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Introduction

M2n 2n-dimensional (compact) manifold

• F non-degenerate 2-form on M2n

• F is symplectic if dF = 0

• J almost complex structure on M2n, i.e.
J ∈ End(TM2n) s.t. J2 = −idTM2n

• J is integrable if it is induced by a complex structure.

Newlander-Nirenberg

J is integrable ⇐⇒ NJ = 0

where

NJ = [JX , JY ]− [X ,Y ]− J[JX ,Y ]− J[X , JY ]

∀X ,Y vector fields on M.
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Introduction

• A Riemannian metric g on (M2n, J) is said to be J-Hermitian if

gJ(JX , JY ) = g(X ,Y ) , ∀X ,Y .

• F symplectic form; J almost complex structure M is said to be
F -calibrated if

gJ [x ](X ,Y ) := F [x ](X , JY )

is a J-Hermitian metric on M.

• (M, J,F , gJ) Kähler, if F is symplectic, J is complex and
F -calibrated.
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Introduction

Weaker conditions

1) dF = 0, J non-integrable.

2) dF 6= 0, J integrable.

1)

• Special symplectic manifolds,

• Geometry of Lagrangian submanifolds.

2)

• Geometry with Torsion,

• Generalized Kähler Geometry,

• Bi-Hermitian Structures,

• Special metrics on Complex manifolds e.g. balanced, strong
KT, astheno-Kähler
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Special Structures on Symplectic Manifolds

Def. A special symplectic Calabi-Yau manifold (SSCY) is the
datum of (M6,F , J, ψ) where

• F is a symplectic structure

• J is a F -calibrated almost complex structure

• gJ(·, ·) := F (·, J·)
• ψ ∈ ∧3,0(M), ψ 6= 0,

s.t.

d<eψ = 0

ψ ∧ ψ =
4

3
i F 3

Rem.
• (M6,F , J, ψ) is in particular Half-flat, in the sense of Hitchin,

Chiossi and Salamon.

• If d<eψ = 0 = d=mψ, then J is a complex structure.

• <eψ is a calibration (see Harvey and Lawson Acta. Math. ’82).
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Special Structures on Symplectic Manifolds

Theorem (P. de Bartolomeis,—, Ann. Inst. Fouriér ’06)
There exists a compact complex manifold M such that
• M has a symplectic structure satisfying the Hard Lefschetz
Condition;
• M admits a SSCY structure;
• M has no Kähler structures.

M = (C3, ∗)/Γ

where ∗ is defined by

t(z1, z2, z3) ∗t (w1,w2,w3) =

t(z1 + w1, e
−w1z2 + w2, e

w1z3 + w3)

and Γ is a certain closed subgroup of (C3, ∗) finitely generated.
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Special Structures on Symplectic Manifolds

• In [D. Conti,—](Quarterly J. ’07) nilmanifolds carrying
SSCY-structures are classified.

• For other results in higher dimensions
[P. de Bartolomeis,—](Inter. J. Math. ’06).
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Strong Kähler with torsion metrics

Let (M2n, J) be a complex manifold.

Def. A Hermitian metric g on (M2n, J) is said to be strong
Kähler with torsion, (SKT), if

∂J∂J F = 0 ,

where F is the fundamental (1, 1)-form of g .

Def. (J. Jost, Y.-T. Yau, Acta Math. ’93). A Hermitian metric g
on (M2n, J) is said to be astheno Kähler, if

∂J∂J F n−2 = 0 .

Rem.
• If (M, J) is a complex surface, then every Hermitian metric is

astheno-Kähler.

• In complex dimension 3, strong KT means astheno-Kähler.
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Bismut connection

(M, J, g) Hermitian manifold.
The Bismut connection ∇B is characterized by the following

∇Bg = 0 , ∇BJ = 0 ,

g(X ,T∇
B

(Y ,Z )) totally skew-symmetric

The torsion form of the Bismut connection

T (X ,Y ,Z ) := g(X ,T∇
B

(Y ,Z ))

is JdF = −dcF .

g(∇B
X Y ,Z ) = g(∇LC

X Y ,Z ) +
1

2
T (X ,Y ,Z ) ,

∀X ,Y ,Z ∈ Γ(M,TM) .

