On Special Complex Structures and Hermitian Metrics

A. Tomassini

Università di Parma

"Workshop on CR and Sasakian Geometry" 24-26 March 2009, Université de Luxembourg

M²ⁿ 2n-dimensional (compact) manifold

- F non-degenerate 2-form on M^{2n}
- *F* is *symplectic* if dF = 0
- J almost complex structure on M^{2n} , i.e $J \in \text{End}(TM^{2n})$ s.t. $J^2 = -\text{id}_{TM^{2n}}$
- *J* is *integrable* if it is induced by a complex structure. *Newlander-Nirenberg*

$$J$$
 is integrable $\iff N_J = 0$

where

 $N_J = [JX, JY] - [X, Y] - J[JX, Y] - J[X, JY]$

 $\forall X, Y \text{ vector fields on } M.$

A B > A B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B >
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A

M²ⁿ 2n-dimensional (compact) manifold

- F non-degenerate 2-form on M^{2n}
- *F* is *symplectic* if dF = 0
- J almost complex structure on M^{2n} , i.e. $J \in \text{End}(TM^{2n})$ s.t. $J^2 = -\text{id}_{TM^{2n}}$
- *J* is *integrable* if it is induced by a complex structure. *Newlander-Nirenberg*

$$J$$
 is integrable $\iff N_J = 0$

where

 $N_J = [JX, JY] - [X, Y] - J[JX, Y] - J[X, JY]$

 $\forall X, Y \text{ vector fields on } M.$

A B + A B +
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

M²ⁿ 2n-dimensional (compact) manifold

- F non-degenerate 2-form on M^{2n}
- *F* is *symplectic* if dF = 0
- J almost complex structure on M^{2n} , i.e. $J \in \text{End}(TM^{2n})$ s.t. $J^2 = -\text{id}_{TM^{2n}}$

• *J* is *integrable* if it is induced by a complex structure. *Newlander-Nirenberg*

$$J$$
 is integrable $\iff N_J = 0$

where

 $N_J = [JX, JY] - [X, Y] - J[JX, Y] - J[X, JY]$

M²ⁿ 2n-dimensional (compact) manifold

- F non-degenerate 2-form on M^{2n}
- *F* is *symplectic* if dF = 0
- J almost complex structure on M^{2n} , i.e. $J \in \text{End}(TM^{2n})$ s.t. $J^2 = -\text{id}_{TM^{2n}}$

• *J* is *integrable* if it is induced by a complex structure. *Newlander-Nirenberg*

$$J$$
 is integrable $\iff N_J = 0$

where

 $N_J = [JX, JY] - [X, Y] - J[JX, Y] - J[X, JY]$

 M^{2n} 2*n*-dimensional (compact) manifold

- F non-degenerate 2-form on M^{2n}
- *F* is *symplectic* if dF = 0
- J almost complex structure on M^{2n} , i.e. $J \in \text{End}(TM^{2n})$ s.t. $J^2 = -\text{id}_{TM^{2n}}$
- *J* is *integrable* if it is induced by a complex structure. *Newlander-Nirenberg*

$$J$$
 is integrable $\iff N_J = 0$

where

 $N_J = [JX, JY] - [X, Y] - J[JX, Y] - J[X, JY]$

 M^{2n} 2*n*-dimensional (compact) manifold

- F non-degenerate 2-form on M^{2n}
- *F* is *symplectic* if dF = 0
- J almost complex structure on M^{2n} , i.e. $J \in \text{End}(TM^{2n})$ s.t. $J^2 = -\text{id}_{TM^{2n}}$
- J is *integrable* if it is induced by a complex structure.

```
Newlander-Nirenberg
```

```
J is integrable \iff N_J = 0
```

where

```
N_J = [JX, JY] - [X, Y] - J[JX, Y] - J[X, JY]
```

 $\forall X, Y \text{ vector fields on } M.$

(日) (同) (日) (日)

M²ⁿ 2n-dimensional (compact) manifold

- F non-degenerate 2-form on M^{2n}
- *F* is *symplectic* if dF = 0
- J almost complex structure on M^{2n} , i.e. $J \in \text{End}(TM^{2n})$ s.t. $J^2 = -\text{id}_{TM^{2n}}$
- *J* is *integrable* if it is induced by a complex structure. *Newlander-Nirenberg*

$$J$$
 is integrable $\iff N_J = 0$

where

$$N_J = [JX, JY] - [X, Y] - J[JX, Y] - J[X, JY]$$

M²ⁿ 2n-dimensional (compact) manifold

- F non-degenerate 2-form on M^{2n}
- *F* is *symplectic* if dF = 0
- J almost complex structure on M^{2n} , i.e. $J \in \text{End}(TM^{2n})$ s.t. $J^2 = -\text{id}_{TM^{2n}}$
- *J* is *integrable* if it is induced by a complex structure. *Newlander-Nirenberg*

$$J$$
 is integrable $\iff N_J = 0$

where

$$N_J = [JX, JY] - [X, Y] - J[JX, Y] - J[X, JY]$$

 $\forall X, Y$ vector fields on M.

• A Riemannian metric g on (M^{2n}, J) is said to be *J*-Hermitian if

$$g_J(JX, JY) = g(X, Y), \quad \forall X, Y.$$

• *F* symplectic form; *J* almost complex structure *M* is said to be *F*-calibrated if

$$g_J[x](X,Y) := F[x](X,JY)$$

is a *J*-Hermitian metric on *M*.

• (M, J, F, g_J) Kähler, if F is symplectic, J is complex and F-calibrated.

• A Riemannian metric g on (M^{2n}, J) is said to be *J*-Hermitian if

$$g_J(JX, JY) = g(X, Y), \quad \forall X, Y.$$

• *F* symplectic form; *J* almost complex structure *M* is said to be *F*-calibrated if

$$g_J[x](X,Y) := F[x](X,JY)$$

is a J-Hermitian metric on M.

• (M, J, F, g_J) Kähler, if F is symplectic, J is complex and F-calibrated.

• A Riemannian metric g on (M^{2n}, J) is said to be *J*-Hermitian if

$$g_J(JX, JY) = g(X, Y), \quad \forall X, Y.$$

• *F* symplectic form; *J* almost complex structure *M* is said to be *F*-calibrated if

$$g_J[x](X,Y) := F[x](X,JY)$$

is a J-Hermitian metric on M.

• (M, J, F, g_J) Kähler, if F is symplectic, J is complex and F-calibrated.

- 1) dF = 0, J non-integrable.
- 2) $dF \neq 0$, J integrable.

• Special symplectic manifolds

- Geometry of Lagrangian submanifolds.
- Geometry with Torsion,
- Generalized Kähler Geometry,
- Bi-Hermitian Structures,
- Special metrics on Complex manifolds e.g. balanced, strong KT, astheno-Kähler

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

- 1) dF = 0, J non-integrable.
- 2) $dF \neq 0$, J integrable.

1)

- Special symplectic manifolds,
- Geometry of Lagrangian submanifolds.
- Geometry with Torsion,
- Generalized Kähler Geometry,
- Bi-Hermitian Structures,
- Special metrics on Complex manifolds e.g. balanced, strong KT, astheno-Kähler

- 1) dF = 0, J non-integrable.
- 2) $dF \neq 0$, J integrable.

