4$ admitting a contact SU(3)-structure whose associated spinor is generalized Killing if and only if the Lie algebra of H is isomorphic to one of the following

$$(0,0,0), (0,\pm 13,12), (0,12,13), (0,0,13).$$

SU(2)-structures in 5-dimensions

Sasakian structures
Sasaki-Einstein structures
Hypo structures

-Einstein structures

Hypo-contact structures

Classification
Consequences
New metrics with holonomy
SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures

Examples

$$\eta \cdot \psi = i^{2n+1}\psi, \quad \phi \cdot \psi = -ni\psi.$$

$$\mathcal{L}_X \eta = 0 = \mathcal{L}_X \phi.$$

SU(2)-structures in 5-dimensions

Sasakian structures Sasaki-Finstein structures Hypo structures η -Einstein structures

Hypo-contact structures

Classification Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions

Generalized Killing spinors Contact SU(n)-structures Examples

Anna Fino

SU(2)-structures in 5-dimensions

Sasaki-Finstein structures Hypo structures η -Einstein structures

Hypo-contact

Classification Consequences

New metrics with holonomy SU(3)

Lie groups

General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions

Contact SU(n)-structures

Contact reduction

structures

Sasakian structures on

3-dimensional Lie groups

Generalized Killing spinors

Examples

Sasakian structures

Let N^{2n+1} be a (2n+1)-dimensional manifold endowed with a contact metric structure (η, ϕ, g) and a spin structure compatible with the metric g and the orientation.

We say that a spinor ψ on N^{2n+1} is compatible if

$$\eta \cdot \psi = i^{2n+1}\psi, \quad \phi \cdot \psi = -ni\psi.$$

$$\mathcal{L}_X \eta = 0 = \mathcal{L}_X \phi.$$

Sasakian structures Hypo structures

Hypo-contact

Classification Consequences

Sasakian structures on

General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors

Examples

Contact reduction

5-dimensions

Sasaki-Finstein structures η -Einstein structures

SU(3)

structures New metrics with holonomy

Lie groups

3-dimensional Lie groups

Contact SU(n)-structures

Let N^{2n+1} be a (2n+1)-dimensional manifold endowed with a contact metric structure (η, ϕ, g) and a spin structure compatible with the metric g and the orientation.

We say that a spinor ψ on N^{2n+1} is compatible if

$$\eta \cdot \psi = i^{2n+1}\psi, \quad \phi \cdot \psi = -ni\psi.$$

Suppose that S^1 acts on N^{2n+1} preserving both metric and contact form, so that the fundamental vector field X satisfies

$$\mathcal{L}_X \eta = \mathbf{0} = \mathcal{L}_X \phi.$$

and denote by t its norm.

SU(2)-structures in 5-dimensions

Sasakian structures Sasaki-Finstein structures Hypo structures η -Einstein structures

Classification Consequences

Sasakian structures on

General results

SU(n)-structures in

Contact SU(n)-structures Examples

New metrics with holonomy SU(3)

3-dimensional Lie groups

(2n + 1)-dimensions Generalized Killing spinors

Contact reduction

Let N^{2n+1} be a (2n+1)-dimensional manifold endowed with a

Hypo-contact structures

Lie groups

5-dimensional Lie groups

and denote by t its norm. The moment map is given by $\mu = \eta(X)$.

contact metric structure (η, ϕ, g) and a spin structure

 $n \cdot \psi = i^{2n+1}\psi, \quad \phi \cdot \psi = -ni\psi.$

Suppose that S^1 acts on N^{2n+1} preserving both metric and

contact form, so that the fundamental vector field X satisfies

 $\mathcal{L}_{X}\eta = \mathbf{0} = \mathcal{L}_{X}\phi.$

compatible with the metric g and the orientation.