• A Hermitian metric g is strong KT if and only if the torsion form
of the Bismut connection is d-closed.
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Strong Kähler with torsion metrics

• (M, J) compact complex surface ⇒ every conformal class of a
Hermitian metric has a strong KT representative (Gauduchon,
Math. Ann. ’84).

• dimR M > 4 compact examples of strong KT metrics on
nilmanifolds (Fino, Parton, Salamon, Comm. Math. Helv. ’04).
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Link with the Generalized Kähler structures

A generalized Kähler structure on M (GK structure) (see
Gualtieri-Apostolov Comm. Math. Phys. ’07 and Gualtieri DPhil
thesis ’03), is equivalent to assign a triple (g , J+, J−) where:

• g is a Riemannian metric on M

• J+ and J− are two complex structures on M, compatible with
g and such that

dc
+F+ + dc

−F=0 , ddc
+F+ = 0 , ddc

−F− = 0 ,

F+, F− fundamental forms of (g , J+), (g , J−),

dc
+ = i(∂+ − ∂+) , dc

− = i(∂− − ∂−) .

dc
+F+ torsion form of the GK structure.
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Link with the Generalized Kähler structures

Example (M, g , J) Kähler

J+ = J , J− = ±J

⇒ (g , J+, J−) GK structure on M.

�

Rem. If M has a GK structure, then M has a strong KT metric.

Pb. When does a compact complex manifold (M, J) admit a GK
structure (g , J+, J−) with J = J+?

Interesting case: J+ 6= ±J−, i.e. the GK structure is not induced
by a Kähler metric on (M, J).
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Link with the Generalized Kähler structures

Existence results

• (M, J) compact complex surface.

Classification theorem of generalized Kähler structures

(Apostolov and Gualtieri, Comm. Math. Phys. ’07)

• dimR M = 6.

By [Cavalcanti and Gualtieri, J. of Sympl. Geom. ’05]

every nilmanifold carries a GC structure

• dimR M = 2n

there are no nilmanifolds (different from Tori) admitting an
invariant GK structure.

(Cavalcanti, Topol. and its Applic. ’06)
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Link with the Generalized Kähler structures

Compact example

• sa,b solvable Lie algebra defined by:

de1 = a e1 ∧ e2 ,
de2 = 0 ,
de3 = 1

2 a e2 ∧ e3 ,
de4 = 1

2 a e2 ∧ e4 ,
de5 = b e2 ∧ e6 ,
de6 = −b e2 ∧ e5 ,

(1)

a, b real parameters different from zero.

• Sa,b simply-connected Lie group whose Lie algebra is sa,b

(t, x1, x2, x3, x4, x5) global coordinates on R6.
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Link with the Generalized Kähler structures

• Product on Sa,b

(t, x1, x2, x3, x4, x5) · (t ′, x ′1, x
′
2, x
′
3, x
′
4, x
′
5) =

(t + t ′, e−a tx ′1 + x1, e
a
2
tx ′2 + x2, e

a
2
tx ′3 + x3,

x ′4 cos(b t)− x ′5 sin(b t) + x4,

x ′4 sin(b t) + x ′5 cos(b t) + x5).

• Sa,b unimodular semidirect product

R nϕ (R× R2 × R2) ,

ϕ = (ϕ1, ϕ2) diagonal action of R on R× R2 × R2.



Link with the Generalized Kähler structures

• Product on Sa,b

(t, x1, x2, x3, x4, x5) · (t ′, x ′1, x
′
2, x
′
3, x
′
4, x
′
5) =

(t + t ′, e−a tx ′1 + x1, e
a
2
tx ′2 + x2, e

a
2
tx ′3 + x3,

x ′4 cos(b t)− x ′5 sin(b t) + x4,

x ′4 sin(b t) + x ′5 cos(b t) + x5).