1)

- Special symplectic manifolds,
- Geometry of Lagrangian submanifolds.
- Geometry with Torsion,
- Generalized Kähler Geometry,
- Bi-Hermitian Structures,
- Special metrics on Complex manifolds e.g. balanced, strong KT, astheno-Kähler

- 1) dF = 0, J non-integrable.
- 2) $dF \neq 0$, J integrable.

1)

- Special symplectic manifolds,
- Geometry of Lagrangian submanifolds.
- Geometry with Torsion,
- Generalized Kähler Geometry,
- Bi-Hermitian Structures,
- Special metrics on Complex manifolds e.g. balanced, strong KT, astheno-Kähler

- 1) dF = 0, J non-integrable.
- 2) $dF \neq 0$, J integrable.

1)

- Special symplectic manifolds,
- Geometry of Lagrangian submanifolds.

2)

- Geometry with Torsion,
- Generalized Kähler Geometry,
- Bi-Hermitian Structures,
- Special metrics on Complex manifolds e.g. balanced, strong KT, astheno-Kähler

・ロト ・ 雪 ト ・ ヨ ト

- 1) dF = 0, J non-integrable.
- 2) $dF \neq 0$, J integrable.

1)

- Special symplectic manifolds,
- Geometry of Lagrangian submanifolds.

2)

- Geometry with Torsion,
- Generalized Kähler Geometry,
- Bi-Hermitian Structures,
- *Special metrics on Complex manifolds e.g.* balanced, strong KT, astheno-Kähler

・ロト ・ 雪 ト ・ ヨ ト

- 1) dF = 0, J non-integrable.
- 2) $dF \neq 0$, J integrable.

1)

- Special symplectic manifolds,
- Geometry of Lagrangian submanifolds.

2)

- Geometry with Torsion,
- Generalized Kähler Geometry,
- Bi-Hermitian Structures,
- Special metrics on Complex manifolds e.g. balanced, strong KT, astheno-Kähler

- 1) dF = 0, J non-integrable.
- 2) $dF \neq 0$, J integrable.

1)

- Special symplectic manifolds,
- Geometry of Lagrangian submanifolds.

2)

- Geometry with Torsion,
- Generalized Kähler Geometry,
- Bi-Hermitian Structures,
- Special metrics on Complex manifolds e.g. balanced, strong KT, astheno-Kähler

- 1) dF = 0, J non-integrable.
- 2) $dF \neq 0$, J integrable.

1)

- Special symplectic manifolds,
- Geometry of Lagrangian submanifolds.

2)

- Geometry with Torsion,
- Generalized Kähler Geometry,
- Bi-Hermitian Structures,
- Special metrics on Complex manifolds e.g. balanced, strong KT, astheno-Kähler

Def. A special symplectic Calabi-Yau manifold (SSCY) is the datum of (M^6, F, J, ψ) where

- F is a symplectic structure
- J is a F-calibrated almost complex structure
- $g_J(\cdot, \cdot) := F(\cdot, J \cdot)$
- $\psi \in \wedge^{3,0}(M)$, $\psi
 eq 0$,

s.t.

$$d\Re e \psi = 0$$

$$\psi \wedge \overline{\psi} = \frac{4}{3} i F^3$$

Rem.

- If $d\Re\mathfrak{e}\,\psi=0=d\Im\mathfrak{m}\,\psi,$ then J is a complex structure.
- $\Re e \psi$ is a *calibration* (see Harvey and Lawson *Acta. Math.* '82

Def. A special symplectic Calabi-Yau manifold (SSCY) is the datum of (M^6, F, J, ψ) where

- F is a symplectic structure
- J is a F-calibrated almost complex structure
- $g_J(\cdot, \cdot) := F(\cdot, J \cdot)$
- $\psi \in \wedge^{3,0}(M)$, $\psi \neq 0$,

s.t.

$$d\Re e \psi = 0$$

$$\psi \wedge \overline{\psi} = \frac{4}{3} i F^3$$

Rem.

- If $d\Re\mathfrak{e}\,\psi=0=d\Im\mathfrak{m}\,\psi,$ then J is a complex structure.
- $\Re e \psi$ is a *calibration* (see Harvey and Lawson *Acta. Math.* '82

Def. A special symplectic Calabi-Yau manifold (SSCY) is the datum of (M^6, F, J, ψ) where

- F is a symplectic structure
- J is a F-calibrated almost complex structure

•
$$g_J(\cdot, \cdot) := F(\cdot, J \cdot)$$

• $\psi \in \wedge^{3,0}(M), \ \psi \neq 0$
s.t.

$$d\Re \mathfrak{e} \psi = 0$$

$$\psi \wedge \overline{\psi} = \frac{4}{3} i F^3$$

Rem.

- If $d\Re\mathfrak{e}\,\psi=0=d\Im\mathfrak{m}\,\psi,$ then J is a complex structure.
- $\Re \mathfrak{e} \psi$ is a *calibration* (see Harvey and Lawson *Acta. Math.* '82

Def. A special symplectic Calabi-Yau manifold (SSCY) is the datum of (M^6, F, J, ψ) where

- F is a symplectic structure
- J is a F-calibrated almost complex structure

•
$$g_J(\cdot, \cdot) := F(\cdot, J \cdot)$$

• $\psi \in \wedge^{3,0}(M), \ \psi \neq 0,$

$$d\Re e \psi = 0$$

 $\psi \wedge \overline{\psi} = \frac{4}{3}i F^3$

Rem.

- If $d\Re\mathfrak{e}\,\psi=0=d\Im\mathfrak{m}\,\psi,$ then J is a complex structure.
- $\Re \mathfrak{e} \psi$ is a *calibration* (see Harvey and Lawson *Acta. Math.* '82

Def. A special symplectic Calabi-Yau manifold (SSCY) is the datum of (M^6, F, J, ψ) where

- F is a symplectic structure
- J is a F-calibrated almost complex structure

•
$$g_J(\cdot, \cdot) := F(\cdot, J \cdot)$$

• $\psi \in \wedge^{3,0}(M), \ \psi \neq 0,$

s.t.

$$d\Re e \psi = 0$$

 $\psi \wedge \overline{\psi} = rac{4}{3}i F^3$

Rem.

- If $d\Re \mathfrak{e} \psi = 0 = d\Im \mathfrak{m} \psi$, then J is a complex structure.
- $\Re e \psi$ is a *calibration* (see Harvey and Lawson *Acta. Math.* '82

Def. A special symplectic Calabi-Yau manifold (SSCY) is the datum of (M^6, F, J, ψ) where

- F is a symplectic structure
- J is a F-calibrated almost complex structure

•
$$g_J(\cdot, \cdot) := F(\cdot, J \cdot)$$

• $\psi \in \wedge^{3,0}(M), \ \psi \neq 0,$

s.t.

$$d\Re e \psi = 0$$

 $\psi \wedge \overline{\psi} = rac{4}{3}i F^3$

Rem.

