On the geometry of *CR*-submanifolds of product type

Marian Ioan MUNTEANU

Al.I.Cuza University of Iasi, Romania webpage: http://www.math.uaic.ro/~munteanu

Workshop on *CR* and Sasakian Geometry University of Luxembourg : March 24 – 26, 2009

Marian Ioan MUNTEANU (UAIC)

The geometry of CR-submanifolds

Luxembourg, March 2009 1 / 56

< 回 > < 回 > < 回 >

Outline

Outline

CR-submanifoldsBasic Properties

- 2
- CR-products in Kähler manifolds
- CR-products
- Warped product CR-submanifolds in Kähler manifolds
- Twisted product CR-submanifolds in Kähler manifolds
- Doubly warped and doubly twisted product CR-submanifolds
- CR-products in locally conformal Kähler manifolds
 - CR-products
 - Warped products CR-submanifolds
 - Doubly warped product CR-submanifolds
 - Semi-invariant submanifolds in almost contact metric manifolds
 - Contact CR-products in Sasakian manifolds
 - Contact CR-products
 - Contact CR warped products
 - Contact CR-warped products in Kenmotsu manifolds
 - CR doubly warped products in trans-Sasakian manifolds

< 回 > < 三 > < 三 >

$$(M,g) \underset{iso}{\hookrightarrow} (\widetilde{M},\widetilde{g},J)$$
 – Kähler manifold

T(M) its tangent bundle; $T(M)^{\perp}$ its normal bundle

Two important situations occur:

 $(M,g) \underset{iso}{\hookrightarrow} (\widetilde{M},\widetilde{g},J)$ – Kähler manifold

T(M) its tangent bundle; $T(M)^{\perp}$ its normal bundle

Two important situations occur:

• $T_x(M)$ is invariant under the action of J:

$$J(T_x(M)) = T_x(M)$$
 for all $x \in M$

M is called *complex* submanifold or **holomorphic** submanifold

イロト 不得 トイヨト イヨト 三日

 $(M,g) \underset{iso}{\hookrightarrow} (\widetilde{M},\widetilde{g},J)$ – Kähler manifold

T(M) its tangent bundle; $T(M)^{\perp}$ its normal bundle

Two important situations occur:

• $T_x(M)$ is anti-invariant under the action of J:

 $J(T_x(M)) \subset T(M)_x^{\perp}$ for all $x \in M$

M is know as a **totally real** submanifold

Marian Ioan MUNTEANU (UAIC)

The geometry of *CR*-submanifolds

Luxembourg, March 2009 3 / 56

In 1978 A. Bejancu

CR-submanifolds of a K\u00e4hler manifold. I, Proc. Amer. Math. Soc., 69 (1978), 135-142
 CR- submanifolds of a K\u00e4hler manifold. II, Trans. Amer. Math. Soc., 250 (1979), 333-345
 started a study of the geometry of a class of submanifolds situated

between the two classes mentioned above.

Such submanifolds were named CR-submanifolds:

< 回 > < 三 > < 三 >

In 1978 A. Bejancu

 CR-submanifolds of a K\u00e4hler manifold. I, Proc. Amer. Math. Soc., 69 (1978), 135-142
 CR- submanifolds of a K\u00e4hler manifold. II, Trans. Amer. Math. Soc., 250 (1979), 333-345 started a study of the geometry of a class of submanifolds situated between the two classes mentioned above.

Such submanifolds were named *CR*-submanifolds:

M is a **CR-submanifold** of a Kähler manifold $(\widetilde{M}, \widetilde{g}, J)$ if there exists a holomorphic distribution \mathcal{D} on *M*, i.e. $J\mathcal{D}_x = \mathcal{D}_x$, $\forall x \in M$ and such that its orthogonal complement \mathcal{D}^{\perp} is anti-invariant, namely $J\mathcal{D}_x^{\perp} \subset T(M)_x^{\perp}$, $\forall x \in M$.

Marian Ioan MUNTEANU (UAIC)

< 回 > < 三 > < 三 >

• q = 0: the CR-submanifold \Rightarrow holomorphic submanifold;

• q = 0: the *CR*-submanifold \Rightarrow holomorphic submanifold;

 \circ s = 0: the CR-submanifold \Rightarrow totally real submanifold;

- **(**) q = 0: the *CR*-submanifold \Rightarrow holomorphic submanifold;
- **2** s = 0: the *CR*-submanifold \Rightarrow totally real submanifold;
- $q = \dim T_x(M)^{\perp}$: *M* is called a *generic* submanifold;

< ロ > < 同 > < 回 > < 回 > <

- **(**) q = 0: the *CR*-submanifold \Rightarrow holomorphic submanifold;
- 2 s = 0: the *CR*-submanifold \Rightarrow totally real submanifold;
- $q = \dim T_x(M)^{\perp}$: *M* is called a *generic* submanifold;
- $s, q \neq 0$: *M* is called a proper *CR*-submanifold.

イロト 不得 トイヨト イヨト 二重

- q = 0: the *CR*-submanifold \Rightarrow holomorphic submanifold;
- 2 s = 0: the *CR*-submanifold \Rightarrow totally real submanifold;
- $q = \dim T_x(M)^{\perp}$: *M* is called a *generic* submanifold;
- $s, q \neq 0$: *M* is called a proper *CR*-submanifold.

An example of proper generic *CR*-submanifold is furnished by any hypersurface in \widetilde{M} .

Notations

For any X tangent to M: $PX = \tan(JX)$ and $FX = \operatorname{nor}(JX)$ For any N normal to M: $tN = \tan(JN)$ and $fN = \operatorname{nor}(JN)$

Here tan and nor denotes the tangential and respectively the normal component.

Notations

For any X tangent to M: $PX = \tan(JX)$ and $FX = \operatorname{nor}(JX)$ For any N normal to M: $tN = \tan(JN)$ and $fN = \operatorname{nor}(JN)$

Here tan and nor denotes the tangential and respectively the normal component.

Denote by ν the complementary orthogonal subbundle:

 $T(M)^{\perp} = J\mathcal{D}^{\perp} \oplus \nu \qquad J\mathcal{D}^{\perp} \perp \nu$

Notations

For any X tangent to M: $PX = \tan(JX)$ and $FX = \operatorname{nor}(JX)$ For any N normal to M: $tN = \tan(JN)$ and $fN = \operatorname{nor}(JN)$

Here tan and nor denotes the tangential and respectively the normal component.

Denote by ν the complementary orthogonal subbundle:

$$T(M)^{\perp} = J\mathcal{D}^{\perp} \oplus \nu \qquad J\mathcal{D}^{\perp} \perp \nu$$

Denote by / and /^{\perp} the projections on \mathcal{D} and \mathcal{D}^{\perp} respectively.

Marian Ioan MUNTEANU (UAIC)

The geometry of *CR*-submanifolds

Luxembourg, March 2009 6 / 56

イロト 不得 トイヨト イヨト 三日

Submanifold formulas

Gauss and Weingarten formulae (G) $\widetilde{\nabla}_X Y = \nabla_X Y + B(X, Y)$ (W) $\widetilde{\nabla}_X N = -A_N X + \nabla_X^{\perp} N$ for any $X, Y \in \chi(M)$, and $N \in \Gamma^{\infty}(T(M)^{\perp})$.

 ∇ is the induced connection ∇^{\perp} is the normal connection *B* is the second fundamental form A_N is the Weingarten operator

 $g(A_NX, Y) = \widetilde{g}(N, B(X, Y))$

Marian Ioan MUNTEANU (UAIC)

- A TE N - A TE N

< 6 k

Integrability

Proposition (Bejancu - 1979, Blair & Chen - 1979)

The totally real distribution \mathcal{D}^{\perp} of a *CR*-submanifold in a Kähler manifold is always integrable.

Integrability

Proposition (Bejancu - 1979, Blair & Chen - 1979)

The totally real distribution \mathcal{D}^{\perp} of a *CR*-submanifold in a Kähler manifold is always integrable.

Proposition (Blair & Chen - 1979)

The distribution $\ensuremath{\mathcal{D}}$ is integrable if and only if

 $\widetilde{g}(B(X, JY), JZ) = \widetilde{g}(B(JX, Y), JZ)$

for any vectors X, Y in \mathcal{D} and Z in \mathcal{D}^{\perp} .

Marian Ioan MUNTEANU (UAIC)

The geometry of *CR*-submanifolds

Luxembourg, March 2009 8 / 56

Basic Properties

Integrability

Proposition (Bejancu, Kon & Yano - 1981)

For a *CR*-submanifold *M* in a Kähler manifold, the leaf N^{\perp} of \mathcal{D}^{\perp} is totally geodesic in *M* if and only if

 $\widetilde{g}(B(\mathcal{D},\mathcal{D}^{\perp}),J\mathcal{D}^{\perp})=0.$

Marian Ioan MUNTEANU (UAIC)

The geometry of CR-submanifolds

Luxembourg, March 2009 9 / 56

Basic Properties

Integrability

Proposition (Bejancu, Kon & Yano - 1981)

For a *CR*-submanifold *M* in a Kähler manifold, the leaf N^{\perp} of \mathcal{D}^{\perp} is totally geodesic in M if and only if

 $\widetilde{g}(B(\mathcal{D}, \mathcal{D}^{\perp}), J\mathcal{D}^{\perp}) = 0.$

Proposition (Chen - 1981)

If the previous result holds and if the distribution \mathcal{D} is integrable, then

 $A_{NI}JX = -JA_{NI}X$

for all $N \in J\mathcal{D}^{\perp}$.

Marian Ioan MUNTEANU (UAIC)

The geometry of CR-submanifolds

Luxembourg, March 2009 9/56

Every *CR*-submanifold of a Kähler manifold is foliated by totally real submanifolds.

Every *CR*-submanifold of a Kähler manifold is foliated by totally real submanifolds.

Definition (Chen - 1981)

A *CR*-submanifold of a Kähler manifold *M* is called *CR*-product if it is locally a Riemannian product of a holomorphic submanifold N^{\top} and a totally real submanifold N^{\perp} of \widetilde{M} .

< 回 > < 三 > < 三 >

Theorems of characterization

Theorem (Chen - 1981)

A *CR*-submanifold of a Kähler manifold is a *CR*-product if and only if *P* is parallel.

< 回 > < 回 > < 回 >

Theorems of characterization

Theorem (Chen - 1981)

A *CR*-submanifold of a Kähler manifold is a *CR*-product if and only if *P* is parallel.

Proof.

 N^{\top} is a leaf of \mathcal{D} N^{\top} and N^{\perp} are totally geodesic in M

Marian Ioan MUNTEANU (UAIC)

< 回 > < 三 > < 三 >

Theorems of characterization

Theorem (Chen - 1981)

A *CR*-submanifold of a Kähler manifold is a *CR*-product if and only if *P* is parallel.

Proof.