• Sa,b unimodular semidirect product

R nϕ (R× R2 × R2) ,

ϕ = (ϕ1, ϕ2) diagonal action of R on R× R2 × R2.



Link with the Generalized Kähler structures

• Product on Sa,b

(t, x1, x2, x3, x4, x5) · (t ′, x ′1, x
′
2, x
′
3, x
′
4, x
′
5) =

(t + t ′, e−a tx ′1 + x1, e
a
2
tx ′2 + x2, e

a
2
tx ′3 + x3,

x ′4 cos(b t)− x ′5 sin(b t) + x4,

x ′4 sin(b t) + x ′5 cos(b t) + x5).

• Sa,b unimodular semidirect product

R nϕ (R× R2 × R2) ,

ϕ = (ϕ1, ϕ2) diagonal action of R on R× R2 × R2.



Link with the Generalized Kähler structures

• Product on Sa,b

(t, x1, x2, x3, x4, x5) · (t ′, x ′1, x
′
2, x
′
3, x
′
4, x
′
5) =

(t + t ′, e−a tx ′1 + x1, e
a
2
tx ′2 + x2, e

a
2
tx ′3 + x3,

x ′4 cos(b t)− x ′5 sin(b t) + x4,

x ′4 sin(b t) + x ′5 cos(b t) + x5).

• Sa,b unimodular semidirect product

R nϕ (R× R2 × R2) ,

ϕ = (ϕ1, ϕ2) diagonal action of R on R× R2 × R2.



Link with the Generalized Kähler structures

Theorem (A. Fino, —, to appear in J. of Sympl. Geom.)

• S1,π
2

has a compact quotient

M6 = S1,π
2
/Γ .

• M6 is the total space of a T2-bundle over the Inoue surface.

• M6 = S1,π
2
/Γ has a non-trivial left invariant GK structure.

• b1(M6) = 1⇒ M6 has no Kähler metrics.
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Link with the Generalized Kähler structures

• GK structure on M6 = S1,π
2
/Γ

ϕ1
+ = e1 + ie2, ϕ2

+ = e3 + ie4, ϕ3
+ = e5 + ie6,

ϕ1
− = e1 − ie2, ϕ2

− = e3 + ie4, ϕ3
− = e5 + ie6.

(ϕ1
±, ϕ

2
±, ϕ

3
±) (1, 0)-forms associated with J±.

• J± integrable.

• g =
6∑

α=1

eα ⊗ eα J±-Hermitian.

Then

dc
+F+ + dc

−F=0 , ddc
+F+ = 0 , ddc

−F− = 0 ,

(g , J+, J−) defines a left-invariant GK structure on M6.

dc
+F+ = e1 ∧ e3 ∧ e4 closed non-exact
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Link with the Generalized Kähler structures

Uniform subgroup

• S1,π
2

is isomorphic to (R6 = R n (R× C× C), ∗) where

(t, u, z ,w) ∗ (t ′, u′, z ′,w ′) = (t + t ′, ctu′ + u,

αtz ′ + z , e i π
2
tw ′ + w),

∀t, t ′, u, u′ ∈ R and z , z ′,w ,w ′ ∈ C.
• Γ is isomorphic to Z n (Z3 × Z2)

g0 : (t, u, z ,w) 7→ (t + 1, cu, αz , iw),

gj : (t, u, z ,w) 7→ (t, u + cj , z + αj ,w), j = 1, 2, 3,

g4 : (t, u, z ,w) 7→ (t, u, z ,w + 1),

g5 : (t, u, z ,w) 7→ (t, u, z ,w + i).