- If $d\Re \mathfrak{e} \psi = 0 = d\Im \mathfrak{m} \psi$, then J is a complex structure.
- $\Re e \psi$ is a *calibration* (see Harvey and Lawson *Acta. Math.* '82

Def. A special symplectic Calabi-Yau manifold (SSCY) is the datum of (M^6, F, J, ψ) where

- F is a symplectic structure
- J is a F-calibrated almost complex structure

•
$$g_J(\cdot, \cdot) := F(\cdot, J \cdot)$$

• $\psi \in \wedge^{3,0}(M), \ \psi \neq 0,$

$$d\Re \mathfrak{e} \psi = 0$$

$$\psi \wedge \overline{\psi} = \frac{4}{3} i F^3$$

Rem.

- If $d\Re e \psi = 0 = d\Im \mathfrak{m} \psi$, then J is a complex structure.
- $\Re e \psi$ is a *calibration* (see Harvey and Lawson *Acta. Math.* '82

Def. A special symplectic Calabi-Yau manifold (SSCY) is the datum of (M^6, F, J, ψ) where

- F is a symplectic structure
- J is a F-calibrated almost complex structure

•
$$g_J(\cdot, \cdot) := F(\cdot, J \cdot)$$

• $\psi \in \wedge^{3,0}(M), \ \psi \neq 0,$

s.t.

$$d\Re \mathfrak{e} \psi = 0$$

$$\psi \wedge \overline{\psi} = \frac{4}{3} i F^3$$

Rem.

- If $d\Re \mathfrak{e} \psi = 0 = d\Im \mathfrak{m} \psi$, then J is a complex structure.
- $\Re e \psi$ is a *calibration* (see Harvey and Lawson *Acta. Math.* '82

Def. A special symplectic Calabi-Yau manifold (SSCY) is the datum of (M^6, F, J, ψ) where

- F is a symplectic structure
- J is a F-calibrated almost complex structure

•
$$g_J(\cdot, \cdot) := F(\cdot, J \cdot)$$

• $\psi \in \wedge^{3,0}(M), \ \psi \neq 0,$

s.t.

$$d\Re \mathfrak{e} \psi = 0$$

$$\psi \wedge \overline{\psi} = \frac{4}{3} i F^3$$

Rem.

- If $d\Re \mathfrak{e} \psi = 0 = d\Im \mathfrak{m} \psi$, then J is a complex structure.
- $\Re e \psi$ is a *calibration* (see Harvey and Lawson Acta. Math. '82)

Def. A special symplectic Calabi-Yau manifold (SSCY) is the datum of (M^6, F, J, ψ) where

- F is a symplectic structure
- J is a F-calibrated almost complex structure

•
$$g_J(\cdot, \cdot) := F(\cdot, J \cdot)$$

• $\psi \in \wedge^{3,0}(M), \ \psi \neq 0,$

s.t.

$$d\Re \mathfrak{e} \psi = 0$$

$$\psi \wedge \overline{\psi} = \frac{4}{3} i F^3$$

Rem.

• (M^6, F, J, ψ) is in particular *Half-flat*, in the sense of Hitchin, Chiossi and Salamon.

• If $d\Re \mathfrak{e} \psi = 0 = d\Im \mathfrak{m} \psi$, then J is a complex structure.

• $\Re \epsilon \psi$ is a *calibration* (see Harvey and Lawson *Acta. Math.* '82)

Def. A special symplectic Calabi-Yau manifold (SSCY) is the datum of (M^6, F, J, ψ) where

- F is a symplectic structure
- J is a F-calibrated almost complex structure

•
$$g_J(\cdot, \cdot) := F(\cdot, J \cdot)$$

• $\psi \in \wedge^{3,0}(M), \ \psi \neq 0,$

s.t.

$$d\Re \mathfrak{e} \psi = 0$$

$$\psi \wedge \overline{\psi} = \frac{4}{3} i F^3$$

Rem.

• (M^6, F, J, ψ) is in particular *Half-flat*, in the sense of Hitchin, Chiossi and Salamon.

- If $d\Re \mathfrak{e} \psi = 0 = d\Im \mathfrak{m} \psi$, then J is a complex structure.
- $\Re e \psi$ is a *calibration* (see Harvey and Lawson Acta. Math. '82).

Theorem (P. de Bartolomeis, —, Ann. Inst. Fouriér '06)

There exists a compact complex manifold M such that

- *M* has a symplectic structure satisfying the Hard Lefschetz Condition;
- M admits a SSCY structure;
- M has no Kähler structures.

$$M = (\mathbb{C}^3, *)/\Gamma$$

where * is defined by

$${}^{t}(z_{1}, z_{2}, z_{3}) * {}^{t}(w_{1}, w_{2}, w_{3}) =$$

 $^{t}(z_{1}+w_{1},e^{-w_{1}}z_{2}+w_{2},e^{w_{1}}z_{3}+w_{3})$

and Γ is a certain closed subgroup of $(\mathbb{C}^3, *)$ finitely generated.

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト

Theorem (P. de Bartolomeis,—, *Ann. Inst. Fouriér* '06) *There exists a compact complex manifold M such that*

• *M* has a symplectic structure satisfying the Hard Lefschetz Condition;

- M admits a SSCY structure;
- M has no Kähler structures.

$$M = (\mathbb{C}^3, *)/\Gamma$$

where * is defined by

$${}^{t}(z_{1}, z_{2}, z_{3}) * {}^{t}(w_{1}, w_{2}, w_{3}) =$$

 $^{t}(z_{1}+w_{1},e^{-w_{1}}z_{2}+w_{2},e^{w_{1}}z_{3}+w_{3})$

and Γ is a certain closed subgroup of $(\mathbb{C}^3, *)$ finitely generated.

Theorem (P. de Bartolomeis,—, *Ann. Inst. Fouriér* '06) *There exists a compact complex manifold M such that*

- *M* has a symplectic structure satisfying the Hard Lefschetz Condition;
- M admits a SSCY structure;
- M has no Kähler structures.

$$M = (\mathbb{C}^3, *)/\Gamma$$

where * is defined by

$${}^{t}(z_{1}, z_{2}, z_{3}) * {}^{t}(w_{1}, w_{2}, w_{3}) =$$

 $^{t}(z_{1}+w_{1},e^{-w_{1}}z_{2}+w_{2},e^{w_{1}}z_{3}+w_{3})$

and Γ is a certain closed subgroup of $(\mathbb{C}^3, *)$ finitely generated.

Theorem (P. de Bartolomeis,—, *Ann. Inst. Fouriér* '06) *There exists a compact complex manifold M such that*

- *M* has a symplectic structure satisfying the Hard Lefschetz Condition;
- M admits a SSCY structure;
- M has no Kähler structures.

$$M = (\mathbb{C}^3, *)/\Gamma$$

where * is defined by

$${}^{t}(z_{1}, z_{2}, z_{3}) * {}^{t}(w_{1}, w_{2}, w_{3}) =$$

 $^{t}(z_{1}+w_{1},e^{-w_{1}}z_{2}+w_{2},e^{w_{1}}z_{3}+w_{3})$

and Γ is a certain closed subgroup of $(\mathbb{C}^3, *)$ finitely generated.

Theorem (P. de Bartolomeis,—, *Ann. Inst. Fouriér* '06) *There exists a compact complex manifold M such that*

- *M* has a symplectic structure satisfying the Hard Lefschetz Condition;
- M admits a SSCY structure;
- M has no Kähler structures.

$$M = (\mathbb{C}^3, *)/\Gamma$$

where * is defined by

$${}^{t}(z_{1}, z_{2}, z_{3}) * {}^{t}(w_{1}, w_{2}, w_{3}) =$$

 $^{t}(z_{1}+w_{1},e^{-w_{1}}z_{2}+w_{2},e^{w_{1}}z_{3}+w_{3})$

and Γ is a certain closed subgroup of $(\mathbb{C}^3, *)$ finitely generated.