 N^{\top} is a leaf of \mathcal{D} N^{\top} and N^{\perp} are totally geodesic in M

Theorem (Chen - 1981)

A CR-submanifold of a Kähler manifold is a CR-product if and only if

$$A_{J\mathcal{D}^{\perp}}\mathcal{D} = 0.$$

Marian Ioan MUNTEANU (UAIC)

The geometry of *CR*-submanifolds

Luxembourg, March 2009 11 / 56

... and curvature

Lemma

Let M be a CR-product of a Kähler manifold \widetilde{M} . Then for any unit vectors $X \in \mathcal{D}$ and $Z \in \mathcal{D}^{\perp}$ we have $\widetilde{H}_B(X, Z) = 2||B(X, Z)||^2$ where $\widetilde{H}_B(X, Z) = \widetilde{g}(Z, \widetilde{R}_{X,JX}JZ)$ is the holomorphic bisectional curvature of the plane $X \wedge Z$.

★ ∃ > < ∃ >

... and curvature

Lemma

Let M be a CR-product of a Kähler manifold \widetilde{M} . Then for any unit vectors $X \in \mathcal{D}$ and $Z \in \mathcal{D}^{\perp}$ we have $\widetilde{H}_B(X, Z) = 2||B(X, Z)||^2$ where $\widetilde{H}_B(X, Z) = \widetilde{g}(Z, \widetilde{R}_{X,JX}JZ)$ is the holomorphic bisectional curvature of the plane $X \wedge Z$.

Theorem (Chen - 1981)

Let M be a Kähler manifold with negative holomorphic bisectional curvature. Then every CR-product in \widetilde{M} is either a holomorphic submanifold or a totally real submanifold. In particular, there exists no proper CR-product in any complex hyperbolic space $\widetilde{M}(c)$, (c < 0).

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

CR-products in \mathbb{C}^m

Theorem (Chen - 1981)

Every *CR*-product *M* in \mathbb{C}^m is locally the Riemannian product of a holomorphic submanifold in a linear complex subspace C^k and a totally real submanifold of a C^{m-k} , i.e.

$$M = N^{\top} \times N^{\perp} \subset \mathbb{C}^k \times \mathbb{C}^{m-k}.$$

Marian Ioan MUNTEANU (UAIC)

< 日 > < 同 > < 回 > < 回 > < 回 > <

CR-products in $\mathbb{C}P^m$

Segre embedding:

$$S_{sq}: \mathbb{C}P^s \times \mathbb{C}P^q \longrightarrow \mathbb{C}P^{s+q+sq}$$

$$(z_0,\ldots,z_s;w_0,\ldots,w_q)\mapsto (z_0w_0,\ldots,z_iw_j,\ldots,z_sw_q)$$

 $N^{\perp} = q$ -dimensional totally real submanifold in $\mathbb{C}P^q$

3

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

CR-products in $\mathbb{C}P^m$

Segre embedding:

$$S_{sq}: \mathbb{C}P^s imes \mathbb{C}P^q \longrightarrow \mathbb{C}P^{s+q+sq}$$

$$(z_0,\ldots,z_s;w_0,\ldots,w_q)\mapsto (z_0w_0,\ldots,z_iw_j,\ldots,z_sw_q)$$

 $N^{\perp} = q$ -dimensional totally real submanifold in $\mathbb{C}P^q$

 $\mathbb{C}P^{s} \times N^{\perp}$ induces a natural *CR*-product in $\mathbb{C}P^{s+q+sq}$ via S_{sq}

Marian Ioan MUNTEANU (UAIC)

The geometry of CR-submanifolds

Luxembourg, March 2009 14 / 56

3

イロト 不得 トイヨト イヨト

CR-products in $\mathbb{C}P^m$

Segre embedding:

$$S_{sq}: \mathbb{C}P^s \times \mathbb{C}P^q \longrightarrow \mathbb{C}P^{s+q+sq}$$

$$(z_0,\ldots,z_s;w_0,\ldots,w_q)\mapsto (z_0w_0,\ldots,z_iw_j,\ldots,z_sw_q)$$

 $N^{\perp} = q$ -dimensional totally real submanifold in $\mathbb{C}P^q$

 $\mathbb{C}P^{s} \times N^{\perp}$ induces a natural *CR*-product in $\mathbb{C}P^{s+q+sq}$ via S_{sq}

Remark (Chen - 1981)

m = s + q + sq is **the smallest dimension** of $\mathbb{C}P^m$ for admitting a *CR*-product.

Marian Ioan MUNTEANU (UAIC)

The geometry of *CR*-submanifolds

Luxembourg, March 2009 14 / 56

CR-products in $\mathbb{C}P^m$

Segre embedding:

$$S_{sq}: \mathbb{C}P^s \times \mathbb{C}P^q \longrightarrow \mathbb{C}P^{s+q+sq}$$

$$(z_0,\ldots,z_s;w_0,\ldots,w_q)\mapsto (z_0w_0,\ldots,z_iw_j,\ldots,z_sw_q)$$

 $N^{\perp} = q$ -dimensional totally real submanifold in $\mathbb{C}P^q$

 $\mathbb{C}P^{s} \times N^{\perp}$ induces a natural *CR*-product in $\mathbb{C}P^{s+q+sq}$ via S_{sq}

Remark (Chen - 1981)

m = s + q + sq is **the smallest dimension** of $\mathbb{C}P^m$ for admitting a *CR*-product.

Proof.

 $\{X_1, \ldots, X_{2s}\}$; $\{Z_1, \ldots, Z_q\}$ - orthonormal basis in \mathcal{D} , respectively \mathcal{D}^{\perp} Then $\{B(X_i, Z_{\alpha})\}_{i=1,\ldots,2s;\alpha=1,\ldots,q}$ are orthonormal vectors in ν : recall $T(M)^{\perp} = J\mathcal{D}^{\perp} \oplus \nu$

Length of the second fundamental form

Theorem (Chen - 1981)

Let *M* be a *CR*-product in $\mathbb{C}P^m$. Then we have

 $||B||^2 \ge 4$ sq.

If the equality sign holds, then N^{\top} and N^{\perp} are both totally geodesic in $\mathbb{C}P^m$. Moreover, the immersion is rigid^{*}. In this case N^{\top} is a complex space form of constant holomorphic sectional curvature 4, and N^{\perp} is a real space form of constant sectional curvature 1.

* the Riemannian structure on the submanifold *M* is completely determined as well as the second fundamental form and the normal connection

Length of the second fundamental form

If $\mathbb{R}P^q$ is a totally geodesic, totally real submanifold of $\mathbb{C}P^q$, then the composition of the immersions

$$\mathbb{C}P^{s} \times \mathbb{R}P^{q} \longrightarrow \mathbb{C}P^{s} \times \mathbb{C}P^{q} \xrightarrow{S_{s,q}} \mathbb{C}P^{s+q+sq} \longrightarrow \mathbb{C}P^{m}$$

gives the only *CR*-product in $\mathbb{C}P^m$ satisfying the equality.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Warped Products $N^{\perp} \times_f N^{\top}$

 (B, g_B) , (F, g_F) Riemannian manifolds, f > 0 smooth function on B $M = B \times_f F$, $g = g_B + f^2 g_F$

3

・ロト ・ 四ト ・ ヨト ・ ヨト …

Warped Products $N^{\perp} \times_{f} N^{\top}$

 (B, g_B) , (F, g_F) Riemannian manifolds, f > 0 smooth function on B $M = B \times_f F$, $g = g_B + f^2 g_F$

Theorem (Chen - 2001)

If $M = N^{\perp} \times_f N^{\top}$ is a warped product *CR*-submanifold of a Kähler manifold \widetilde{M} such that N^{\perp} is a totaly real submanifold and N^{\top} is a holomorphic submanifold of \widetilde{M} , then *M* is a *CR*-product.

< 日 > < 同 > < 回 > < 回 > < 回 > <

Warped Products $N^{\perp} \times_{f} N^{\top}$

 (B, g_B) , (F, g_F) Riemannian manifolds, f > 0 smooth function on B $M = B \times_f F$, $g = g_B + f^2 g_F$

Theorem (Chen - 2001)

If $M = N^{\perp} \times_f N^{\top}$ is a warped product *CR*-submanifold of a Kähler manifold \widetilde{M} such that N^{\perp} is a totaly real submanifold and N^{\top} is a holomorphic submanifold of \widetilde{M} , then *M* is a *CR*-product.

Proof.

f should be a constant and $A_{JD^{\perp}}D = 0$ is verified.

Marian Ioan MUNTEANU (UAIC)

Warped Products $N^{\perp} \times_{f} N^{\top}$

 (B, g_B) , (F, g_F) Riemannian manifolds, f > 0 smooth function on B $M = B \times_f F$, $g = g_B + f^2 g_F$

Theorem (Chen - 2001)

If $M = N^{\perp} \times_f N^{\top}$ is a warped product *CR*-submanifold of a Kähler manifold \widetilde{M} such that N^{\perp} is a totaly real submanifold and N^{\top} is a holomorphic submanifold of \widetilde{M} , then *M* is a *CR*-product.

Proof.

f should be a constant and $A_{JD^{\perp}}D = 0$ is verified.

Remark (Chen - 2001)

There do not exist warped product *CR*-submanifolds in the for $N^{\perp} \times_f N^{\top}$ other than *CR*-products.

Marian Ioan MUNTEANU (UAIC)

The geometry of CR-submanifolds

Luxembourg, March 2009 17 / 56

Warped Products $N^{\top} \times_{f} N^{\perp}$

By contrast, there exist many warped product *CR*-submanifolds $N^{\top} \times_{f} N^{\perp}$ which are **not** *CR*-products.

< 回 > < 三 > < 三 >

Warped Products $N^{\top} \times_{f} N^{\perp}$

By contrast, there exist many warped product *CR*-submanifolds $N^{\top} \times_{f} N^{\perp}$ which are **not** *CR*-products.

CR-warped products

A (10) A (10)

Warped Products $N^{\top} \times_{f} N^{\perp}$

By contrast, there exist many warped product *CR*-submanifolds $N^{\top} \times_{f} N^{\perp}$ which are **not** *CR*-products.

CR-warped products

Theorem (Chen - 2001)

A proper *CR*-submanifold M of a Kähler manifold M is locally a *CR*-warped product if and only if

$$A_{JZ}X = ((JX)\mu)Z, \quad X \in \mathcal{D}, \ Z \in \mathcal{D}^{\perp}$$

for some function μ on M satisfying $W\mu = 0$, for all $W \in \mathcal{D}^{\perp}$.

Marian Ioan MUNTEANU (UAIC)

The geometry of CR-submanifolds

Luxembourg, March 2009 1

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

18 / 56

Sketch

Proof.

" \Rightarrow " is easy to prove

" \Leftarrow " First \mathcal{D} is integrable and its leaves are totally geodesic in M.

Second, each leaf of \mathcal{D}^{\perp} is an extrinsic sphere, i.e.

a totally umbilical submanifold with parallel mean curvature vector

By a result of S. Hiepko, Math. Ann. - 1979 one gets the warped product

$$M = N^{\top} \times_f N^{\perp}$$

where N^{\top} is a leaf of \mathcal{D} and N^{\perp} is a leaf of \mathcal{D}^{\perp} .