It can be checked that

i) Γ acts freely and in a properly discontinuos way on S1,π
2

ii) S1,π
2
/Γ is compact. Furthermore
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Characterization in terms of currents

We shortly recall some known facts on positive currents on an
n-dimensional complex manifold M.

• Ωp,q(M) (respectively by Dp,q(M)) space of (p, q)-forms
(respectively (p, q)-forms with compact support) on M.

On Dp,q(M) consider the C∞-topology.

• The space of currents of bi-dimension (p, q) or of bi-degree
(n − p, n − q) is the topological dual D′p,q(M) of Dp,q(M).

• A current of bi-dimension (p, q) on M can be locally identified
with a (n − p, n − q)-form on M with coefficients distributions.
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Characterization in terms of currents

• A current T of bi-dimension (p, p) is real if T (ϕ) = T (ϕ), for
any ϕ ∈ Dp,p(M). If T ∈ D′p,p(M) is real, ⇒

T = σn−p

∑
I ,J

TI JdzI ∧ dzJ ,

where σn−p = i (n−p)2

2(n−p) , TI J are distributions on Ω such that

TJI = T I J

and I , J are multi-indices of length n − p, I = (i1, . . . , in−p),

dzI = dzi1 ∧ · · · ∧ dzin−p

.
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Characterization in terms of currents

• A real current T ∈ D′p,p(M) is positive if,

T (σp ϕ
1 ∧ · · · ∧ ϕp ∧ ϕ1 ∧ · · · ∧ ϕp) ≥ 0

for any choice of ϕ1, . . . , ϕp ∈ D1,0(Ω), where σp = ip
2

2p .

• A current T is strictly positive if

ϕ1 ∧ · · · ∧ ϕp 6= 0

⇒

T (σp ϕ
1 ∧ · · · ∧ ϕp ∧ ϕ1 ∧ · · · ∧ ϕp) > 0.
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Characterization in terms of currents

• If F is the fundamental 2-form of a Hermitian structure on a
complex manifold M, then F corresponds to a real strictly positive
current of bi-degree (1, 1).

• N. Egidi (Diff. Geom. and its Appl. ’98) showed that
a compact complex manifold has a strong KT metric if and only if
there is no non-zero positive current of bi-dimension (1, 1) which is
i ∂∂-exact.
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Extension of strong KT metrics

We have the following

Theorem(A. Fino, —, to appear in Adv. in Math.)
Let M be a complex manifold of complex dimension n ≥ 2.
If M \ {p} admits a strong KT metric, then there exists a strong
KT metric on M.

Idea of the proof

It is sufficient to show that

If F is the fundamental 2-form of a strong KT metric on
Bn(r) \ {0}, n ≥ 2, then there exist 0 < R ≤ r and
F̂ ∈ Λ1,1(Bn(R)) such that

i) F̂ is the fundamental 2-form of a strong KT metric on metric
on Bn(R),

ii) F̂ = F on Bn(R) \ Bn( 2
3 R).
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Extension of strong KT metrics

Let F be the fundamental form of a strong KT metric on
Bn(r) \ {0}. Set T = −F . Then by

• By Alessandrini and Bassanelli (Forum Math. ’93) the ∂∂-closed
current T can be extended as a current to Bn(r) by

T 0(ϕ) =

∫
Bn(r)\{0}

F ∧ ϕ , ∀ϕ ∈ Dn−1,n−1(Bn(r))

Set F 0 = −T 0. Then

• By Siu (Inv. Math. ’74), Bassanelli (Forum Math. ’93)

F 0 = ∂G + ∂G , on Bn(R)

for some 0 < R ≤ r , where G is a current of bi-degree (0, 1).

• In fact, G is smooth on Bn(R) \ {0}
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Extension of strong KT metrics

• Finally, we can regularize G , in order that we obtain a ∂∂-closed
and positive (1, 1)-form on Bn(R).

• The last theorem is the generalization of the Miyaoka Extension
Theorem (Proc. Japan Acad. ’74) for Kähler manifolds, to the
strong KT case.