Theorem (P. de Bartolomeis,—, *Ann. Inst. Fouriér* '06) *There exists a compact complex manifold M such that*

- *M* has a symplectic structure satisfying the Hard Lefschetz Condition;
- M admits a SSCY structure;
- M has no Kähler structures.

$$M = (\mathbb{C}^3, *)/\Gamma$$

where * is defined by

$${}^{t}(z_{1}, z_{2}, z_{3}) * {}^{t}(w_{1}, w_{2}, w_{3}) =$$

 $t(z_1 + w_1, e^{-w_1}z_2 + w_2, e^{w_1}z_3 + w_3)$

and Γ is a certain closed subgroup of $(\mathbb{C}^3, *)$ finitely generated.

Theorem (P. de Bartolomeis,—, *Ann. Inst. Fouriér* '06) *There exists a compact complex manifold M such that*

- *M* has a symplectic structure satisfying the Hard Lefschetz Condition;
- M admits a SSCY structure;
- M has no Kähler structures.

$$M = (\mathbb{C}^3, *)/\Gamma$$

where * is defined by

$${}^{t}(z_{1}, z_{2}, z_{3}) * {}^{t}(w_{1}, w_{2}, w_{3}) =$$

 ${}^{t}(z_{1} + w_{1}, e^{-w_{1}}z_{2} + w_{2}, e^{w_{1}}z_{3} + w_{3})$

and Γ is a certain closed subgroup of $(\mathbb{C}^3, *)$ finitely generated.

(日)、

Theorem (P. de Bartolomeis,—, *Ann. Inst. Fouriér* '06) *There exists a compact complex manifold M such that*

- *M* has a symplectic structure satisfying the Hard Lefschetz Condition;
- M admits a SSCY structure;
- M has no Kähler structures.

$$M = (\mathbb{C}^3, *)/\Gamma$$

where * is defined by

$${}^{t}(z_{1}, z_{2}, z_{3}) * {}^{t}(w_{1}, w_{2}, w_{3}) =$$

 ${}^{t}(z_{1} + w_{1}, e^{-w_{1}}z_{2} + w_{2}, e^{w_{1}}z_{3} + w_{3})$

and Γ is a certain closed subgroup of $(\mathbb{C}^3, *)$ finitely generated.

• In [D. Conti,—](*Quarterly J.* '07) nilmanifolds carrying SSCY-structures are classified.

• For other results in higher dimensions [P. de Bartolomeis,—](*Inter. J. Math.* '06)

• In [D. Conti,—](*Quarterly J.* '07) nilmanifolds carrying SSCY-structures are classified.

• For other results in higher dimensions [P. de Bartolomeis,—](*Inter. J. Math.* '06).

Let (M^{2n}, J) be a complex manifold.

Def. A Hermitian metric g on (M^{2n}, J) is said to be *strong* Kähler with torsion, (SKT), if

$$\partial_{J}\overline{\partial}_{J}F=0,$$

where F is the fundamental (1, 1)-form of g.

Def. (J. Jost, Y.-T. Yau, Acta Math. '93). A Hermitian metric g on (M^{2n}, J) is said to be astheno Kähler, if

$$\partial_J \overline{\partial}_J F^{n-2} = 0$$
.

Rem.

• If (*M*, *J*) is a complex surface, then every Hermitian metric is astheno-Kähler.

• In complex dimension 3, strong KT means astheno-Kähler.

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Let (M^{2n}, J) be a complex manifold. **Def.** A Hermitian metric g on (M^{2n}, J) is said to be *strong* Kähler with torsion, (SKT), if

$$\partial_{J}\overline{\partial}_{J}F=0,$$

where F is the fundamental (1, 1)-form of g.

Def. (J. Jost, Y.-T. Yau, Acta Math. '93). A Hermitian metric g on (M^{2n}, J) is said to be astheno Kähler, if

$$\partial_{J}\overline{\partial}_{J}F^{n-2}=0$$
.

Rem.

• If (*M*, *J*) is a complex surface, then every Hermitian metric is astheno-Kähler.

Let (M^{2n}, J) be a complex manifold. **Def.** A Hermitian metric g on (M^{2n}, J) is said to be *strong* Kähler with torsion, (SKT), if

$$\partial_J \overline{\partial}_J F = 0 \,,$$

where F is the fundamental (1,1)-form of g.

Def. (J. Jost, Y.-T. Yau, Acta Math. '93). A Hermitian metric g on (M^{2n}, J) is said to be astheno Kähler, if

$$\partial_{J}\overline{\partial}_{J}F^{n-2}=0$$
.

Rem.

• If (*M*, *J*) is a complex surface, then every Hermitian metric is astheno-Kähler.

Let (M^{2n}, J) be a complex manifold. **Def.** A Hermitian metric g on (M^{2n}, J) is said to be *strong* Kähler with torsion, (SKT), if

$$\partial_J \overline{\partial}_J F = 0,$$

where F is the fundamental (1, 1)-form of g.

Def. (J. Jost, Y.-T. Yau, Acta Math. '93). A Hermitian metric g on (M^{2n}, J) is said to be astheno Kähler, if

$$\partial_J \overline{\partial}_J F^{n-2} = 0$$
.

Rem.

• If (*M*, *J*) is a complex surface, then every Hermitian metric is astheno-Kähler.

Let (M^{2n}, J) be a complex manifold. **Def.** A Hermitian metric g on (M^{2n}, J) is said to be *strong* Kähler with torsion, (SKT), if

$$\partial_J \overline{\partial}_J F = 0,$$

where F is the fundamental (1,1)-form of g.

Def. (J. Jost, Y.-T. Yau, Acta Math. '93). A Hermitian metric g on (M^{2n}, J) is said to be astheno Kähler, if

 $\partial_{J}\overline{\partial}_{J}F^{n-2}=0$.

Rem.

• If (*M*, *J*) is a complex surface, then every Hermitian metric is astheno-Kähler.

Let (M^{2n}, J) be a complex manifold. **Def.** A Hermitian metric g on (M^{2n}, J) is said to be *strong Kähler with torsion*, (SKT), if

$$\partial_J \overline{\partial}_J F = 0,$$

where F is the fundamental (1,1)-form of g.

Def. (J. Jost, Y.-T. Yau, Acta Math. '93). A Hermitian metric g on (M^{2n}, J) is said to be astheno Kähler, if

$$\partial_J \overline{\partial}_J F^{n-2} = 0.$$

Rem.

• If (*M*, *J*) is a complex surface, then every Hermitian metric is astheno-Kähler.

Let (M^{2n}, J) be a complex manifold. **Def.** A Hermitian metric g on (M^{2n}, J) is said to be *strong Kähler with torsion*, (SKT), if

$$\partial_J \overline{\partial}_J F = 0,$$

where *F* is the fundamental (1, 1)-form of *g*. **Def.** (J. Jost, Y.-T. Yau, *Acta Math. '93*). A Hermitian metric *g* on (M^{2n}, J) is said to be *astheno Kähler*, if

$$\partial_J \overline{\partial}_J F^{n-2} = 0$$
.