We say that a spinor ψ on N^{2n+1} is compatible if

• The contact U(n)-structure on N^{2n+1} induces a contact

• The choice of an invariant compatible spinor ψ on N^{2n+1}

$$\psi^{\pi} = \iota^* \psi + i \nu \cdot \iota^* \psi.$$

SU(2)-structures in 5-dimensions Sasakian structures Sasaki-Finstein structures

Hypo structures η -Einstein structures

Hypo-contact structures

Classification Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors

Contact SU(n)-structures Examples

Contact reduction

25

5-dimensions Sasakian structures

Sasaki-Finstein structures Hypo structures η -Einstein structures

Hypo-contact

structures Classification

Consequences New metrics with holonomy SU(3)

Sasakian structures on

General results

SU(n)-structures in

Examples

Contact reduction

SU(2)-structures in

Lie groups

3-dimensional Lie groups

5-dimensional Lie groups

(2n + 1)-dimensions Generalized Killing spinors

Contact SU(n)-structures

25

Assume that 0 is a regular value of μ and consider the hypersurface $\iota: \mu^{-1}(0) \to N^{2n+1}$.

Then the contact reduction is given by $N^{2n+1}//S^1 = \mu^{-1}(0)/S^1$ [Geiges, Willett].

• The contact U(n)-structure on N^{2n+1} induces a contact

• The choice of an invariant compatible spinor ψ on N^{2n+1}

$$\psi^{\pi} = \iota^* \psi + i \nu \cdot \iota^* \psi.$$

SU(2)-structures in

5-dimensions Sasakian structures Sasaki-Finstein structures Hypo structures

η -Einstein structures Hypo-contact

structures Classification Consequences New metrics with holonomy

SU(3) Sasakian structures on

Lie groups 3-dimensional Lie groups

General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors

Contact SU(n)-structures Examples

Contact reduction

25

Assume that 0 is a regular value of μ and consider the hypersurface $\iota: \mu^{-1}(0) \to N^{2n+1}$.

Then the contact reduction is given by $N^{2n+1}/S^1 = \mu^{-1}(0)/S^1$ [Geiges, Willett].

• The contact U(n)-structure on N^{2n+1} induces a contact U(n-1)-structure on N^{2n+1}/S^1 .

• The choice of an invariant compatible spinor ψ on N^{2n+1}

$$\psi^{\pi} = \iota^* \psi + i \nu \cdot \iota^* \psi.$$

Assume that 0 is a regular value of μ and consider the hypersurface $\iota: \mu^{-1}(0) \to N^{2n+1}$.

Then the contact reduction is given by $N^{2n+1}/S^1 = \mu^{-1}(0)/S^1$ [Geiges, Willett].

• The contact U(n)-structure on N^{2n+1} induces a contact U(n-1)-structure on $N^{2n+1}//S^1$.

Let ν be the unit normal vector field, dual to the 1-form $i_{t-1} \chi \phi$.

• The choice of an invariant compatible spinor ψ on N^{2n+1} determines a spinor

$$\psi^{\pi} = \iota^* \psi + i \nu \cdot \iota^* \psi.$$

on $N^{2n+1}//S^1$.

SU(2)-structures in 5-dimensions Sasakian structures Sasaki-Finstein structures Hypo structures

 η -Einstein structures

Hypo-contact structures

Classification Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures

Examples Contact reduction

25

Theorem (Conti. -)

 N^{2n+1} with a contact U(n)-structure (g, η, ϕ) and a compatible generalized Killing spinor ψ .

Suppose that S^1 acts on N^{2n+1} preserving both structure and spinor and acts freely on $\mu^{-1}(0)$ with 0 regular value. Then the induced spinor ψ^{π} on $N^{2n+1}//S^1$ is generalized Killing if and only if at each point of $\mu^{-1}(0)$ we have

$$dt \in span < i_X \phi, \eta >$$
,

where X is the fundamental vector field associated to the S^1 -action, and t is the norm of X.

Example

If we apply the previous theorem to $SU(2) \ltimes \mathbb{R}^4$ we get a new hypo-contact structure on $S^2 \times \mathbb{T}^3$.