As a corollary, we have the following

Theorem
Let M be a complex manifold of complex dimension n ≥ 2 and M̃
be the blow-up of M at a point p ∈ M.
Then M̃ has a strong KT metric if and only if M admits a strong
KT metric.
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Non-stability of strong KT metrics

Theorem (A. Fino, —, to appear in Adv. in Math.)
On the Iwasawa manifold I(3) = Γ\HC

3 the condition for a
Hermitian metric to be strong KT is not stable under small
deformations of the complex structure underlying the strong KT
structure.

• nt,s family of 2-step nilpotent Lie algebras with structure
equations

de i = 0, i = 1, . . . , 4,

de5 = t(e1 ∧ e2 + 2 e3 ∧ e4) + s(e1 ∧ e3 − e2 ∧ e4),

de6 = s(e1 ∧ e4 + e2 ∧ e3),

t, s ∈ R, s 6= 0.
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Non-stability of strong KT metrics

This family was already considered by Fino and Grantcharov (Adv.
in Math. ’04) for Hermitian structures whose Bismut connection
has holonomy in SU(3) and it was proved that for any t and s 6= 0
the Lie algebra nt,s is isomorphic to the Lie algebra of the complex
Heisenberg group HC

3 with structure equations
de i = 0, i = 1, . . . , 4,

de5 = e1 ∧ e3 − e2 ∧ e4,

de6 = e1 ∧ e4 + e2 ∧ e3,

(see also Lauret Ann. Glob. Anal. and Geom. ’06).
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Non-stability of strong KT metrics

Take the almost complex structure J on nt,s given by

Je1 = e2, Je3 = e4, Je5 = e6. (2)

The associated (1, 0)-forms

ϕ1 = e1 + ie2, ϕ2 = e3 + ie4, ϕ3 = e5 + ie6,

satisfy

dϕi = 0, i = 1, 2,

dϕ3 = −1
2 i t (ϕ1 ∧ ϕ1 + 2ϕ2 ∧ ϕ2) + s ϕ1 ∧ ϕ2,

and therefore J is integrable.

• In this way the Iwasawa manifold I(3) = Γ\HC
3 is endowed with

a family of complex structures Jt,s , with t, s ∈ R and s 6= 0.
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and therefore J is integrable.
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3 is endowed with

a family of complex structures Jt,s , with t, s ∈ R and s 6= 0.
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• For t = 0 and s = 1 the complex structure J coincides with the
bi-invariant complex structure J0 on the complex Heisenberg group.

• The complex structure J0 cannot admit any compatible strong
KT metric, since otherwise it has to be balanced and by
Fino-Parton-Salamon (Comm. Math. Helv. ’04) the balanced
condition is complementary to the strong KT one.

• It can be checked that the Iwasawa manifold (I(3), Jt,s) admits
a strong KT metric compatible with Jt,s if and only if t2 = s2.
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Non-stability of strong KT metrics

• By Ugarte (Transf. Groups. ’07) and Fino-Grantcharov, if there
exists a non-left-invariant strong KT metric compatible with Jt,s ,
then there is also a left-invariant one. This is possible if and only if
t2 = s2.

• Thus if t = s = 1 the Iwasawa manifold has a strong KT metric
g compatible with J1,1, but for any t 6= s 6= 1 there exists no
strong KT metric compatible with the complex structure Jt,s .
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Balanced Hermitian metrics

Let (M, J) be a complex manifold of complex dimension n.

Def. An Hermitian metric g on (M, J) is said to be balanced if

dF n−1 = 0 ,

where F (·, ·) = g(·, J·) is the fundamental form of g.



Balanced Hermitian metrics

Example

• Let ∗ be the product on C3 given by

t(z1, z2, z3) ∗t (w1,w2,w3) =

t(z1 + w1, e
−w1z2 + w2, e

w1z3 + w3)

Then (C3, ∗) has a uniform discrete subgroup Γ and

M = (C3, ∗)/Γ

is a compact complex solvmanifold.