Rem.

• If (M, J) is a complex surface, then every Hermitian metric is astheno-Kähler.

Let (M^{2n}, J) be a complex manifold. **Def.** A Hermitian metric g on (M^{2n}, J) is said to be *strong*

Kähler with torsion, (SKT), if

$$\partial_J \overline{\partial}_J F = 0,$$

where F is the fundamental (1,1)-form of g.

Def. (J. Jost, Y.-T. Yau, Acta Math. '93). A Hermitian metric g on (M^{2n}, J) is said to be astheno Kähler, if

$$\partial_J \overline{\partial}_J F^{n-2} = 0.$$

Rem.

• If (M, J) is a complex surface, then every Hermitian metric is astheno-Kähler.

Let (M^{2n}, J) be a complex manifold. **Def.** A Hermitian metric g on (M^{2n}, J) is said to be *strong Kähler with torsion*, (SKT), if

$$\partial_J \overline{\partial}_J F = 0,$$

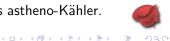
where F is the fundamental (1,1)-form of g.

Def. (J. Jost, Y.-T. Yau, Acta Math. '93). A Hermitian metric g on (M^{2n}, J) is said to be astheno Kähler, if

$$\partial_J \overline{\partial}_J F^{n-2} = 0.$$

Rem.

• If (M, J) is a complex surface, then every Hermitian metric is astheno-Kähler.



(M, J, g) Hermitian manifold.

The $Bismut\ connection\
abla^B$ is characterized by the following

 $\nabla^B g = 0, \quad \nabla^B J = 0,$

 $g(X, T^{\nabla^B}(Y, Z))$ totally skew-symmetric

The torsion form of the Bismut connection

$$T(X, Y, Z) := g(X, T^{\nabla^B}(Y, Z))$$

is $JdF = -d^c F$.

$$g(\nabla_X^B Y, Z) = g(\nabla_X^{LC} Y, Z) + \frac{1}{2}T(X, Y, Z),$$

 $\forall X, Y, Z \in \Gamma(M, TM).$

(M, J, g) Hermitian manifold. The *Bismut connection* ∇^B is characterized by the following

 $\nabla^B g = 0, \quad \nabla^B J = 0,$

 $g(X, T^{\nabla^B}(Y, Z))$ totally skew-symmetric

The torsion form of the Bismut connection

$$T(X, Y, Z) := g(X, T^{\nabla^B}(Y, Z))$$

is $JdF = -d^c F$.

$$g(\nabla_X^B Y, Z) = g(\nabla_X^{LC} Y, Z) + \frac{1}{2}T(X, Y, Z),$$

 $\forall X, Y, Z \in \Gamma(M, TM).$

(M, J, g) Hermitian manifold.

The *Bismut connection* ∇^B is characterized by the following

$$\nabla^B g = 0, \quad \nabla^B J = 0,$$

 $g(X, T^{\nabla^B}(Y, Z))$ totally skew-symmetric

The torsion form of the Bismut connection

$$T(X, Y, Z) := g(X, T^{\nabla^B}(Y, Z))$$

is $JdF = -d^c F$.

$$g(\nabla_X^B Y, Z) = g(\nabla_X^{LC} Y, Z) + \frac{1}{2}T(X, Y, Z),$$

 $\forall X, Y, Z \in \Gamma(M, TM).$

(M, J, g) Hermitian manifold.

The *Bismut connection* ∇^B is characterized by the following

$$\nabla^B g = 0, \quad \nabla^B J = 0,$$

 $g(X, T^{\nabla^B}(Y, Z))$ totally skew-symmetric

The torsion form of the Bismut connection

$$T(X,Y,Z) := g(X,T^{\nabla^B}(Y,Z))$$

is $JdF = -d^c F$.

$g(\nabla_X^B Y, Z) = g(\nabla_X^{LC} Y, Z) + \frac{1}{2}T(X, Y, Z),$

 $\forall X, Y, Z \in \Gamma(M, TM).$

(M, J, g) Hermitian manifold.

The *Bismut connection* ∇^B is characterized by the following

$$\nabla^B g = 0, \quad \nabla^B J = 0,$$

 $g(X, T^{\nabla^B}(Y, Z))$ totally skew-symmetric

The torsion form of the Bismut connection

$$T(X, Y, Z) := g(X, T^{\nabla^B}(Y, Z))$$

is $JdF = -d^c F$.

$$g(\nabla_X^B Y, Z) = g(\nabla_X^{LC} Y, Z) + \frac{1}{2}T(X, Y, Z),$$

 $\forall X, Y, Z \in \Gamma(M, TM).$

(M, J, g) Hermitian manifold.

The *Bismut connection* ∇^{B} is characterized by the following

$$\nabla^B g = 0, \quad \nabla^B J = 0,$$

 $g(X, T^{\nabla^B}(Y, Z))$ totally skew-symmetric

The torsion form of the Bismut connection

$$T(X, Y, Z) := g(X, T^{\nabla^{B}}(Y, Z))$$

is $JdF = -d^c F$.

$$g(\nabla_X^B Y, Z) = g(\nabla_X^{LC} Y, Z) + \frac{1}{2}T(X, Y, Z),$$

 $\forall X, Y, Z \in \Gamma(M, TM).$

(M, J, g) Hermitian manifold.

The *Bismut connection* ∇^{B} is characterized by the following

$$\nabla^B g = 0, \quad \nabla^B J = 0,$$

 $g(X, T^{\nabla^B}(Y, Z))$ totally skew-symmetric

The torsion form of the Bismut connection

$$T(X, Y, Z) := g(X, T^{\nabla^B}(Y, Z))$$

is $JdF = -d^c F$.

$$g(\nabla_X^B Y, Z) = g(\nabla_X^{LC} Y, Z) + \frac{1}{2}T(X, Y, Z),$$

 $\forall X, Y, Z \in \Gamma(M, TM).$

(M, J, g) Hermitian manifold.

The *Bismut connection* ∇^B is characterized by the following

$$\nabla^B g = 0, \quad \nabla^B J = 0,$$

 $g(X, T^{\nabla^B}(Y, Z))$ totally skew-symmetric

The torsion form of the Bismut connection

$$T(X, Y, Z) := g(X, T^{\nabla^B}(Y, Z))$$

is $JdF = -d^c F$.

$$g(\nabla_X^B Y, Z) = g(\nabla_X^{LC} Y, Z) + \frac{1}{2}T(X, Y, Z),$$

 $\forall X, Y, Z \in \Gamma(M, TM).$

• (M, J) compact complex surface \Rightarrow every conformal class of a Hermitian metric has a strong KT representative (Gauduchon, *Math. Ann.* '84).

 dim_ℝ M > 4 compact examples of strong KT metrics on nilmanifolds (Fino, Parton, Salamon, Comm. Math. Helv. '04).

• (M, J) compact complex surface \Rightarrow every conformal class of a Hermitian metric has a strong KT representative (Gauduchon, *Math. Ann.* '84).

• dim_{\mathbb{R}} M > 4 compact examples of strong KT metrics on nilmanifolds (Fino, Parton, Salamon, *Comm. Math. Helv. '04*).