SU(2)-structures in 5-dimensions

Sasakian structures
Sasaki-Einstein structures
Hypo structures

7-Einstein structures

Hypo-contact structures

Classification
Consequences
New metrics with holonomy
SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures

Examples

 N^{2n+1} with a contact U(n)-structure (g, η, ϕ) and a compatible generalized Killing spinor ψ .

Suppose that S^1 acts on N^{2n+1} preserving both structure and spinor and acts freely on $\mu^{-1}(0)$ with 0 regular value. Then the induced spinor ψ^{π} on $N^{2n+1}//S^1$ is generalized Killing if and only if at each point of $\mu^{-1}(0)$ we have

$$dt \in span < i_X \phi, \eta >$$
,

where X is the fundamental vector field associated to the S^1 -action, and t is the norm of X.

SU(2)-structures in 5-dimensions

Sasakian structures Sasaki-Finstein structures Hypo structures η -Einstein structures

Hypo-contact structures

Classification Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results

5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures

Examples Contact reduction

 N^{2n+1} with a contact U(n)-structure (g, η, ϕ) and a compatible generalized Killing spinor ψ .

Suppose that S^1 acts on N^{2n+1} preserving both structure and spinor and acts freely on $\mu^{-1}(0)$ with 0 regular value. Then the induced spinor ψ^{π} on $N^{2n+1}//S^1$ is generalized Killing if and only if at each point of $\mu^{-1}(0)$ we have

$$dt \in span < i_X \phi, \eta >$$
,

where X is the fundamental vector field associated to the S^1 -action, and t is the norm of X.

Example

If we apply the previous theorem to $SU(2) \ltimes \mathbb{R}^4$ we get a new hypo-contact structure on $S^2 \times \mathbb{T}^3$.

SU(2)-structures in 5-dimensions Sasakian structures

Sasaki-Finstein structures Hypo structures η -Einstein structures

Hypo-contact structures

Classification Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results

5-dimensional Lie groups SU(n)-structures in

(2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures Examples

SU(3)

Classification Consequences New metrics with holonomy

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions

Generalized Killing spinors Contact SU(n)-structures

Examples

From a result by Grantcharov and Ornea the contact reduction of a η -Einstein-Sasaki structure is Sasaki.

Corollary (Conti, -)

 N^{2n+1} with an η -Einstein-Sasaki structure (g, η, ϕ, ψ) , and let S^1 act on M preserving the structure in such a way that 0 is a regular value for the moment map μ and S^1 acts freely on $\mu^{-1}(0)$. Then the Sasaki quotient $M//S^1$ is also η -Einstein if and only if

 $dt \in span < i_X \phi, \eta > 1$

SU(2)-structures in 5-dimensions

Sasakian structures
Sasaki-Einstein structures
Hypo structures η -Einstein structures

Hypo-contact structures

Classification
Consequences
New metrics with holonomy
SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results 5-dimensional Lie groups

SU(n)-structures in (2n + 1)-dimensions

Generalized Killing spinors Contact SU(n)-structures Examples

From a result by Grantcharov and Ornea the contact reduction of a η -Einstein-Sasaki structure is Sasaki.

Corollary (Conti, -)

 N^{2n+1} with an η -Einstein-Sasaki structure (g, η, ϕ, ψ) , and let S¹ act on M preserving the structure in such a way that 0 is a regular value for the moment map μ and S^1 acts freely on $\mu^{-1}(0)$. Then the Sasaki quotient M/S^1 is also η -Einstein if and only if

 $dt \in span < i_X \phi, \eta > .$

SU(2)-structures in 5-dimensions

Sasakian structures Sasaki-Finstein structures Hypo structures η -Einstein structures

Hypo-contact structures Classification

Consequences New metrics with holonomy SU(3)

Sasakian structures on Lie groups

3-dimensional Lie groups General results

5-dimensional Lie groups SU(n)-structures in

(2n + 1)-dimensions Generalized Killing spinors Contact SU(n)-structures

Contact reduction

Examples

