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Introduction

M~Given an isometric immersion f:M → ,let σ be the second 
fundamental form and of M. Then J. Deprez defined the 
following immersion in 1985,

(1)

holds for all vector fields X,Y,U,V tangent to M. If
then M is said to be semiparallel [Deprez, J.].
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The semiparallel hypersurfaces of Euclidean space were

classified by J. Deprez in 1986 by the following theorem:

Theorem : [Deprez, J.] Let Mn be a semiparallel
hypersurface of En+1. Then there are three
possibilities :

(1) Mn is flat,

(2) Mn is parallel,

(3) Mn is a round cone, or a product of a round
cone and a linear subspace.
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Later, in 1990 Ü. Lumiste considered that a 
semiparallel submanifold is the second order 
envelope of the family of parallel submanifolds and 
proved the following theorem :

Theorem : [Lumiste, Ü] A submanifold Mm in Nn(c) 
is semisymmetric if and only if Mm is the second-
order envelope of the family of symmetric 
submanifolds in Nn(c).
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Theorem : [Dillen, F.] Let Mn be a semi-parallel
hypersurface of a real space form              with             .

Then there are three possibilities:

(1) n = 2 and M2 is flat,

(2) Mn is parallel,

(3) There exists a totally geodesic , and a vector u 
in the linear subspace ℝ3 of ℝn+2 , containing , such
that Mn is a rotation hypersurface whose profile curve is a 
u-helix lying in        , and whose axis is     . Moreover, 
Mn is intrinsically isometric to a cone. 

)c(M~ 1n 0c 

)c(M~ 2

)c(M~ 2

)c(M~ 2 u

Also, in the case of hypersurfaces in the sphere and the 
hyperbolic space, F. Dillen proved in 1991 that :
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Theorem : [Kon, M.] Let M be an invariant 
submanifold of a Sasakian manifold. Then the 
following conditions are equivalent :

(i) M is totally geodesic.   (ii)

(iii)                                    (iv)

X and Y being arbitrary vector fields on M.

0ξ)σ)(ξ,( YX  ~~

0),X(R~  0)Y,X(R~ 

Also M. Kon studied semiparallellity condition on invariant 
submanifolds of Sasakian manifolds but he did not call it as 
semiparallel. He showed by the next theorem that :
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For a (0,k)-tensor field T, k≥1 and a (0,2) -tensor field A on 
(M,g) we define Q(A,T) by

Q(A,T)(X1,...,Xk;X,Y)=-T((X∧AY)X1,X2,...,Xk)
-...-T(X1,...,Xk-1,(X∧AY)Xk).

Putting into the above formula T=σ and A=g, or A=S, 
respectively, we obtain Q(g,σ) and Q(S,σ), where X∧AY is an 
endomorphism defined by

(X∧AY)Z=A(Y,Z)X - A(X,Z)Y.

In the case A=g we write shortly X∧gY=X∧Y.
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R. Deszcz, L. Verstraelen and Ş. Yaprak obtained some 
results in 1994 on hypersurfaces in 4-dimensional space 
form N⁴(c) satisfying the curvature condition [Deszcz, R., 
Verstraelen, L. and Yaprak, S.]

(2)

A. C. Asperti, G. A. Lobos and F. Mercuri called this type 
submanifolds in 1999 as pseudoparallel ,

),g(QLR  
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where the equation (2) is defined by

)]V)YX(,U()V,U)YX(([L  

)V)Y,X(R,U()V,U)Y,X(R()V,U()Y,X(R 

for all vector fields X, Y, U and V tangent to M.
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Also, in [ Asperti, A. C., Lobos, G. A. and 
Mercuri, F.] in 1999 and 2002 it was shown that  
a pseudoparallel hypersurface of a space form is 
either quasi-umbilical or a cyclic of Dupin.
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On the other hand, C. Murathan, K. Arslan and R. 
Ezentaş defined submanifolds in 2005 satisfying 
the condition

(3)

This kind of submanifolds are called generalized 
Ricci-pseudoparallel,

),S(QLR S 
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where the equation (3) is given by

)V)Y,X(R,U()V,U)Y,X(R()V,U()Y,X(R 

)]V)YX(,U()V,U)YX(([L SSS 

for all vector fields X, Y, U and V tangent to M.
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Also is defined by

for all vector fields X,Y,U,V,W holds on M.

R
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If then the submanifold is said to be 2-
semiparallel [Arslan, K., Lumiste, Ü., 
Murathan, C. and Özgür, C. ].The submanifolds 
satisfying the condition

are called to be 2-pseudoparallel [Özgür, C. 
and Murathan, C.].

0R 

),g(QLR  
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In 1988 H. Endo studied semiparallelity condition 
for an invariant submanifold of a contact metric 
manifold and proved the following theorem:
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Theorem : Let M be an invariant submanifold of a 
contact metric manifold with 2>trh2. Then M is 
semiparallel and σHA+HA σ=0 if and only if it is 
totally geodesic.



Also, in 2007 Özgür, Sular and Murathan proved 
the following theorems:

Theorem : Let M be an invariant submanifold of a contact 
metric manifold with σHA+HA σ=0. Then M is pseudoparallel 
such that    2(1 - Lσ) > trh2 if and only if it is totally geodesic.