Marian Ioan MUNTEANU (UAIC)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Theorem (Chen - 2001)

Let $M = N^{\top} \times_f N^{\perp}$ be a *CR*-warped product in a Kähler manifold M. Then

• $||B||^2 \ge 2q||\nabla(\log f)||^2$, where $\nabla(\log f)$ is the gradient of $\log f$

Theorem (Chen - 2001)

Let $M = N^{\top} \times_f N^{\perp}$ be a *CR*-warped product in a Kähler manifold M. Then

- $||B||^2 \ge 2q||\nabla(\log f)||^2$, where $\nabla(\log f)$ is the gradient of $\log f$
- If the equality sign holds identically, then N^T is a totally geodesic and N[⊥] is a totally umbilical submanifold of *M*. Moreover, *M* is a minimal submanifold in *M*

Theorem (Chen - 2001)

Let $M = N^{\top} \times_f N^{\perp}$ be a *CR*-warped product in a Kähler manifold M. Then

• $||B||^2 \ge 2q||\nabla(\log f)||^2$, where $\nabla(\log f)$ is the gradient of $\log f$

- ② If the equality sign holds identically, then N^{\top} is a totally geodesic and N^{\perp} is a totally umbilical submanifold of \widetilde{M} . Moreover, *M* is a minimal submanifold in \widetilde{M}
- When *M* is generic and q > 1, the equality sign holds if and only if N^{\perp} is a totally umbilical submanifold of \widetilde{M}

Theorem (Chen - 2001)

Let $M = N^{\top} \times_f N^{\perp}$ be a *CR*-warped product in a Kähler manifold M. Then

- $||B||^2 \ge 2q||\nabla(\log f)||^2$, where $\nabla(\log f)$ is the gradient of $\log f$
- ② If the equality sign holds identically, then N^{\top} is a totally geodesic and N^{\perp} is a totally umbilical submanifold of \widetilde{M} . Moreover, *M* is a minimal submanifold in \widetilde{M}
- When *M* is generic and *q* > 1, the equality sign holds if and only if *N*[⊥] is a totally umbilical submanifold of *M*
- When *M* is generic and q = 1, then the equality sign holds if and only if the characteristic vector of *M* is a principal vector field with zero as its principal curvature.

(In this case *M* is a real hypersurface in *M*.)

イロト 不得 トイヨト イヨト

Equality sign when M = M(c)

For CR-warped products in complex space forms:

Theorem (Chen - 2001)

Let $M = N^{\top} \times_f N^{\perp}$ be a non-trivial *CR*-warped product in a complex space form $\widetilde{M}(c)$, satisfying $||B||^2 = 2q||\nabla(\log f)||^2$. Then

• N^{\top} is a totally geodesic holomorphic submanifold of $\widetilde{M}(c)$. Hence N^{\top} is a complex space form $N^{s}(c)$ of constant holomorphic sectional curvature c

Equality sign when M = M(c)

For CR-warped products in complex space forms:

Theorem (Chen - 2001)

Let $M = N^{\top} \times_f N^{\perp}$ be a non-trivial *CR*-warped product in a complex space form $\widetilde{M}(c)$, satisfying $||B||^2 = 2q||\nabla(\log f)||^2$. Then

- N^T is a totally geodesic holomorphic submanifold of *M*(*c*). Hence N^T is a complex space form N^s(*c*) of constant holomorphic sectional curvature *c*
- 2 N^{\perp} is a totally umbilical totally real submanifold of $\widetilde{M}(c)$. Hence, N^{\perp} is a real space form of constant sectional curvature, say $\epsilon > c/4$

Equality sign when $M = \mathbb{C}^m$

Theorem (Chen - 2001)

A *CR*-warped product $M = N^{\top} \times_f N^{\perp}$ in a complex Euclidean m-space \mathbb{C}^m satisfies the equality if and only if

(1) N^{\top} is an open portion of a complex Euclidean *s* space \mathbb{C}^{s}

Marian Ioan MUNTEANU (UAIC)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Equality sign when $M = \mathbb{C}^m$

Theorem (Chen - 2001)

A *CR*-warped product $M = N^{\top} \times_f N^{\perp}$ in a complex Euclidean m-space \mathbb{C}^m satisfies the equality if and only if

- **(1)** N^{\top} is an open portion of a complex Euclidean *s* space \mathbb{C}^{s}
- 2 N^{\perp} is an open portion of the unit *q*-sphere S^{q}

Equality sign when $M = \mathbb{C}^m$

Theorem (Chen - 2001)

A *CR*-warped product $M = N^{\top} \times_f N^{\perp}$ in a complex Euclidean m-space \mathbb{C}^m satisfies the equality if and only if

- **(1)** N^{\top} is an open portion of a complex Euclidean *s* space \mathbb{C}^{s}
- 2 N^{\perp} is an open portion of the unit *q*-sphere S^{q}
- **③** up to a rigid motion of \mathbb{C}^m , the immersion of $M \subset \mathbb{C}^s \times_f S^q$ into \mathbb{C}^m is

$$r(z,w) = (z_1 + (w_0 - 1)a_1 \sum_{j=1}^n a_j z_j, \dots, z_s + (w_0 - 1)a_s \sum_{j=1}^n a_j z_j,$$

$$w_1 \sum_{j=1}^n a_j z_j, \ldots, w_q \sum_{j=1}^n a_j z_j, 0, \ldots, 0$$

 $z = (z_1, \ldots, z_s) \in \mathbb{C}^s, \ w = (w_0, \ldots, w_q) \in S^q \in \mathbb{E}^{q+1}$

 $f = \sqrt{\langle a, z \rangle^2 + \langle ia, z \rangle^2}, \text{ for some point } a = (a_1, \dots, a_s) \in S^{s-1} \in \mathbb{E}^s.$

イロト 不得 トイヨト イヨト ニヨー

Twisted product $N^{\perp} \times_f N^{\top}$

 (B, g_B) , (F, g_F) Riemannian manifolds, f > 0 smooth function on $B \times F$ $M = B \times_f F$, $g = g_B + f^2 g_F$

Marian Ioan MUNTEANU (UAIC)

The geometry of CR-submanifolds

Luxembourg, March 2009 23 / 56

・ロト ・ 四ト ・ ヨト ・ ヨト

Twisted product $N^{\perp} \times_f N^{\top}$

 (B, g_B) , (F, g_F) Riemannian manifolds, f > 0 smooth function on $B \times F$ $M = B \times_f F$, $g = g_B + f^2 g_F$

Theorem (Chen - 2000)

If $M = N^{\perp} \times_f N^{\top}$ is a twisted product *CR*-submanifold of a Kähler manifold \widetilde{M} such that N^{\perp} is a totaly real submanifold and N^{\top} is a holomorphic submanifold of \widetilde{M} , then *M* is a *CR*-product.

Twisted product $N^{\perp} \times_f N^{\top}$

 (B, g_B) , (F, g_F) Riemannian manifolds, f > 0 smooth function on $B \times F$ $M = B \times_f F$, $g = g_B + f^2 g_F$

Theorem (Chen - 2000)

If $M = N^{\perp} \times_f N^{\top}$ is a twisted product *CR*-submanifold of a Kähler manifold \widetilde{M} such that N^{\perp} is a totaly real submanifold and N^{\top} is a holomorphic submanifold of \widetilde{M} , then *M* is a *CR*-product.

Proof.

Similar to warped product case, *f* should be a constant and $A_{JD^{\perp}}D = 0$ is verified.

Marian Ioan MUNTEANU (UAIC)

The geometry of CR-submanifolds

Luxembourg, March 2009 23 / 56

Twisted product $N^{\top} \times_f N^{\perp}$

CR-submanifolds of the form $N^{\top} \times_f N^{\perp} = CR$ -twisted products

Theorem (Chen - 2000)

Let $M = N^{\top} \times_f N^{\perp}$ be a *CR*-twisted product in a Kähler manifold M. Then

- I||B||² ≥ 2q||∇^T(log f)||², where ∇^T(log f) is the N^T-component of the gradient of log f
- ② If the equality sign holds identically, then N^{\top} is a totally geodesic and N^{\perp} is a totally umbilical submanifold of \widetilde{M} .
- If *M* is generic and *q* > 1, the equality sign holds if and only if N[⊤] is totally geodesic and N[⊥] is a totally umbilical submanifold of *M*

A non-existence result

 (B, g_B) , (F, g_F) Riemannian manifolds, b, f > 0 smooth on B, resp. F

 $M = {}_{f}B \times_{b} F$, $g = f^{2}g_{B} + b^{2}g_{F} \Longrightarrow$ doubly warped product

Similar one defines doubly twisted product

Marian Ioan MUNTEANU (UAIC)

The geometry of CR-submanifolds

Luxembourg, March 2009 25 / 56

A non-existence result

 (B, g_B) , (F, g_F) Riemannian manifolds, b, f > 0 smooth on B, resp. F

$$M = {}_{f}B \times_{b}F, \, g = f^{2}g_{B} + b^{2}g_{F} \Longrightarrow$$
 doubly warped product

Similar one defines doubly twisted product

Theorem (Şahin - 2007)

There do not exist doubly warped (resp. twisted) product *CR*-submanifolds which are not (singly) *CR*-warped (resp. *CR*-twisted) products of the form ${}_{f}N^{\top} \times_{b} N^{\perp}$ such that N^{\top} is a holomorphic submanifold and N^{\perp} is a totally real submanifold of \widetilde{M} .

Marian Ioan MUNTEANU (UAIC)

The geometry of *CR*-submanifolds

Luxembourg, March 2009

25 / 56

Locally conformal Kähler manifolds

 $(\widetilde{M}, J, \widetilde{g})$ Hermitian manifold; $\Omega = \widetilde{g}(X, JY)$ Kähler 2-form \widetilde{M} is **I.c.K.** if there is a closed 1-form ω , globally defined on \widetilde{M} , such that

$$d\Omega = \omega \wedge \Omega$$

 ω is called the *Lee form* of the l.c.K. manifold \widetilde{M} . *Lee vector field*: $\widetilde{g}(X, B) = \omega(X)$, $\widetilde{\nabla}$: the Levi Civita connection of $(\widetilde{M}, \widetilde{g})$

$$(\tilde{\nabla}_X J)Y = \frac{1}{2}(\theta(Y)X - \omega(Y)JX - \tilde{g}(X, Y)A - \Omega(X, Y)B)$$

 $\theta = \omega \circ J$: anti-Lee form A = -JB: anti-Lee vector field

A (1) > A (2) > A (2) > A

Integrability

Proposition (Blair & Chen - 1979)

The totally real distribution \mathcal{D}^{\perp} of a *CR*-submanifold in a locally conformal Kähler manifold is always integrable.

Integrability

Proposition (Blair & Chen - 1979)

The totally real distribution \mathcal{D}^{\perp} of a *CR*-submanifold in a locally conformal Kähler manifold is always integrable.