Balanced Hermitian metrics

Then
ϕ1 = dz1 , ϕ2 = ez1dz2 , ϕ3 = e−z1dz3 ,

induce invariant complex (1, 0)-forms on M and

g =
1

2

3∑
j=1

ϕj ⊗ ϕj + ϕj ⊗ ϕj

is a balanced metric on M.



SU(2)-structures

• N 5-dimensional manifold L(N) principal bundle of linear frames
on N.

An SU(2)-structure on N is an SU(2)-reduction of L(N). We have
the following



Proposition(Conti, Salamon Trans. Amer. Math. Soc. ’07)
SU(2)-structures on a 5-manifold N are in 1 : 1 correspondence
with quadruplets (η, ω1, ω2, ω3), where η is a 1-form and ωi are
2-forms on N satisfying

ωi ∧ ωj = δijv , v ∧ η 6= 0,

for some 4-form v, and iXω3 = iYω1 ⇒ ω2(X ,Y ) ≥ 0, where iX
denotes the contraction by X . Equivalently, an SU(2)-structure on
N can be viewed as the datum of (η, ω3,Φ), where η is a 1-form,
ω3 is a 2-form and Φ = ω1 + iω2 is a complex 2-form such that

η ∧ ω2
3 6= 0 , Φ2 = 0

ω3 ∧ Φ = 0 , Φ ∧ Φ = 2ω2
3

and Φ is of type (2, 0) with respect to ω3.
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SU(2)-structures

As a corollary of the last Proposition, we obtain the useful local
characterization of SU(2)-structures (see Conti-Salamon):

Corollary
If (η, ω1, ω2, ω3) is an SU(2)-structure on a 5-dimensional manifold
N, then locally, there exists a basis of 1-forms {e1, . . . , e5} such
that

η = e1, ω1 = e24 + e53, ω2 = e25 + e34, ω3 = e23 + e45 .
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SU(2)-structures

SU(2)-structures naturally arise on hypersurfaces of 6-manifolds
with an SU(3)-structure.
• f : N −→ M oriented hypersurface in a 6-manifold M endowed

with an SU(3)-structure (F ,Ψ+,Ψ−), U the unit normal vector
field. Then

η = −iUF , ω1 = iUΨ−, ω2 = −iUΨ+, ω3 = f ∗F . (3)

defines an SU(2)-structure on N.
• Conversely, an SU(2)-structure (η, ω1, ω2, ω3) on N induces an

SU(3)-structure (F ,Ψ+,Ψ−) on N × R given by

F = ω3 +η∧dt, Ψ = Ψ+ + iΨ− = (ω1 + iω2)∧ (η+ idt), (4)

where t is a coordinate on R.
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Balanced SU(2)-structures

Definition

An SU(2)-structure (η, ω1, ω2, ω3) on a 5-dimensional manifold N
is called balanced if it satisfies

d(ω1 ∧ η) = 0, d(ω2 ∧ η) = 0, d(ω3 ∧ ω3) = 0. (5)
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Balanced SU(2)-structures

In Conti-Salamon (Trans. Amer. Math. Soc. ’07), an
SU(2)-structure is said to be hypo if

d(ω1 ∧ η) = d(ω2 ∧ η) = dω3 = 0 (6)

are satisfied.

Hence,

hypo =⇒ balanced.

• There are nilmanifolds admitting no invariant hypo structure, but
having balanced SU(2)-structures.
The Lie algebras

(0, 0, 0, 12, 14), (0, 0, 12, 13, 23), (0, 0, 12, 13, 14 + 23)

have no hypo structure (Conti-Salamon). We have
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Balanced SU(2)-structures

Proposition
Any 5-dimensional compact nilmanifold has an invariant balanced
SU(2)-structure.