- g is a Riemannian metric on M
- J₊ and J₋ are two complex structures on M, compatible with g and such that

 $d^c_+F_+ + d^c_-F_=0, \quad dd^c_+F_+ = 0, \quad dd^c_-F_- = 0,$

 F_+ , F_- fundamental forms of (g, J_+) , (g, J_-) ,

$$d^{c}_{+} = i(\overline{\partial}_{+} - \partial_{+}), \quad d^{c}_{-} = i(\overline{\partial}_{-} - \partial_{-}).$$

- g is a Riemannian metric on M
- J₊ and J₋ are two complex structures on M, compatible with g and such that

 $d^c_+F_+ + d^c_-F_=0\,, \quad dd^c_+F_+ = 0\,, \quad dd^c_-F_- = 0\,,$

 F_+ , F_- fundamental forms of (g, J_+) , (g, J_-) ,

$$d^{c}_{+} = i(\overline{\partial}_{+} - \partial_{+}), \quad d^{c}_{-} = i(\overline{\partial}_{-} - \partial_{-}).$$

- g is a Riemannian metric on M
- J_+ and J_- are two complex structures on M, compatible with g and such that

 $d^{c}_{+}F_{+} + d^{c}_{-}F_{=}0, \quad dd^{c}_{+}F_{+} = 0, \quad dd^{c}_{-}F_{-} = 0,$

 F_+ , F_- fundamental forms of (g, J_+) , (g, J_-) ,

$$d^{c}_{+} = i(\overline{\partial}_{+} - \partial_{+}), \quad d^{c}_{-} = i(\overline{\partial}_{-} - \partial_{-}).$$

- g is a Riemannian metric on M
- J_+ and J_- are two complex structures on M, compatible with g and such that

$$d^c_+F_+ + d^c_-F_=0\,, \quad dd^c_+F_+ = 0\,, \quad dd^c_-F_- = 0\,,$$

 F_+ , F_- fundamental forms of (g, J_+) , (g, J_-) ,

$$d^{c}_{+} = i(\overline{\partial}_{+} - \partial_{+}), \quad d^{c}_{-} = i(\overline{\partial}_{-} - \partial_{-}).$$

- g is a Riemannian metric on M
- J_+ and J_- are two complex structures on M, compatible with g and such that

$$d^c_+F_+ + d^c_-F_=0\,, \quad dd^c_+F_+ = 0\,, \quad dd^c_-F_- = 0\,,$$

 F_+ , F_- fundamental forms of (g, J_+) , (g, J_-) ,

$$d^{c}_{+} = i(\overline{\partial}_{+} - \partial_{+}), \quad d^{c}_{-} = i(\overline{\partial}_{-} - \partial_{-})$$

- g is a Riemannian metric on M
- J_+ and J_- are two complex structures on M, compatible with g and such that

$$d^c_+F_+ + d^c_-F_=0\,, \quad dd^c_+F_+ = 0\,, \quad dd^c_-F_- = 0\,,$$

 F_+ , F_- fundamental forms of (g, J_+) , (g, J_-) ,

$$d^{c}_{+}=i(\overline{\partial}_{+}-\partial_{+})\,,\quad d^{c}_{-}=i(\overline{\partial}_{-}-\partial_{-})\,.$$

- g is a Riemannian metric on M
- J_+ and J_- are two complex structures on M, compatible with g and such that

$$d^c_+F_+ + d^c_-F_=0\,, \quad dd^c_+F_+ = 0\,, \quad dd^c_-F_- = 0\,,$$

 F_+ , F_- fundamental forms of (g, J_+) , (g, J_-) ,

$$d^{c}_{+}=i(\overline{\partial}_{+}-\partial_{+}), \quad d^{c}_{-}=i(\overline{\partial}_{-}-\partial_{-}).$$

・ロット 御 マ イロット キャー

э.

Example (M, g, J) Kähler

 $J_+ = J, \quad J_- = \pm J$

 \Rightarrow (g, J_+, J_-) *GK* structure on *M*.

Rem. If *M* has a GK structure, then *M* has a strong KT metric.

Pb. When does a compact complex manifold (M, J) admit a GK structure (g, J_+, J_-) with $J = J_+$?

Example (M, g, J) Kähler

$$J_+ = J, \quad J_- = \pm J$$

 \Rightarrow (g, J₊, J₋) GK structure on M.

Rem. If *M* has a GK structure, then *M* has a strong KT metric.

Pb. When does a compact complex manifold (M, J) admit a GK structure (g, J_+, J_-) with $J = J_+$?

Example (M, g, J) Kähler

$$J_+ = J, \quad J_- = \pm J$$

 \Rightarrow (g, J₊, J₋) GK structure on M.

Rem. If M has a GK structure, then M has a strong KT metric.

Pb. When does a compact complex manifold (M, J) admit a GK structure (g, J_+, J_-) with $J = J_+$?

Example (M, g, J) Kähler

$$J_+ = J, \quad J_- = \pm J$$

 \Rightarrow (g, J₊, J₋) GK structure on M.

Rem. If *M* has a GK structure, then *M* has a strong KT metric.

Pb. When does a compact complex manifold (M, J) admit a GK structure (g, J_+, J_-) with $J = J_+$?

Example (M, g, J) Kähler

$$J_+ = J, \quad J_- = \pm J$$

 \Rightarrow (g, J₊, J₋) GK structure on M.

Rem. If *M* has a GK structure, then *M* has a strong KT metric.

Pb. When does a compact complex manifold (M, J) admit a GK structure (g, J_+, J_-) with $J = J_+$?

Interesting case: $J_+ \neq \pm J_-$, i.e. the *GK* structure is not induced by a Kähler metric on (M, J).

Existence results

• (M, J) compact complex surface.

Classification theorem of generalized Kähler structure
(Apostolov and Gualtieri, Comm. Math. Phys. '07)
dim_ℝ M = 6.
By [Cavalcanti and Gualtieri, J. of Sympl. Geom. '05]
every nilmanifold carries a GC structure

• dim_{\mathbb{R}} M = 2n

there are no nilmanifolds (different from Tori) admitting an invariant GK structure.

(Cavalcanti, Topol. and its Applic. '06)

A D F A B F A B F A B F

Existence results

• (*M*, *J*) compact complex surface.

Classification theorem of generalized Kähler structures (Apostolov and Gualtieri, Comm. Math. Phys. '07) • dim_{\mathbb{R}} M = 6. By [Cavalcanti and Gualtieri, J. of Sympl. Geom. '05]

• dim_{\mathbb{R}} M = 2n

there are no nilmanifolds (different from Tori) admitting an invariant GK structure.

(Cavalcanti, Topol. and its Applic. '06)

A D F A B F A B F A B F

Existence results

• (*M*, *J*) compact complex surface.

Classification theorem of generalized Kähler structures
(Apostolov and Gualtieri, Comm. Math. Phys. '07)
dim_R M = 6.
By [Cavalcanti and Gualtieri, J. of Sympl. Geom. '05] every nilmanifold carries a GC structure

• dim_{\mathbb{R}} M = 2n

there are no nilmanifolds (different from Tori) admitting an invariant GK structure.

Existence results

• (*M*, *J*) compact complex surface.