Proposition (Blair & Dragomir - 2002)

The holomorphic distribution \mathcal{D} is integrable if and only if $\widetilde{g}(B(X, JY), JZ) = \widetilde{g}(B(JX, Y), JZ) - \Omega(X, Y)\theta(Z), X, Y \in \mathcal{D}, Z \in \mathcal{D}^{\perp}.$

Integrability

Proposition (Blair & Chen - 1979)

The totally real distribution \mathcal{D}^{\perp} of a *CR*-submanifold in a locally conformal Kähler manifold is always integrable.

Proposition (Blair & Dragomir - 2002)

The holomorphic distribution \mathcal{D} is integrable if and only if $\widetilde{g}(B(X, JY), JZ) = \widetilde{g}(B(JX, Y), JZ) - \Omega(X, Y)\theta(Z), X, Y \in \mathcal{D}, Z \in \mathcal{D}^{\perp}.$

Proposition (Blair & Dragomir - 2002)

A leaf N^{\perp} of \mathcal{D}^{\perp} is totally geodesic in *M* if and only if

$$\widetilde{g}(B(X,W),JZ)=rac{1}{2} heta(X)\widetilde{g}(Z,W),\ X\in\mathcal{D},\ Z,W\in\mathcal{D}^{\perp}.$$

Marian Ioan MUNTEANU (UAIC)

Ambient Kähler vs. ambient I.c.K.

New phenomena occur if the ambient is I.c.K. but not Kähler.

In general, given a submanifold $M \subset \mathbb{C}^k$ and $N \subset \mathbb{C}^{n-k}$, a conformal change $g_0 \mapsto fg_0$, f > 0 violates the Riemannian product property:

The induced metric on $M \times N \subset (\mathbb{C}^n, fg_0)$ is the product on the induced metrics on M and N, respectively, if and only if $f(z, w) = f_1(z)f_2(w)$, for some smooth $f_1 > 0$ and $f_2 > 0$, where $z \in \mathbb{C}^k$ and $w \in \mathbb{C}^{n-k}$.

Ambient Kähler vs. ambient I.c.K.

New phenomena occur if the ambient is I.c.K. but not Kähler.

In general, given a submanifold $M \subset \mathbb{C}^k$ and $N \subset \mathbb{C}^{n-k}$, a conformal change $g_0 \mapsto fg_0$, f > 0 violates the Riemannian product property:

The induced metric on $M \times N \subset (\mathbb{C}^n, fg_0)$ is the product on the induced metrics on M and N, respectively, if and only if $f(z, w) = f_1(z)f_2(w)$, for some smooth $f_1 > 0$ and $f_2 > 0$, where $z \in \mathbb{C}^k$ and $w \in \mathbb{C}^{n-k}$.

In view of Chen's characterization of *CR*-products in Kähler manifolds, it is natural to ask :

which *CR*-submanifolds of a l.c.K. manifold have a parallel f-structure *P*?

CR-submanifolds with $\nabla P = 0$

Theorem (Blair & Dragomir - 2002)

Let *M* be a proper *CR*-submanifold of a l.c.K. manifold \widetilde{M} . The following statements are equivalent:

- The structure *P* is parallel;
- *M* is locally a Riemannian product $N^{\top} \times N^{\perp}$, where N^{\top} (resp. N^{\perp}) is a complex (resp. anti-invariant) submanifold of \widetilde{M} of complex dimension *s* (resp. of real dimension *q*), and
 - either *M* is normal to the Lee field of *M*
 - or $\tan(B) \neq 0$ and then $\tan(B) \in \mathcal{D}$ and s = 1,
 - i.e. N^{\top} is a complex curve in M.

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

CR-warped product of the form $N^{\perp} \times_f N^{\top}$

A rather different situation occurs in I.c.K. geometry

 $\{U_i\}$ open covering of \widetilde{M} $\{f_i : U_i \longrightarrow \mathbb{R}\}$ such that $\widetilde{g}_i = \exp(-f_i)\widetilde{g}_{|U_i}$ is Kähler metric on U_i $M_i = M \cap U_i, g_i = \widetilde{g}_{i|M_i}$

Theorem (Blair & Dragomir - 2002)

 $M = N^{\perp} \times_f N^{\top}$ warped product *CR*-submanifold of a l.c.K. manifold \widetilde{M} . Then

• N^{\top} is totally umbilical in *M* of mean curvature $||\nabla \log f||$ and $d \log f = \frac{1}{2}\omega$ on \mathcal{D}^{\perp} .

Warped products CR-submanifolds

CR-warped product of the form $N^{\perp} \times_f N^{\perp}$

A rather different situation occurs in I.c.K. geometry

 $\{U_i\}$ open covering of M $\{f_i: U_i \longrightarrow \mathbb{R}\}$ such that $\tilde{g}_i = \exp(-f_i)\tilde{g}_{|U_i|}$ is Kähler metric on U_i $M_i = M \cap U_i, g_i = \tilde{g}_{i \mid M_i}$

Theorem (Blair & Dragomir - 2002)

 $M = N^{\perp} \times_f N^{\perp}$ warped product *CR*-submanifold of a l.c.K. manifold *M*. Then

- **1** N^{\top} is totally umbilical in *M* of mean curvature $||\nabla \log f||$ and $d\log f = \frac{1}{2}\omega$ on \mathcal{D}^{\perp} .
- Each local CR-submanifold M_i is a warped product $N_i^{\perp} \times_{\alpha_i \exp(f_i)} N_i^{\top}$, $\alpha_i > 0$ and $g_i = \exp(-f_i)g_{\perp} + \alpha_i g_{\top}$, i.e. (M_i, q_i) is a Riemannian product.

30/56

Warped products CR-submanifolds

CR-warped product of the form $N^{\perp} \times_f N^{\perp}$

A rather different situation occurs in I.c.K. geometry

 $\{U_i\}$ open covering of M $\{f_i: U_i \longrightarrow \mathbb{R}\}$ such that $\tilde{g}_i = \exp(-f_i)\tilde{g}_{|U_i|}$ is Kähler metric on U_i $M_i = M \cap U_i, g_i = \tilde{g}_{i \mid M_i}$

Theorem (Blair & Dragomir - 2002)

 $M = N^{\perp} \times_f N^{\perp}$ warped product *CR*-submanifold of a l.c.K. manifold *M*. Then

1 N^{\top} is totally umbilical in *M* of mean curvature $||\nabla \log f||$ and $d\log f = \frac{1}{2}\omega$ on \mathcal{D}^{\perp} .

Each local CR-submanifold M_i is a warped product $N_i^{\perp} \times_{\alpha_i \exp(f_i)} N_i^{\top}, \alpha_i > 0 \text{ and } g_i = \exp(-f_i)g_{\perp} + \alpha_i g_{\top},$ i.e. (M_i, g_i) is a Riemannian product.

If M is normal to the Lee vector field B or $tan(B) \in \mathcal{D}$ then M is a *CR*-product and each f_i is constant on $N_i^{\perp} = N^{\perp} \cap U_i$.

Other results

Proposition (Bonanzinga & K.Matsumoto - 2004)

If $M = N^{\top} \times_f N^{\perp}$ is a proper *CR*-warped product in a l.c.K. manifold \widetilde{M} , then the Lee vector field is orthogonal to \mathcal{D}^{\perp} .

Marian Ioan MUNTEANU (UAIC)

The geometry of *CR*-submanifolds

Luxembourg, March 2009 31 / 56

A (10) A (10)

Other results

Proposition (Bonanzinga & K.Matsumoto - 2004)

If $M = N^{\top} \times_f N^{\perp}$ is a proper *CR*-warped product in a l.c.K. manifold \widetilde{M} , then the Lee vector field is orthogonal to \mathcal{D}^{\perp} .

Bonanzinga and K.Matsumoto (2004) give also Chen's type inequalities for the length of the second fundamental form for both kind of *CR*-warped products in I.c.K. manifolds.

A (10) A (10)

A general inequality for doubly warped product CR-submanifolds

Theorem (M. - 2007)

 $M = {}_{f}N^{\top} \times {}_{b}N^{\perp}$ doubly warped product *CR*-submanifold in a l.c.K. manifold \tilde{M} . Then

$$||B||^2 \geq \frac{s}{2} ||\mathcal{B}^{J\mathcal{D}^{\perp}}||^2 + \frac{p}{f^2} \left[||\nabla^{N^{\top}}(\ln b)||_{N^{\top}}^2 + \frac{f^2}{4} ||\mathcal{B}^{\mathcal{D}}||^2 - \omega(\nabla^{N^{\top}}(\ln b)) \right].$$

If the equality sign holds identically, then N^{\top} and N^{\perp} are both totally umbilical submanifolds in \tilde{M} .

Proof.

$$\begin{split} ||B||^2 &= ||B(\mathcal{D},\mathcal{D})||^2 + 2||B(\mathcal{D},\mathcal{D}^{\perp})||^2 + ||B(\mathcal{D}^{\perp},\mathcal{D}^{\perp})||^2 \\ &\quad ||B(U,V)||^2 = ||B_{J\mathcal{D}^{\perp}}(U,V)||^2 + ||B_{\nu}(U,V)||^2 \\ &\quad ||B_{I\mathcal{D}^{\perp}}(\mathcal{D},\mathcal{D})||^2 = \frac{s}{2} ||\mathcal{B}^{J\mathcal{D}^{\perp}}||^2. \end{split}$$

$$||B_{J\mathcal{D}^{\perp}}(\mathcal{D},\mathcal{D}^{\perp})||^{2} = \frac{p}{f^{2}} \Big(||\nabla^{N^{\top}}(\ln b)||^{2}_{N^{\top}} + \frac{f^{2}}{4} ||\mathcal{B}^{\mathcal{D}}||^{2} - \omega(\nabla^{N^{\top}}(\ln b)) \Big).$$

Equality sign in the inequality

Corollary

Let $M = {}_{f}N^{\top} \times {}_{b}N^{\perp}$ be a doubly warped product CR-submanifold and totally geodesic in a l.c.K. manifold \tilde{M} . Then M is generic, i.e. $J_{X}\mathcal{D}_{X}^{\perp} = T(M)_{X}^{\perp}$, M is tangent to the Lee vector field and $\omega_{|_{N^{\top}}} = 2d \ln b$. (Moreover, both sides in the inequality vanish.)

Marian Ioan MUNTEANU (UAIC)

The geometry of CR-submanifolds

Luxembourg, March 2009 33 / 56

• □ ▶ • @ ▶ • ■ ▶ • ■ ▶ ·

Doubly warped product CR-submanifolds

Equality sign in the inequality

Corollary

Let $M = {}_{f}N^{\top} \times {}_{b}N^{\perp}$ be a doubly warped product CR-submanifold and totally geodesic in a l.c.K. manifold M. Then M is generic, i.e. $J_{\mathbf{X}}\mathcal{D}_{\mathbf{X}}^{\perp} = T(M)_{\mathbf{X}}^{\perp}$, M is tangent to the Lee vector field and $\omega_{|_{M^{\top}}} = 2d \ln b.$ (Moreover, both sides in the inequality vanish.)