Theorem : Let M be an invariant submanifold of a contact 
metric manifold with σHA+HA σ=0. Then M is Ricci-
generalized pseudoparallel such that trh2(2LS -1) > 2(2nLS -1)  
if and only if it is totally geodesic.
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S. Tanno [Tanno, S.] in 1969 classified 
(2n+1)-dimensional almost contact metric 
manifolds M with an almost contact metric 
structure (ϕ,ξ,η,g), whose automorphism group 
possess the maximum dimension (n+1)².

Kenmotsu Manifolds and Their 
Submanifolds
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For such a manifold, the sectional curvature of
plane sections containing ξ is a constant, say c:

(1)If c>0, M is a homogeneous Sasakian manifold 
of constant ϕ-sectional curvature.

(2)If c=0, M is global Riemannian product of a line 
or a circle with a Kaehler manifold of constant 
holomorphic sectional curvature.

(3)If c<0, M is a warped product space ℝ x f ℂ.
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K. Kenmotsu [Kenmotsu, K.] in 1972 
characterized the differential geometric properties 
of manifold of class (3); the structure so obtained 
is now known as Kenmotsu structure.
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Definition

Let be a (2n+1)-dimensional an almost contact metric
manifold with structure (ϕ,ξ,η,g) where ϕ is a tensor field
of type (1,1), ξ is a vector field, η is a 1-form and g is the
Riemannian metric on       satisfying

ϕ²= -I+ η ⊗ξ,       ϕξ=0,        η (ξ) = 1,     η∘ϕ = 0,
g(ϕX,ϕY)=g(X,Y) – η (X) η (Y),

η(X) = g(X,ξ),         g(ϕX,Y)+g(X,ϕY) = 0,

for all vector fields X,Y on [Blair, D.] .

M

M

M

S. SULAR and C. ÖZGÜR



An almost contact metric manifold is said to be a 
Kenmotsu manifold [Kenmotsu, K.1972] if the 
relation

(    Xϕ)Y=g(ϕX,Y)ξ -η(Y)ϕX,         (1)

holds on , where is the Levi-Civita connection 
of g.



M 
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From the equation (1), for a Kenmotsu manifold we 
also have

Xξ = X–η(X)ξ                       (2)

and

(   X η)Y = g(X,Y)ξ - η(X) η(Y).           (3)
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Moreover, the curvature tensor  and the Ricci 
tensor of satisfy

(X,Y)ξ = η(X)Y - η(Y)X             (4)
and

(X,ξ) = -2nη(X).                 (5)

R
S M

R

S
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Now assume that M is an n-dimensional submanifold of a 
Kenmotsu manifold  such that ξ is tangent to . So from 
the Gauss formula

Xξ = ∇X ξ + σ(X,ξ),

which implies from [ Kobayashi, M.1986] that

∇Xξ= X -η(X)ξ        and         σ(X,ξ)=0

for each vector field X tangent to M.

M
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It is also easy to see that for a submanifold M of a 
Kenmotsu manifold 

R(X,Y)ξ = η(X)Y - η(Y)X,

for any vector fields X and Y tangent to M. From the above 
equation

R(ξ, X)ξ = X -η(X)ξ

for a submanifold M of a Kenmotsu manifold .Moreover, 
the Ricci tensor S of a submanifold M satisfy

S(X, ξ)= -(n -1)η(X).

M

M
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Motivated by the studies of the above authors, in 
this study, we consider pseudoparallel, 
generalized Ricci-pseudoparallel and 2-
pseudoparallel submanifolds of  Kenmotsu 
manifolds. We show that these type submanifolds 
are totally geodesic under certain conditions.
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Pseudoparallel Submanifolds of 
Kenmotsu Manifolds

In this section, we give the main results of the 
study. Now we begin with the following:

Theorem : Let M be a submanifold of a Kenmotsu manifold
ξ is tangent to M. Then M is pseudoparallel such that Lσ ≠ -1 
if and only if M is totally geodesic.

M
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As a result of the previous theorem we can give the 
following corollary :

Corollary : Let M be a submanifold of a Kenmotsu manifold 
tangent to ξ. Then M is semiparallel if and only if M is totally 
geodesic.

M
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Theorem : Let M be a submanifold of a Kenmotsu 
manifold , ξ is tangent to M. Then M is generalized 
Ricci-pseudoparallel such that if and only if M is 
totally geodesic.

S
1L

n 1




M
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Theorem : Let M be a submanifold of a Kenmotsu 
manifold , ξ is tangent to M. Then M is 2 -
pseudoparallel such that if and only if M is 
totally geodesic.

M
L 1  
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Example : Let M be a conformally flat invariant submanifold 
of a Kenmotsu manifold . It is known that M is also a 
Kenmotsu manifold. In [Kenmotsu, K.] it is proved that a 
conformally flat Kenmotsu manifold is a manifold of constant 
negative curvature -1. 
Again it is known [O’Neill] that a manifold of constant 
negative curvature -1 is locally isometric with the hyperbolic 
space Hⁿ(-1 ). Hence M satisfies the conditions

⋅σ =  - Q(g,σ),

⋅σ =          Q(S,σ)
and

⋅  σ =  - Q(g ,   σ).

M

R

R

R  

1
n 1
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