Proof. It is easy to check that the SU(2)-structure given by

η = e1, ω1 = e24 + e53, ω2 = e25 + e34, ω3 = e23 + e45,

defines a balanced SU(2)-structures on each one of these three
Lie algebras.

There exist also 5-dimensional solvable non-nilpotent Lie algebras
with no invariant hypo structure, but having a balanced
SU(2)-structure.
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Balanced SU(2)-structures

• The solvable non-nilpotent Lie algebra

(0, 0, 13,−14, 34)

has a balanced SU(2)-structure, but it has no hypo structure and
the corresponding solvable Lie group G has a compact quotient
N = G/Γ.

η = e1, ω1 = e24 + e53, ω2 = e25 + e34, ω3 = e23 + e45 .

satisfy
d(ω1 ∧ η) = d(ω3 ∧ η) = d(ω3 ∧ ω3) = 0,

and thus they define a balanced SU(2)-structure on N.
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Link with holomorphic symplectic geometry

(X , J) complex surface.

A holomorphic symplectic structure on X is the datum of a
d-closed and non-degenerate (2, 0)-form ω on X .
Let g be a J-Hermitian metric on X and ω3 be the fundamental
form of (g , J). Then, up to a conformal change, we may assume
that

ω2
1 = ω2

2 = ω2
3 .

Then we have the following



Proposition
Let (X , J) be a complex surface equipped with a holomorphic
symplectic structure ω = ω1 + iω2 and let ω3 be the Kähler form
of a J-Hermitian metric g as above. Then, for any integral closed
2-form Ω on X annihilating cos θ ω1 + sin θ ω2 and
− sin θ ω1 + cos θ ω2 for some θ, there is a principal circle bundle
π : N −→ X with connection form ρ such that Ω is the curvature of
ρ and such that the SU(2)-structure (η, ωθ1, ω

θ
2, ω

θ
3) on N given by

η = ρ,

ωθ1 = π∗(cos θ ω1 + sin θ ω2),

ωθ2 = π∗(− sin θ ω1 + cos θ ω2),

ωθ3 = π∗(ω3)

is a balanced SU(2)-structure.



Example

Let X = Γ\G be the Kodaira-Thurston manifold, where the Lie
algebra g of G has the following structure equations

de1 = 0 , de2 = 0 , de3 = 0 , de4 = −e23 .

Then
ϕ1 = e1 + ie4 , ϕ2 = e2 + ie3

ω =
(
e12 + e34

)
+ i
(
e13 − e24

)
= ω1 + iω2

define a complex structure and holomorphic symplectic structure
on X respectively. If g =

∑4
i=1 e i ⊗ e i , then

ω3 = e14 + e23 .

Therefore, the previous Proposition applies.



Differential equations

We establish the evolution equations that allow the construction of
new balanced structures in dimension six from balanced
SU(2)-structures in dimension five.



Proposition (M. Fernández, —, L. Ugarte, R. Villacampa, J.
Math. Phys. ’09)
Let (η(t), ω1(t), ω2(t), ω3(t)) be a family of SU(2)-structures on a
5-manifold N, for t ∈ I = (a, b). Then, the SU(3)-structure on
M = N × I given by

F = ω3(t)+η(t)∧dt, Ψ = (ω1(t)+ iω2(t))∧(η(t)+ idt), (7)

is balanced if and only if (η(t), ω1(t), ω2(t), ω3(t)) is a balanced
SU(2)-structure for any t in the open interval I , and the following
evolution equations

∂t(ω1 ∧ η) = −dω2

∂t(ω2 ∧ η) = dω1

∂t(ω3 ∧ ω3) = −2 d(ω3 ∧ η)

(8)

are satisfied.
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(8)

are satisfied.



Proof. A direct calculation shows that the SU(3)-structure given
by (7) satisfies

dF 2 = d(ω3 ∧ ω3) + (∂t(ω3 ∧ ω3) + 2 d(ω3 ∧ η)) ∧ dt,

and

dΨ = d(ω1 ∧ η)− (∂t(ω1 ∧ η) + dω2) ∧ dt+
i d(ω2 ∧ η)− i (∂t(ω2 ∧ η)− dω1) ∧ dt.