Theorem (M. - 2007)

Let $M = {}_{f}N^{\top} \times {}_{b}N^{\perp}$ be a doubly warped product, generic *CR*-submanifold in a l.c.K. manifold \tilde{M} , such that $q = \dim N^{\perp} > 2$ and N^{\perp} is totally umbilical in \tilde{M} . Then we have the equality sign.

Marian Ioan MUNTEANU (UAIC)

Equality sign in the inequality

What happens when q = 1?

In this case *M* is a hypersurface in M and let *N* be a normal vector field on *M*, such that Z = JN (which is tangent to N^{\perp}) is of unit length (w.r.t. $g_{N^{\perp}}$). Of course, *Z* generates \mathcal{D}^{\perp} .

Marian Ioan MUNTEANU (UAIC)

4 **A** N A **B** N A **B** N

Equality sign in the inequality

What happens when q = 1?

In this case *M* is a hypersurface in *M* and let *N* be a normal vector field on *M*, such that Z = JN (which is tangent to N^{\perp}) is of unit length (w.r.t. $g_{N^{\perp}}$). Of course, *Z* generates \mathcal{D}^{\perp} .

Theorem (M. - 2007)

Let $M = {}_{f}N^{\top} \times {}_{b}N^{\perp}$ be a doubly warped product, generic *CR*-submanifold of hypersurface type in a l.c.K. manifold \tilde{M} . Then the equality sign holds if and only if A_NZ belongs to the holomorphic distribution \mathcal{D} .

Marian Ioan MUNTEANU (UAIC)

The geometry of CR-submanifolds

Luxembourg, March 2009 34 / 56

Another line of thought, similar to that concerning Sasakian geometry as an odd dimensional version of Kählerian geometry, led to the concept of a *contact CR-submanifold*:

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

Another line of thought, similar to that concerning Sasakian geometry as an odd dimensional version of Kählerian geometry, led to the concept of a *contact CR-submanifold*: a submanifold *M* of an almost contact Riemannian manifold $(\widetilde{M}, (\phi, \xi, \widetilde{\eta}, \widetilde{g}))$ carrying an invariant distribution \mathcal{D} , i.e. $\phi_x \mathcal{D}_x \subseteq \mathcal{D}_x$, for any $x \in M$, such that the orthogonal complement \mathcal{D}^{\perp} of \mathcal{D} in T(M) is anti-invariant, i.e. $\phi_x \mathcal{D}_x^{\perp} \subseteq T(M)_x^{\perp}$, for any $x \in M$.

Another line of thought, similar to that concerning Sasakian geometry as an odd dimensional version of Kählerian geometry, led to the concept of a *contact CR-submanifold*: a submanifold *M* of an almost contact Riemannian manifold $(\widetilde{M}, (\phi, \xi, \widetilde{\eta}, \widetilde{g}))$ carrying an invariant distribution \mathcal{D} , i.e. $\phi_x \mathcal{D}_x \subseteq \mathcal{D}_x$, for any $x \in M$, such that the orthogonal complement \mathcal{D}^{\perp} of \mathcal{D} in T(M) is anti-invariant, i.e. $\phi_x \mathcal{D}_x^{\perp} \subseteq T(M)_x^{\perp}$, for any $x \in M$.

This notion was introduced by A.Bejancu & N.Papaghiuc in Semi-invariant submanifolds of a Sasakian manifold, An. Şt. Univ. "Al.I.Cuza" Iaşi, Matem., 1(1981), 163-170.
by using the terminology of semi-invariant submanifold.

Another line of thought, similar to that concerning Sasakian geometry as an odd dimensional version of Kählerian geometry, led to the concept of a *contact CR-submanifold*: a submanifold *M* of an almost contact Riemannian manifold $(\widetilde{M}, (\phi, \xi, \widetilde{\eta}, \widetilde{g}))$ carrying an invariant distribution \mathcal{D} , i.e. $\phi_x \mathcal{D}_x \subseteq \mathcal{D}_x$, for any $x \in M$, such that the orthogonal complement \mathcal{D}^{\perp} of \mathcal{D} in T(M) is anti-invariant, i.e. $\phi_x \mathcal{D}_x^{\perp} \subseteq T(M)_x^{\perp}$, for any $x \in M$.

This notion was introduced by A.Bejancu & N.Papaghiuc in Semi-invariant submanifolds of a Sasakian manifold, An. Şt. Univ. "Al.I.Cuza" Iaşi, Matem., 1(1981), 163-170.
by using the terminology of semi-invariant submanifold.

It is customary to require that ξ be tangent to M rather than normal which is too restrictive (K. Yano & M. Kon): M must be anti-invariant, i.e. $\phi_x T_x(M) \subseteq T(M)_x^{\perp}$, $x \in M$

Given a contact *CR* submanifold *M* of a Sasakian manifold \widetilde{M} either $\xi \in \mathcal{D}$, or $\xi \in \mathcal{D}^{\perp}$. Therefore

 $T(M) = H(M) \oplus \mathbf{R}\xi \oplus E(M)$

H(M) is the maximally complex, distribution of M; $\phi E(M) \subseteq T(M)^{\perp}$.

Given a contact *CR* submanifold *M* of a Sasakian manifold \widetilde{M} either $\xi \in \mathcal{D}$, or $\xi \in \mathcal{D}^{\perp}$. Therefore

 $T(M) = H(M) \oplus \mathbf{R}\xi \oplus E(M)$

H(M) is the maximally complex, distribution of M; $\phi E(M) \subseteq T(M)^{\perp}$. Both $\mathcal{D} := H(M)$, $\mathcal{D}^{\perp} := E(M) \oplus \mathbb{R}\xi$ $\mathcal{D} := H(M) \oplus \mathbb{R}\xi$, $\mathcal{D}^{\perp} := E(M)$

organize M as a contact CR submanifold

(D) (P) (P) (P) (P) (P)

Given a contact *CR* submanifold *M* of a Sasakian manifold \widetilde{M} either $\xi \in \mathcal{D}$, or $\xi \in \mathcal{D}^{\perp}$. Therefore

$T(M) = H(M) \oplus \mathsf{R}\xi \oplus E(M)$

H(M) is the maximally complex, distribution of M; $\phi E(M) \subseteq T(M)^{\perp}$.

- Both $\mathcal{D} := H(M), \qquad \mathcal{D}^{\perp} := E(M) \oplus \mathbf{R}\xi$
 - $\mathcal{D} := \mathcal{H}(\mathcal{M}) \oplus \mathbf{R}\xi, \ \mathcal{D}^{\perp} := \mathcal{E}(\mathcal{M})$

organize M as a contact CR submanifold

H(M) is never integrable (e.g. Capursi & Dragomir - 1990)

This appears as a basic difference between the complex and contact case: Chen's *CR* or warped *CR* products are always Levi flat.

Given a contact *CR* submanifold *M* of a Sasakian manifold \widetilde{M} either $\xi \in \mathcal{D}$, or $\xi \in \mathcal{D}^{\perp}$. Therefore

$T(M) = H(M) \oplus \mathsf{R}\xi \oplus E(M)$

H(M) is the maximally complex, distribution of M; $\phi E(M) \subseteq T(M)^{\perp}$.

- Both $\mathcal{D} := H(M), \qquad \mathcal{D}^{\perp} := E(M) \oplus \mathbf{R}\xi$
 - $\mathcal{D} := H(M) \oplus \mathbf{R}\xi, \ \mathcal{D}^{\perp} := E(M)$

organize M as a contact CR submanifold

H(M) is never integrable (e.g. Capursi & Dragomir - 1990)

This appears as a basic difference between the complex and contact case: Chen's *CR* or warped *CR* products are always Levi flat.

Therefore, to formulate a contact analog of the notion of warped *CR* product one assumes that

$$\mathcal{D} = \mathcal{H}(\mathcal{M}) \oplus \mathbf{R}\xi$$

Marian Ioan MUNTEANU (UAIC)

The geometry of CR-submanifolds

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

For any X tangent to M: $PX = tan(\phi X)$ and $FX = nor(\phi X)$ For any N normal to M: $tN = tan(\phi N)$ and $fN = nor(\phi N)$

Marian Ioan MUNTEANU (UAIC)

The geometry of *CR*-submanifolds

Luxembourg, March 2009 37 / 56

For any X tangent to M: $PX = tan(\phi X)$ and $FX = nor(\phi X)$ For any N normal to M: $tN = tan(\phi N)$ and $fN = nor(\phi N)$ Denote by ν the complementary orthogonal subbundle:

$$T(M)^{\perp} = \phi \mathcal{D}^{\perp} \oplus \nu \qquad \phi \mathcal{D}^{\perp} \perp \nu$$

For any X tangent to M: $PX = tan(\phi X)$ and $FX = nor(\phi X)$ For any N normal to M: $tN = tan(\phi N)$ and $fN = nor(\phi N)$ Denote by ν the complementary orthogonal subbundle:

 $T(M)^{\perp} = \phi \mathcal{D}^{\perp} \oplus \nu \qquad \phi \mathcal{D}^{\perp} \perp \nu$

Proposition (Yano & Kon - 1983)

In order for a submanifold M, tangent to the structure field ξ of a Sasakian manifold \widetilde{M} to be a contact *CR*-submanifold, it is necessary and sufficient that FP = 0.

Marian Ioan MUNTEANU (UAIC)

For any X tangent to M: $PX = tan(\phi X)$ and $FX = nor(\phi X)$ For any N normal to M: $tN = tan(\phi N)$ and $fN = nor(\phi N)$ Denote by ν the complementary orthogonal subbundle:

 $T(M)^{\perp} = \phi \mathcal{D}^{\perp} \oplus \nu \qquad \phi \mathcal{D}^{\perp} \perp \nu$

Proposition (Yano & Kon - 1983)

In order for a submanifold M, tangent to the structure field ξ of a Sasakian manifold \widetilde{M} to be a contact *CR*-submanifold, it is necessary and sufficient that FP = 0.

Proposition (Yano & Kon - 1983)

The distribution \mathcal{D}^{\perp} is always completely integrable.