Classification theorem of generalized Kähler structures (Apostolov and Gualtieri, Comm. Math. Phys. '07) • $\dim_{\mathbb{R}} M = 6$.

By [Cavalcanti and Gualtieri, J. of Sympl. Geom. '05] every nilmanifold carries a GC structure

• dim_{\mathbb{R}} M = 2n

there are no nilmanifolds (different from Tori) admitting an invariant GK structure.

(Cavalcanti, Topol. and its Applic. '06)

・ロット (日本) (日本) (日本)

Existence results

• (M, J) compact complex surface.

Classification theorem of generalized Kähler structures (Apostolov and Gualtieri, Comm. Math. Phys. '07)

• dim_{\mathbb{R}} M = 6.

By [Cavalcanti and Gualtieri, J. of Sympl. Geom. '05]

every nilmanifold carries a GC structure

• dim_{\mathbb{R}} M = 2n

there are no nilmanifolds (different from Tori) admitting an invariant GK structure.

Existence results

• (M, J) compact complex surface.

Classification theorem of generalized Kähler structures (Apostolov and Gualtieri, Comm. Math. Phys. '07) • dim_{\mathbb{R}} M = 6.

By [Cavalcanti and Gualtieri, J. of Sympl. Geom. '05] every nilmanifold carries a GC structure

• dim_{\mathbb{R}} M = 2n

there are no nilmanifolds (different from Tori) admitting an invariant GK structure.

Existence results

• (*M*, *J*) compact complex surface.

Classification theorem of generalized Kähler structures (Apostolov and Gualtieri, Comm. Math. Phys. '07)

• dim_{\mathbb{R}} M = 6.

By [Cavalcanti and Gualtieri, J. of Sympl. Geom. '05] every nilmanifold carries a GC structure

• dim_{\mathbb{R}} M = 2n

there are no nilmanifolds (different from Tori) admitting an invariant GK structure.

Existence results

• (M, J) compact complex surface.

Classification theorem of generalized Kähler structures (Apostolov and Gualtieri, Comm. Math. Phys. '07) • dim_{\mathbb{R}} M = 6.

By [Cavalcanti and Gualtieri, J. of Sympl. Geom. '05] every nilmanifold carries a GC structure

• dim_{\mathbb{R}} M = 2n

there are no nilmanifolds (different from Tori) admitting an invariant GK structure.

(Cavalcanti, Topol. and its Applic. '06)

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ト

Compact example

• $\mathfrak{s}_{a,b}$ solvable Lie algebra defined by:

$$\left\{ \begin{array}{l} de^1 = a \, e^1 \wedge e^2 \,, \\ de^2 = 0 \,, \\ de^3 = \frac{1}{2} a \, e^2 \wedge e^3 \,, \\ de^4 = \frac{1}{2} a \, e^2 \wedge e^4 \,, \\ de^5 = b \, e^2 \wedge e^6 \,, \\ de^6 = -b \, e^2 \wedge e^5 \,, \end{array} \right.$$

a, b real parameters different from zero.

• $S_{a,b}$ simply-connected Lie group whose Lie algebra is $\mathfrak{s}_{a,b}$

 $(t, x_1, x_2, x_3, x_4, x_5)$ global coordinates on \mathbb{R}^6 .

A D F A B F A B F A B F

Compact example

• $\mathfrak{s}_{a,b}$ solvable Lie algebra defined by:

$$\left\{ \begin{array}{l} de^1 = a \, e^1 \wedge e^2 \,, \\ de^2 = 0 \,, \\ de^3 = \frac{1}{2} a \, e^2 \wedge e^3 \,, \\ de^4 = \frac{1}{2} a \, e^2 \wedge e^4 \,, \\ de^5 = b \, e^2 \wedge e^6 \,, \\ de^6 = -b \, e^2 \wedge e^5 \,, \end{array} \right.$$

a, b real parameters different from zero.

• $S_{a,b}$ simply-connected Lie group whose Lie algebra is $\mathfrak{s}_{a,b}$

 $(t, x_1, x_2, x_3, x_4, x_5)$ global coordinates on \mathbb{R}^6 .

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト

• $\mathfrak{s}_{a,b}$ solvable Lie algebra defined by:

$$\left\{ \begin{array}{l} de^1 = a \, e^1 \wedge e^2 \,, \\ de^2 = 0 \,, \\ de^3 = \frac{1}{2} a \, e^2 \wedge e^3 \,, \\ de^4 = \frac{1}{2} a \, e^2 \wedge e^4 \,, \\ de^5 = b \, e^2 \wedge e^6 \,, \\ de^6 = -b \, e^2 \wedge e^5 \,, \end{array} \right.$$

a, b real parameters different from zero.

• $S_{a,b}$ simply-connected Lie group whose Lie algebra is $\mathfrak{s}_{a,b}$ $(t, x_1, x_2, x_3, x_4, x_5)$ global coordinates on \mathbb{R}^6 .

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

• $\mathfrak{s}_{a,b}$ solvable Lie algebra defined by:

$$\left\{ \begin{array}{l} de^1 = a \, e^1 \wedge e^2 \,, \\ de^2 = 0 \,, \\ de^3 = \frac{1}{2} a \, e^2 \wedge e^3 \,, \\ de^4 = \frac{1}{2} a \, e^2 \wedge e^4 \,, \\ de^5 = b \, e^2 \wedge e^6 \,, \\ de^6 = -b \, e^2 \wedge e^5 \,, \end{array} \right.$$

a, b real parameters different from zero.

• $S_{a,b}$ simply-connected Lie group whose Lie algebra is $\mathfrak{s}_{a,b}$

 $(t, x_1, x_2, x_3, x_4, x_5)$ global coordinates on \mathbb{R}^6 .

• $\mathfrak{s}_{a,b}$ solvable Lie algebra defined by:

$$\left\{ \begin{array}{l} de^1 = a \, e^1 \wedge e^2 \,, \\ de^2 = 0 \,, \\ de^3 = \frac{1}{2} a \, e^2 \wedge e^3 \,, \\ de^4 = \frac{1}{2} a \, e^2 \wedge e^4 \,, \\ de^5 = b \, e^2 \wedge e^6 \,, \\ de^6 = -b \, e^2 \wedge e^5 \,, \end{array} \right.$$

a, b real parameters different from zero.

• $S_{a,b}$ simply-connected Lie group whose Lie algebra is $\mathfrak{s}_{a,b}$ $(t, x_1, x_2, x_3, x_4, x_5)$ global coordinates on \mathbb{R}^6 .

• $\mathfrak{s}_{a,b}$ solvable Lie algebra defined by:

$$\left\{ \begin{array}{l} de^1 = a \, e^1 \wedge e^2 \,, \\ de^2 = 0 \,, \\ de^3 = \frac{1}{2} a \, e^2 \wedge e^3 \,, \\ de^4 = \frac{1}{2} a \, e^2 \wedge e^4 \,, \\ de^5 = b \, e^2 \wedge e^6 \,, \\ de^6 = -b \, e^2 \wedge e^5 \,, \end{array} \right.$$

a, b real parameters different from zero.

• $S_{a,b}$ simply-connected Lie group whose Lie algebra is $\mathfrak{s}_{a,b}$ $(t, x_1, x_2, x_3, x_4, x_5)$ global coordinates on \mathbb{R}^6 .