The forms F 2 and Ψ are both closed if and only if
(η(t), ω1(t), ω2(t), ω3(t)) is a balanced SU(2)-structure for any
t ∈ I , and satisfies equations (8).
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Explicit solutions

Lie algebra (0,0,0,12,14):
The family of balanced SU(2)-structures
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satisfies the evolution equations for t ∈ R− {2/3}.
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Explicit solutions

Let I = (−∞, 2/3) and G be the simply-connected nilpotent Lie
group with Lie algebra (0, 0, 0, 12, 14).
The basis of 1-forms on the product manifold G × I given by

α1 = e2, α2 = e3 , α3 = 3

√
2−3t

2 e4,

α4 = 1
2

3

√
2

2−3t (e2 + 2e5)− 2−3t
4 e2 , α5 = 3

√
2−3t

2 e1 , α6 = dt

is orthonormal with respect to the Riemannian metric associated
with the balanced SU(3)-structure on G × I .
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Explicit solutions

The Hermitian balanced structure on G × I is given by

F = e23 − 1
2 e24 + e45 + 2−3t

4
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√
2−3t

2 e24 + 3

√
2−3t

2 e1 ∧ dt,

Ψ+ = 1
2 e123 − e135 − 2−3t

4
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√
2−3t

2 e123 +
3

√
(2−3t)2

4 e124+(
3

√
2

2−3t e25 + 3

√
2−3t

2 e34

)
∧ dt,

Ψ− = e125 +
3

√
(2−3t)2

4 e134 +
(

1
2

3

√
2

2−3t e23 − 2−3t
4 e23+

3

√
2−3t

2 e24 − 3

√
2

2−3t e35
)
∧ dt.
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Examples of manifolds with full holonomy

Theorem M. Fernández, —, L. Ugarte, R. Villacampa, J. Math.
Phys. ’09)
Any 3-dimensional complex-parallelizable (non-abelian) solvable Lie
group has a Hermitian metric such that the holonomy of its
Bismut connection is equal to SU(3).



Examples of manifolds with full holonomy

Example Consider the Lie algebra defined by the complex
structure equations

dϕ1 = dϕ2 = 0, dϕ3 = −ϕ12, dϕ4 = −2ϕ13.

Let ϕj = e2j−1 + i e2j , j = 1, . . . , 4.

Then

de1 = de2 = de3 = de4 = 0, de5 = −e13 + e24,

de6 = −e14 − e23, de7 = −2(e15 − e26),

de8 = −2(e16 + e25).



Examples of manifolds with full holonomy

J complex structure given by

Je1 = −e2, Je2 = e1, Je3 = −e4, Je4 = e3,

Je5 = −e6, Je6 = e5, Je7 = −e8, Je8 = e7.

The fundamental form F associated with the J-Hermitian metric
g =

∑8
i=1 e i ⊗ e i is given by

F =
4∑

j=1

e2j−1 ∧ e2j ,



Examples of manifolds with full holonomy

• g is balanced and the torsion T is given by

T = JdF = e135 +e146 +2e157 +2e168 +e236−e245 +2e258−2e267.

The following curvature forms of the Bismut connection are
linearly independent:



Examples of manifolds with full holonomy

Ω1
3 = −e13 − e24, Ω1

4 = −e14 + e23, Ω1
5 = −4(e15 + e26),

Ω1
6 = −4(e16 − e25), Ω3

4 = 2e12, Ω5
6 = 2(3e12 − e34),

Ω5
7 = −2(e35 + e46), Ω5

8 = −2(e36 − e45),

Ω7
8 = −8(e12 + e56).

This gives a 9-dimensional space.
By computing the covariant the derivative of the curvature it
follows that Hol(∇B)=SU(4).
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