Marian Ioan MUNTEANU (UAIC)

The geometry of CR-submanifolds

Luxembourg, March 2009 37 / 56

< 日 > < 同 > < 回 > < 回 > < 回 > <

$$\begin{split} &(\widetilde{M}^{2m+1}, \phi, \xi, \eta, \widetilde{g}) \text{ Sasakian manifold: } \phi \in \mathcal{T}_1^{-1}(\widetilde{M}), \, \xi \in \chi(\widetilde{M}), \, \eta \in \Lambda^1(\widetilde{M}): \\ &\phi^2 = -I + \eta \otimes \xi, \, \phi \xi = 0, \, \eta \circ \phi = 0, \, \eta(\xi) = 1 \\ &d\eta(X, Y) = \widetilde{g}(X, \phi Y) \qquad \text{(the contact condition)} \\ &\widetilde{g}(\phi X, \phi Y) = \widetilde{g}(X, Y) - \eta(X)\eta(Y) \qquad \text{(the compatibility condition)} \end{split}$$

$$(\widetilde{
abla}_U\phi)V = -\widetilde{g}(U,V)\xi + \eta(V)U, \ \ U,V \in \chi(\widetilde{M})$$

Marian Ioan MUNTEANU (UAIC)

э

$$\begin{split} (\widetilde{M}^{2m+1}, \phi, \xi, \eta, \widetilde{g}) \text{ Sasakian manifold: } \phi \in \mathcal{T}_1^{-1}(\widetilde{M}), \, \xi \in \chi(\widetilde{M}), \, \eta \in \Lambda^1(\widetilde{M}): \\ \phi^2 &= -I + \eta \otimes \xi, \, \phi \xi = 0, \, \eta \circ \phi = 0, \, \eta(\xi) = 1 \\ d\eta(X, Y) &= \widetilde{g}(X, \phi Y) \quad \text{(the contact condition)} \\ \widetilde{g}(\phi X, \phi Y) &= \widetilde{g}(X, Y) - \eta(X)\eta(Y) \quad \text{(the compatibility condition)} \\ (\widetilde{\nabla}_U \phi) V &= -\widetilde{g}(U, V)\xi + \eta(V)U, \quad U, \, V \in \chi(\widetilde{M}) \end{split}$$

A semi-invariant submanifold *M* is a *semi-invariant product* if the distribution $H(M) \oplus \{\xi\}$ is integrable and locally *M* is a Riemannian product $M_1 \times M_2$ where M_1 (resp. M_2) is a leaf of $H(M) \oplus \{\xi\}$ (resp. \mathcal{D}^{\perp}) (Bejancu & Papaghiuc – 1982-1984)

38/56

$$\begin{split} (\widetilde{M}^{2m+1}, \phi, \xi, \eta, \widetilde{g}) \text{ Sasakian manifold: } \phi \in \mathcal{T}_1^{-1}(\widetilde{M}), \xi \in \chi(\widetilde{M}), \eta \in \Lambda^1(\widetilde{M}): \\ \phi^2 &= -I + \eta \otimes \xi, \phi \xi = 0, \eta \circ \phi = 0, \eta(\xi) = 1 \\ d\eta(X, Y) &= \widetilde{g}(X, \phi Y) \qquad \text{(the contact condition)} \\ \widetilde{g}(\phi X, \phi Y) &= \widetilde{g}(X, Y) - \eta(X)\eta(Y) \qquad \text{(the compatibility condition)} \\ (\widetilde{\nabla}_U \phi) V &= -\widetilde{g}(U, V)\xi + \eta(V)U, \quad U, V \in \chi(\widetilde{M}) \end{split}$$

A semi-invariant submanifold *M* is a *semi-invariant product* if the distribution $H(M) \oplus \{\xi\}$ is integrable and locally *M* is a Riemannian product $M_1 \times M_2$ where M_1 (resp. M_2) is a leaf of $H(M) \oplus \{\xi\}$ (resp. \mathcal{D}^{\perp}) (Bejancu & Papaghiuc – 1982-1984)

normality tensor: $S(X, Y) = N_{\varphi}(X, Y) - 2tdF(X, Y) + 2d\eta(X, Y)$ where $dF(X, Y) := \nabla_X^{\perp}FY - \nabla_Y^{\perp}FX - F[X, Y]$

Theorem (Bejancu & Papaghiuc - 1983)

A semi-invariant submanifold M of a Sasakian manifold $ilde{M}$ is normal iff

 $A_{FZ}(PX) = PA_{FZ}X$

for all $X \in H(M) \oplus \{\xi\}$ and $Z \in \mathcal{D}^{\perp}$.

Theorem (Bejancu & Papaghiuc - 1983)

A normal semi-invariant submanifold of a Sasakian manifold is a semi-invariant product if and only if the distribution $H(M) \oplus \{\xi\}$ is integrable.

Marian Ioan MUNTEANU (UAIC)

The geometry of *CR*-submanifolds

Luxembourg, March 2009 39 / 56

A contact *CR* submanifold *M* of a Sasakian manifold \widetilde{M} is called *contact CR product* if it is locally a Riemannian product of a ϕ -invariant submanifold N^{\top} tangent to ξ and a totally real submanifold N^{\perp} of \widetilde{M} , i.e. N^{\perp} is ϕ anti-invariant submanifold of \widetilde{M} .

- A TE N - A TE N

A contact *CR* submanifold *M* of a Sasakian manifold \widetilde{M} is called contact *CR* product if it is locally a Riemannian product of a ϕ -invariant submanifold N^{\top} tangent to ξ and a totally real submanifold N^{\perp} of \widetilde{M} , i.e. N^{\perp} is ϕ anti-invariant submanifold of \widetilde{M} .

Theorem (M. - 2005)

Let *M* be a contact *CR* submanifold of a Sasakian manifold *M*, $\xi \in D$. Then *M* is a contact *CR* product if and only if *P* satisfies

$$(\nabla_U P) V = -g(U_D, V)\xi + \eta(V)U_D$$

for all U, V tangent to M where U_D is the D-component of U. N. Papaghiuc (1984) called this relation: P is η -parallel

Marian Ioan MUNTEANU (UAIC)

The geometry of *CR*-submanifolds

Luxembourg, March 2009

40/56

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A
 A
 A

A contact *CR* submanifold *M* of a Sasakian manifold \widetilde{M} is called contact *CR* product if it is locally a Riemannian product of a ϕ -invariant submanifold N^{\top} tangent to ξ and a totally real submanifold N^{\perp} of \widetilde{M} , i.e. N^{\perp} is ϕ anti-invariant submanifold of \widetilde{M} .

Theorem (M. - 2005)

Let *M* be a contact *CR* submanifold of a Sasakian manifold *M*, $\xi \in D$. Then *M* is a contact *CR* product if and only if *P* satisfies

$$(\nabla_U P) V = -g(U_D, V)\xi + \eta(V)U_D$$

for all *U*, *V* tangent to *M* where $U_{\mathcal{D}}$ is the \mathcal{D} -component of *U*. N. Papaghiuc (1984) called this relation: *P* is η -parallel Equivalently: $A_{\phi Z} X = \eta(X)Z$, $X \in \mathcal{D}$, $Z \in \mathcal{D}^{\perp}$ (M. - 2005)

Marian Ioan MUNTEANU (UAIC)

Geometric description of contact CR products in Sasakian space forms

Theorem (M. - 2005)

Let *M* be a complete, generic, simply connected contact *CR* submanifold of a complete, simply connected Sasakian space form $\widetilde{M}^{2m+1}(c)$.

If *M* is a contact *CR* product then

1. either $c \neq -3$ and M is a ϕ anti-invariant submanifold of \widetilde{M} case in which M is locally a Riemannian product of an integral curve of ξ and a totally real submanifold N^{\perp} of \widetilde{M} ,

2. or c = -3 and *M* is locally a Riemannian product of \mathbf{R}^{2s+1} and N^{\perp} where \mathbf{R}^{2s+1} is endowed with the usual Sasakian structure and N^{\perp} is a totally real submanifold of \mathbf{R}^{2m+1} (with the usual Sasakian structure).

 ϕ -holomorphic bisectional curvature

 $\widetilde{H}_{B}(U, V) = \widetilde{R}(\phi U, U, \phi V, V) \text{ for } U, V \in T(\widetilde{M})$

Lemma (Papaghiuc - 1984)

 $\begin{array}{l} M = \text{contact CR-product of a Sasakian manifold } \widetilde{M}^{2m+1}.\\ \text{Then,} \quad \widetilde{H}_{B}(X,Z) = 2 \ \left(||B(X,Z)||^{2} - 1 \right), \ X \in \mathcal{D}, \ Z \in \mathcal{D}^{\perp} \ \text{unitary}. \end{array}$

ϕ -holomorphic bisectional curvature

 $\widetilde{H}_{B}(U, V) = \widetilde{R}(\phi U, U, \phi V, V) \quad \text{for} \quad U, V \in T(\widetilde{M})$

Lemma (Papaghiuc - 1984)

 $\begin{array}{l} M = \text{contact CR-product of a Sasakian manifold } \widetilde{M}^{2m+1}.\\ \text{Then,} \quad \widetilde{H}_{B}(X,Z) = 2 \ \left(||B(X,Z)||^{2} - 1 \right), \ X \in \mathcal{D}, \ Z \in \mathcal{D}^{\perp} \ \text{unitary}. \end{array}$

Theorem (M. - 2005)

Let \widetilde{M} be a Sasakian manifold with $H_B < -2$. Then every contact CR product M in \widetilde{M} is either an invariant submanifold or an anti-invariant submanifold, case in which M is (locally) a Riemannian product of an integral curve of ξ and a ϕ -anti-invariant submanifold of \widetilde{M} .

ϕ -holomorphic bisectional curvature

 $\widetilde{H}_B(U, V) = \widetilde{R}(\phi U, U, \phi V, V) \quad \text{for} \quad U, V \in T(\widetilde{M})$

Lemma (Papaghiuc - 1984)

 $\begin{array}{l} M = \text{contact CR-product of a Sasakian manifold } \widetilde{M}^{2m+1}.\\ \text{Then,} \quad \widetilde{H}_{B}(X,Z) = 2 \ \left(||B(X,Z)||^{2} - 1 \right), \ X \in \mathcal{D}, \ Z \in \mathcal{D}^{\perp} \ \text{unitary}. \end{array}$

Theorem (M. - 2005)

Let \widetilde{M} be a Sasakian manifold with $H_B < -2$. Then every contact CR product M in \widetilde{M} is either an invariant submanifold or an anti-invariant submanifold, case in which M is (locally) a Riemannian product of an integral curve of ξ and a ϕ -anti-invariant submanifold of \widetilde{M} .

Corollary

Let $\widetilde{M}^{2m+1}(c)$, c < -3 be a Sasakian space form. Then there exists no strictly proper contact CR product in \widetilde{M} .

Marian Ioan MUNTEANU (UAIC)

The geometry of CR-submanifolds

Some inequalities

Theorem (Papaghiuc - 1984, M. - 2005)

Let $\widetilde{M}^{2m+1}(c)$ be a Sasakian space form and let $M = N^{\top} \times N^{\perp}$ be a contact *CR* product in \widetilde{M} . Then the norm of the second fundamental form of *M* satisfies the inequality

 $||B||^2 \ge q ((c+3)s+2).$

"=" holds if and only if both N^{\top} and N^{\perp} are totally geodesic in \widetilde{M} .

• □ ▶ • @ ▶ • ■ ▶ • ■ ▶ ·

Some inequalities

Theorem (Papaghiuc - 1984, M. - 2005)

Let $\widetilde{M}^{2m+1}(c)$ be a Sasakian space form and let $M = N^{\top} \times N^{\perp}$ be a contact *CR* product in \widetilde{M} . Then the norm of the second fundamental form of *M* satisfies the inequality

 $||B||^2 \ge q ((c+3)s+2).$

"=" holds if and only if both N^{\top} and N^{\perp} are totally geodesic in \widetilde{M} .

 $\begin{aligned} r: S^{2s+1} \times S^{2q+1} &\longrightarrow S^{2m+1} \quad \mathbf{m} = \mathbf{sq} + \mathbf{s} + \mathbf{q} \\ (x_0, y_0, \dots, x_s, y_s; u_0, v_0, \dots, u_q, v_q) &\longmapsto (\dots, x_j u_\alpha - y_j v_\alpha, x_j v_\alpha + y_j u_\alpha, \dots) \\ M &= S^{2s+1} \times S^p \longrightarrow S^{2s+1} \times S^{2q+1} \xrightarrow{r} S^{2m+1} \\ \text{contact } CR \text{ product in } S^{2m+1} \text{ for which the equality holds.} \end{aligned}$

Marian Ioan MUNTEANU (UAIC)

Some inequalities

Theorem (Papaghiuc - 1984, M. - 2005)

Let *M* be a strictly proper contact *CR* product in a Sasakian space form $\widetilde{M}^{2m+1}(c)$, with $c \neq -3$. Then

 $m \geq sq + s + q$.

Proof.

 $\{B(X_j, Z_\alpha)\}_{i=1,\dots,2s,\alpha=1,\dots,q}$ is a linearly independent system in ν $B(\xi, Z_\alpha) = \phi Z_\alpha \in \phi \mathcal{D}^{\perp}.$

Marian Ioan MUNTEANU (UAIC)

Equality sign holds

Theorem (Papaghiuc - 1984, M. - 2005)

Let $M = N^T \times N^{\perp}$ be a contact *CR* product in a Sasakian space form $\widetilde{M}^{2m+1}(c), c \neq -3$. Let dim $N^T = 2s + 1$, dim $N^{\perp} = p$ and suppose that m = sp + s + p. Then N^T is a totally geodesic submanifold in \widetilde{M} .

Corollary

Let $M = N^T \times N^{\perp}$ be a strictly proper contact CR product in S⁷. Then *M* is a Riemannian product between the sphere S³ and a curve. Moreover, if the norm of the second fundamental form of *M* satisfies the equality case in the inequality we have that *M* is the Riemannian product between S³ and S¹.

Marian Ioan MUNTEANU (UAIC)

Interesting result in S⁷

Theorem (M. - 2005)

Let $M = N^T \times N^{\perp}$ be a strictly proper contact *CR* product in S^7 whose second fundamental form has the norm $\sqrt{6}$. Then *M* is the Riemannian product between S^3 and S^1 and, up to a rigid transformation of **R**⁸ the embedding is given by

 $r: \mathbb{S}^3 \times \mathbb{S}^1 \longrightarrow \mathbb{S}^7$

 $r(x_1, y_1, x_2, y_2, u, v) = (x_1u, y_1u, -y_1v, x_1v, x_2u, y_2u, -y_2v, x_2v).$

Characterization theorem

Theorem (M. - 2005)

Let \widetilde{M} be a Sasakian manifold and let $M = N^{\perp} \times_f N^{\top}$ be a warped product *CR* submanifold such that N^{\perp} is a totally real submanifold and N^{\top} is ϕ holomorphic (invariant) of \widetilde{M} . Then *M* is a *CR* product.

< 回 > < 三 > < 三 >

Characterization theorem

Theorem (M. - 2005)

Let \widetilde{M} be a Sasakian manifold and let $M = N^{\perp} \times_f N^{\top}$ be a warped product *CR* submanifold such that N^{\perp} is a totally real submanifold and N^{\top} is ϕ holomorphic (invariant) of \widetilde{M} . Then *M* is a *CR* product.

A contact *CR* submanifold *M* of a Sasakian manifold \widetilde{M} , tangent to ξ is called a contact *CR* warped product if it is the warped product $N^T \times_f N^\perp$ of an invariant submanifold N^T , tangent to ξ and a totally real submanifold N^\perp of \widetilde{M} .

Characterization theorem

Theorem (M. - 2005)

Let \widetilde{M} be a Sasakian manifold and let $M = N^{\perp} \times_f N^{\top}$ be a warped product *CR* submanifold such that N^{\perp} is a totally real submanifold and N^{\top} is ϕ holomorphic (invariant) of \widetilde{M} . Then *M* is a *CR* product.

A contact *CR* submanifold *M* of a Sasakian manifold \widetilde{M} , tangent to ξ is called *a contact CR warped product* if it is the warped product $N^T \times_f N^\perp$ of an invariant submanifold N^T , tangent to ξ and a totally real submanifold N^\perp of \widetilde{M} .

Theorem (M. - 2005)

A strictly proper *CR* submanifold *M* of a Sasakian manifold *M*, tangent to ξ , is locally a contact *CR* warped product if and only if there exists $\mu \in C^{\infty}(M)$ satisfying $W\mu = 0$ for all $W \in D^{\perp}$.

 $A_{\phi Z}X = (\eta(X) - (\phi X)(\mu)) Z, \quad X \in \mathcal{D}, \ Z \in \mathcal{D}^{\perp}.$

A good geometric inequality

Theorem (I. Mihai - 2004, M. - 2005)

Let $M = N^{\top} \times_f N^{\perp}$ be a contact *CR* warped product of a Sasakian space form $\widetilde{M}^{2m+1}(c)$. Then

$$||B||^2 \ge 2q \left[||\nabla \ln f||^2 - \Delta \ln f + \frac{c+3}{2} s + 1 \right].$$

Marian Ioan MUNTEANU (UAIC)

The geometry of CR-submanifolds

Luxembourg, March 2009 48 / 56

< 日 > < 同 > < 回 > < 回 > < 回 > <

A good geometric inequality

Theorem (I. Mihai - 2004, M. - 2005)

Let $M = N^{\top} \times_f N^{\perp}$ be a contact *CR* warped product of a Sasakian space form $\widetilde{M}^{2m+1}(c)$. Then

$$||B||^2 \ge 2q \left[||\nabla \ln f||^2 - \Delta \ln f + \frac{c+3}{2} s + 1 \right].$$

Proof.

$$\begin{split} ||B(\mathcal{D}, \mathcal{D}^{\perp})||^{2} &= \sum_{j=1}^{2s+1} \sum_{\alpha=1}^{q} ||B(X_{j}, Z_{\alpha})||^{2} \\ ||B_{\phi \mathcal{D}^{\perp}}(\mathcal{D}, \mathcal{D}^{\perp})||^{2} &= \sum_{\alpha=1}^{q} ||\nabla \ln f||^{2} + \sum_{\alpha=1}^{q} ||\phi Z_{\alpha}||^{2} \\ 2\sum_{j=1}^{s} \sum_{\alpha=1}^{q} \{ ||B_{\nu}(e_{j}, Z_{\alpha})||^{2} + ||B_{\nu}(\phi e_{j}, Z_{\alpha})||^{2} \} = (c+3)sq - 2q\Delta(\ln f) . \end{split}$$

(the ambient \widetilde{M} is not necessary a Sasakian space form)

Theorem (Hasegawa & I. Mihai - 2003, M. - 2005)

Let $M = N^{\top} \times_f N^{\perp}$ be a contact *CR* warped product in \widetilde{M} . We have

(the ambient \widetilde{M} is not necessary a Sasakian space form)

Theorem (Hasegawa & I. Mihai - 2003, M. - 2005)

Let $M = N^{\top} \times_f N^{\perp}$ be a contact *CR* warped product in \widetilde{M} . We have (1) $||B||^2 \ge 2q (||\nabla \ln f||^2 + 1)$

Marian Ioan MUNTEANU (UAIC)

4 **A** N A **B** N A **B** N

(the ambient \hat{M} is not necessary a Sasakian space form)

Theorem (Hasegawa & I. Mihai - 2003, M. - 2005)

Let $M = N^{\top} \times_f N^{\perp}$ be a contact *CR* warped product in \widetilde{M} . We have (1) $||B||^2 \ge 2q (||\nabla \ln f||^2 + 1)$ (2) If the equality sign holds, then N^{\top} is a totally geodesic submanifold and N^{\perp} is a totally umbilical submanifold of \widetilde{M} . The product manifold *M* is a minimal submanifold in \widetilde{M} .

4 **A** N A **B** N A **B** N

(the ambient \hat{M} is not necessary a Sasakian space form)

Theorem (Hasegawa & I. Mihai - 2003, M. - 2005)

Let $M = N^{\top} \times_f N^{\perp}$ be a contact *CR* warped product in \widetilde{M} . We have (1) $||B||^2 \ge 2q (||\nabla \ln f||^2 + 1)$ (2) If the equality sign holds, then N^{\top} is a totally geodesic submanifold and N^{\perp} is a totally umbilical submanifold of \widetilde{M} . The product manifold *M* is a minimal submanifold in \widetilde{M} .

(3) <u>The case $TM^{\perp} = \phi D^{\perp}$.</u> If q > 1 then the equality sign holds identically if and only if N^{\perp} is a totally umbilical submanifold of \widetilde{M} .

Marian Ioan MUNTEANU (UAIC)

(the ambient \widetilde{M} is not necessary a Sasakian space form)

Theorem (Hasegawa & I. Mihai - 2003, M. - 2005)

Let $M = N^{\top} \times_f N^{\perp}$ be a contact *CR* warped product in \widetilde{M} . We have (1) $||B||^2 \ge 2q (||\nabla \ln f||^2 + 1)$

(2) If the equality sign holds, then N^{\top} is a totally geodesic submanifold and N^{\perp} is a totally umbilical submanifold of \widetilde{M} . The product manifold Mis a minimal submanifold in \widetilde{M} .

(3) <u>The case $TM^{\perp} = \phi D^{\perp}$.</u> If q > 1 then the equality sign holds identically if and only if N^{\perp} is a totally umbilical submanifold of \widetilde{M} . (4) If q = 1 then the equality sign holds identically if and only if the characteristic vector field $\phi \mu$ of M satisfies $A_{\mu}\phi\mu = -\phi \nabla \ln f - \xi$. (Notice that M is a hypersurface in \widetilde{M} with the unitary normal vector μ).

Marian Ioan MUNTEANU (UAIC)

イロト 不得 トイヨト イヨト 三日

An example of contact *CR*-warped product in \mathbf{R}^{2m+1} satisfying the "good" equality which does not satisfy $||B||^2 = 2q (||\nabla(\ln f)||^2 + 1)$

Let \mathbf{R}^{2s+1} be the Sasakian space form of ϕ sectional curvature -3. Let $S^q \subset \mathbf{R}^{q+1}$ be the unit sphere immersed in the Euclidian space \mathbf{R}^{q+1} . Let \mathbf{R}^{2m+1} be also the Sasakian space form where m = qh + s with h a positive integer, h < s.

Consider the map $r: \mathbb{R}^{2s+1} \times S^q \longrightarrow \mathbb{R}^{2m+1}$ defined by

$$r(\mathbf{x}_1, \mathbf{y}_1, \ldots, \mathbf{x}_s, \mathbf{y}_s, \mathbf{z}, \mathbf{w}^0, \mathbf{w}^1, \ldots, \mathbf{w}^q) =$$

 $(w^{0}x_{1}, w^{0}v_{1}, \ldots, w^{q}x_{1}, w^{q}v_{1}, \ldots, w^{0}x_{h}, w^{0}y_{h}, \ldots, w^{q}x_{h}, w^{q}y_{h}, x_{h+1}, y_{h+1}, \ldots, x_{s}, y_{s}, z)$

where $(w^0)^2 + (w^1)^2 + \ldots + (w^q)^2 = 1$. On \mathbb{R}^{2m+1} we consider the (local) coordinates

 $\{X_i^{\alpha}, Y_i^{\alpha}, X_a, Y_a, Z\}$, $\alpha = 0, \dots, q$, $j = 1, \dots, h$, $a = h + 1, \dots, s$.

With this notation the equations of the map r are given by

$$r: \left\{ \begin{array}{ll} X_i^{\alpha} = w^{\alpha} x_i &, \quad Y_i^{\alpha} = w^{\alpha} y_i \\ X_a = x_a &, \quad Y_a = y_a &, \quad Z = z \end{array} \right.$$

Marian Ioan MUNTEANU (UAIC)

50/56

Proposition (M. - 2005)

We have

(1) r is an isometric immersion between the warped product

 $\mathbb{R}^{2s+1} \times_f S^q$ and \mathbb{R}^{2m+1} . The warped function is $f = \frac{1}{2} \sqrt{\sum_{i=1}^{h} (x_i^2 + y_i^2)}$.

(2) \mathbb{R}^{2s+1} is a $\widetilde{\phi}$ invariant in \mathbb{R}^{2m+1} , i.e. $\widetilde{\phi}(r_*T(\mathbb{R}^{2s+1})) \subset r_*T(\mathbb{R}^{2s+1})$ (3) S^q is a $\widetilde{\phi}$ anti-invariant in \mathbb{R}^{2m+1} , i.e. $\widetilde{\phi}(r_*T(S^q)) \subset (r_*T(S^q))^{\perp}$.

A (10) A (10)

Proposition (M. - 2005)

We have

(1) r is an isometric immersion between the warped product

 $\mathbb{R}^{2s+1} \times_f S^q$ and \mathbb{R}^{2m+1} . The warped function is $f = \frac{1}{2} \sqrt{\sum_{i=1}^{h} (x_i^2 + y_i^2)}$.

(2) \mathbb{R}^{2s+1} is a $\widetilde{\phi}$ invariant in \mathbb{R}^{2m+1} , i.e. $\widetilde{\phi}(r_*T(\mathbb{R}^{2s+1})) \subset r_*T(\mathbb{R}^{2s+1})$ (3) S^q is a $\widetilde{\phi}$ anti-invariant in \mathbb{R}^{2m+1} , i.e. $\widetilde{\phi}(r_*T(S^q)) \subset (r_*T(S^q))^{\perp}$.

Proposition (M. - 2005)

The second fundamental form of $\mathbf{R}^{2s+1} \times_f S^q$ in \mathbf{R}^{2m+1} satisfies

$$||B||^2 = 2q \left\{ ||\nabla \ln f||^2 - \Delta \ln f + 1 \right\}.$$

イロト 不得 トイヨト イヨト 三日

Analogous results

Arslan, Ezentas, I. Mihai, Murathan – 2005

... give estimates for the norm of the second fundamental form for contact CR-warped products isometrically immersed in Kenmotsu manifolds

▶ link

Analogous results

Arslan, Ezentas, I. Mihai, Murathan - 2005

... give estimates for the norm of the second fundamental form for contact CR-warped products isometrically immersed in Kenmotsu manifolds

Corollary (M. - 2007)

Let \widetilde{M} be 1. either an α -Sasakian manifold, 2. or a β -Kenmotsu manifold, 3. or a cosymplectic manifold. There is no proper doubly warped product contact CR-submanifolds in \widetilde{M} . More precisely we have, \checkmark if $\xi \in \mathcal{D}$: $M = \widetilde{N}^{\top} \times_f N^{\perp}$, ξ is tangent to N^{\top} and $f \in C^{\infty}(N^{\top})$. Moreover, in case 2, β is a smooth function on N^{\top} . \checkmark if $\xi \in \mathcal{D}^{\perp}$: 1. *M* is a ϕ -anti-invariant submanifold in \widetilde{M} (dim $\mathcal{D} = 0$); 2-3. $M = \widetilde{N}^{\perp} \times_f N^{\top}$, ξ is tangent to N^{\perp} and $f \in C^{\infty}(N^{\perp})$. Moreover, in case 2, β is a smooth function on N^{\perp} .

▶ link

Non-existence result

An **a.c.m.** structure $(\phi, \xi, \eta, \tilde{g})$ on \tilde{M} is a *trans-Sasakian structure* if $(\tilde{M} \times \mathbf{R}, J, G)$ belongs to the class \mathcal{W}_4 of the Gray-Hervella classification of almost Hermitian manifolds

$$J\left(X,f\frac{d}{dt}\right) = \left(\phi X - f\xi, \eta(X)\frac{d}{dt}\right)$$

G is the product metric on $\widetilde{M} \times \mathbf{R}$.

$$(\widetilde{\nabla}_{X}\phi)\mathbf{Y} = lpha(\mathbf{g}(X,\mathbf{Y})\xi - \eta(\mathbf{Y})X) + eta(\mathbf{g}(\phi X,\mathbf{Y})\xi - \eta(\mathbf{Y})\phi X) \ , \ lpha, eta \in \mathbf{C}^{\infty}$$

Non-existence result

An **a.c.m.** structure $(\phi, \xi, \eta, \tilde{g})$ on \tilde{M} is a *trans-Sasakian structure* if $(\tilde{M} \times \mathbf{R}, J, G)$ belongs to the class \mathcal{W}_4 of the Gray-Hervella classification of almost Hermitian manifolds

$$J\left(X,f\frac{d}{dt}\right) = \left(\phi X - f\xi, \eta(X)\frac{d}{dt}\right)$$

G is the product metric on $\widetilde{M} \times \mathbf{R}$.

$$(\widetilde{
abla}_{X}\phi)\mathbf{Y} = lpha(oldsymbol{g}(X,\mathbf{Y})\xi - \eta(\mathbf{Y})X) + eta(oldsymbol{g}(\phi X,\mathbf{Y})\xi - \eta(\mathbf{Y})\phi X) \ , \ lpha,eta\in\mathbf{C}^{\infty}$$

Theorem (M. - 2007)

There is no proper doubly warped product contact *CR*-submanifolds in trans-Sasakian manifolds.

Marian Ioan MUNTEANU (UAIC)

The geometry of CR-submanifolds

Luxembourg, March 2009 53 / 56

 \mathbf{C}^m the complex space with the usual Kähler structure real global coordinates $(x^1, y^1, \dots, x^m, y^m)$.

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

- \mathbf{C}^m the complex space with the usual Kähler structure real global coordinates $(x^1, y^1, \dots, x^m, y^m)$.
- $M = \mathbf{R} \times_f \mathbf{C}^m$ the warped product between the real line **R** and \mathbf{C}^m $f = e^z$, *z* being the global coordinate on **R**.

・ 伺 ト ・ ヨ ト ・ ヨ ト ・ ヨ

 \mathbf{C}^m the complex space with the usual Kähler structure real global coordinates $(x^1, y^1, \dots, x^m, y^m)$. $\widetilde{M} = \mathbf{R} \times {}_f \mathbf{C}^m$ the warped product between the real line **R** and \mathbf{C}^m $f = e^z$, *z* being the global coordinate on **R**.

 \widetilde{M} is a Kenmotsu manifold

・ 伺 ト ・ ヨ ト ・ ヨ ト ・ ヨ

 \mathbf{C}^m the complex space with the usual Kähler structure real global coordinates $(x^1, y^1, \dots, x^m, y^m)$. $\widetilde{M} = \mathbf{R} \times_f \mathbf{C}^m$ the warped product between the real line \mathbf{R} and \mathbf{C}^m $f = e^z$, *z* being the global coordinate on \mathbf{R} . \widetilde{M} is a Kenmotsu manifold

$$\mathcal{D} = \operatorname{span} \left\{ \frac{\partial}{\partial x^1}, \frac{\partial}{\partial y^1}, \dots, \frac{\partial}{\partial x^s}, \frac{\partial}{\partial y^s} \right\}$$
$$\mathcal{D}^{\perp} = \operatorname{span} \left\{ \frac{\partial}{\partial z}, \frac{\partial}{\partial x^{s+1}}, \dots, \frac{\partial}{\partial x^m} \right\}_{+}$$

are integrable and denote by N^{\top} and N^{\perp} their integral submanifolds

$$g_{N^{ op}} = \sum_{i=1}^{s} \left((dx^i)^2 + (dy^i)^2 \right)$$
, $g_{N^{\perp}} = dz^2 + e^{2z} \sum_{a=s+1}^{m} (dx^a)^2$

イロト 不得 トイヨト イヨト 三日

 \mathbf{C}^m the complex space with the usual Kähler structure real global coordinates $(x^1, y^1, \dots, x^m, y^m)$. $\widetilde{M} = \mathbf{R} \times_f \mathbf{C}^m$ the warped product between the real line \mathbf{R} and \mathbf{C}^m $f = e^z$, *z* being the global coordinate on \mathbf{R} . \widetilde{M} is a Kenmotsu manifold

$$\mathcal{D} = \operatorname{span} \left\{ \frac{\partial}{\partial x^{1}}, \frac{\partial}{\partial y^{1}}, \dots, \frac{\partial}{\partial x^{s}}, \frac{\partial}{\partial y^{s}} \right\}$$
$$\mathcal{D}^{\perp} = \operatorname{span} \left\{ \frac{\partial}{\partial z}, \frac{\partial}{\partial x^{s+1}}, \dots, \frac{\partial}{\partial x^{m}} \right\}_{\perp}$$

are integrable and denote by N^{\top} and N^{\perp} their integral submanifolds

$$g_{N^{ op}} = \sum_{i=1}^{s} \left((dx^i)^2 + (dy^i)^2 \right)$$
, $g_{N^{\perp}} = dz^2 + e^{2z} \sum_{a=s+1}^{m} (dx^a)^2$

Theorem (M. - 2007)

Then, $M = N^{\perp} \times {}_{f}N^{\top}$ is a contact *CR*-submanifold, isometrically immersed in \widetilde{M} .

Marian Ioan MUNTEANU (UAIC)

The geometry of CR-submanifolds

Luxembourg, March 2009

54 / 56

Other Chen's type inequality

M. Djorić, L. Vrancken

Three-dimensional minimal CR submanifolds in S⁶ satisfying Chen's equality

J. Geom. Phys. 56 (2006), no. 11, 2279–2288.

M. Antić, M. Djorić, L. Vrancken 4-dimensional minimal CR submanifolds of the sphere S⁶ satisfying Chen's equality

Differential Geom. Appl. 25 (2007), no. 3, 290–298.

55 / 56

1947 – 2008

Marian Ioan MUNTEANU (UAIC)

The geometry of CR-submanifolds

Luxembourg, March 2009 56 / 56

イロン イボン イヨン イヨン 三連

Thank you for attention!

Marian Ioan MUNTEANU (UAIC)

The geometry of *CR*-submanifolds

Luxembourg, March 2009 56 / 56