• Product on $S_{a,b}$

 $(t, x_1, x_2, x_3, x_4, x_5) \cdot (t', x'_1, x'_2, x'_3, x'_4, x'_5) =$ $(t + t', e^{-at}x'_1 + x_1, e^{\frac{a}{2}t}x'_2 + x_2, e^{\frac{a}{2}t}x'_3 + x_3,$ $x'_4 \cos(bt) - x'_5 \sin(bt) + x_4,$ $x'_4 \sin(bt) + x'_5 \cos(bt) + x_5).$

• $S_{a,b}$ unimodular semidirect product

 $\mathbb{R} \ltimes_{\varphi} \left(\mathbb{R} \times \mathbb{R}^2 \times \mathbb{R}^2 \right),$

 $\varphi = (\varphi_1, \varphi_2)$ diagonal action of \mathbb{R} on $\mathbb{R} \times \mathbb{R}^2 \times \mathbb{R}^2$.

• Product on $S_{a,b}$

$$(t, x_1, x_2, x_3, x_4, x_5) \cdot (t', x_1', x_2', x_3', x_4', x_5') = (t + t', e^{-at}x_1' + x_1, e^{\frac{a}{2}t}x_2' + x_2, e^{\frac{a}{2}t}x_3' + x_3, x_4' \cos(bt) - x_5' \sin(bt) + x_4, x_4' \sin(bt) + x_5' \cos(bt) + x_5).$$

• S_{a,b} unimodular semidirect product

 $\mathbb{R}\ltimes_{\varphi}(\mathbb{R}\times\mathbb{R}^2\times\mathbb{R}^2),$

 $\varphi = (\varphi_1, \varphi_2)$ diagonal action of \mathbb{R} on $\mathbb{R} \times \mathbb{R}^2 \times \mathbb{R}^2$.

• Product on $S_{a,b}$

$$(t, x_1, x_2, x_3, x_4, x_5) \cdot (t', x_1', x_2', x_3', x_4', x_5') = (t + t', e^{-at}x_1' + x_1, e^{\frac{a}{2}t}x_2' + x_2, e^{\frac{a}{2}t}x_3' + x_3, x_4' \cos(bt) - x_5' \sin(bt) + x_4, x_4' \sin(bt) + x_5' \cos(bt) + x_5).$$

• $S_{a,b}$ unimodular semidirect product

$$\mathbb{R}\ltimes_{\varphi}(\mathbb{R}\times\mathbb{R}^2\times\mathbb{R}^2),$$

 $\varphi = (\varphi_1, \varphi_2)$ diagonal action of \mathbb{R} on $\mathbb{R} imes \mathbb{R}^2 imes \mathbb{R}^2$.

• Product on $S_{a,b}$

$$(t, x_1, x_2, x_3, x_4, x_5) \cdot (t', x_1', x_2', x_3', x_4', x_5') = (t + t', e^{-at}x_1' + x_1, e^{\frac{a}{2}t}x_2' + x_2, e^{\frac{a}{2}t}x_3' + x_3, x_4' \cos(bt) - x_5' \sin(bt) + x_4, x_4' \sin(bt) + x_5' \cos(bt) + x_5).$$

• $S_{a,b}$ unimodular semidirect product

$$\mathbb{R} \ltimes_{\varphi} (\mathbb{R} \times \mathbb{R}^2 \times \mathbb{R}^2),$$

 $\varphi = (\varphi_1, \varphi_2)$ diagonal action of \mathbb{R} on $\mathbb{R} \times \mathbb{R}^2 \times \mathbb{R}^2$.

Theorem (A. Fino, —, to appear in J. of Sympl. Geom.)

• $S_{1,rac{\pi}{2}}$ has a compact quotient

$$M^6=S_{1,\frac{\pi}{2}}/\Gamma\,.$$

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

3

• *M*⁶ is the total space of a \mathbb{T}^2 -bundle over the Inoue surface.

- $M^6=S_{1,rac{\pi}{2}}/\Gamma$ has a non-trivial left invariant GK structure.
- b₁(M⁶) = 1 ⇒ M⁶ has no Kähler metrics.

Theorem (A. Fino, --, to appear in J. of Sympl. Geom.)

• $S_{1,rac{\pi}{2}}$ has a compact quotient

$$M^6=S_{1,rac{\pi}{2}}/\Gamma$$
 .

- M⁶ is the total space of a T²-bundle over the Inoue surface.
 M⁶ = S_{1,π/2}/Γ has a non-trivial left invariant GK structure.
- $b_1(M^{\mathfrak{o}}) = 1 \Rightarrow M^{\mathfrak{o}}$ has no Kähler metrics.

Theorem (A. Fino, -, to appear in J. of Sympl. Geom.)

• $S_{1,rac{\pi}{2}}$ has a compact quotient

$$M^6=S_{1,rac{\pi}{2}}/\Gamma$$
 .

・ロット 御ママ キョマ キョン

- M^6 is the total space of a \mathbb{T}^2 -bundle over the Inoue surface.
- $M^6 = S_{1,\frac{\pi}{2}}/\Gamma$ has a non-trivial left invariant GK structure.
- $b_1(M^6) = 1 \Rightarrow M^6$ has no Kähler metrics.

Theorem (A. Fino, ---, to appear in J. of Sympl. Geom.)

• $S_{1,rac{\pi}{2}}$ has a compact quotient

$$M^6=S_{1,rac{\pi}{2}}/\Gamma$$
 .

- M^6 is the total space of a \mathbb{T}^2 -bundle over the Inoue surface.
- M⁶ = S_{1,π/2}/Γ has a non-trivial left invariant GK structure.
 b₁(M⁶) = 1 ⇒ M⁶ has no Kähler metrics.

Theorem (A. Fino, -, to appear in J. of Sympl. Geom.)

• $S_{1,rac{\pi}{2}}$ has a compact quotient

$$M^6=S_{1,rac{\pi}{2}}/\Gamma$$
 .

・ロット 御ママ キョマ キョン

э.

- M^6 is the total space of a \mathbb{T}^2 -bundle over the Inoue surface.
- M⁶ = S_{1,π/2}/Γ has a non-trivial left invariant GK structure.
 b₁(M⁶) = 1 ⇒ M⁶ has no Kähler metrics.

Theorem (A. Fino, -, to appear in J. of Sympl. Geom.)

• $S_{1,rac{\pi}{2}}$ has a compact quotient

$$M^6=S_{1,rac{\pi}{2}}/\Gamma$$
 .

・ロット 御ママ キョマ キョン

э.

- M^6 is the total space of a \mathbb{T}^2 -bundle over the Inoue surface.
- M⁶ = S_{1,π/2}/Γ has a non-trivial left invariant GK structure.
 b₁(M⁶) = 1 ⇒ M⁶ has no Kähler metrics.

Theorem (A. Fino, -, to appear in J. of Sympl. Geom.)

• $S_{1,rac{\pi}{2}}$ has a compact quotient

$$M^6=S_{1,rac{\pi}{2}}/\Gamma$$
 .

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

- M^6 is the total space of a \mathbb{T}^2 -bundle over the Inoue surface.
- M⁶ = S_{1,π/2}/Γ has a non-trivial left invariant GK structure.
 b₁(M⁶) = 1 ⇒ M⁶ has no Kähler metrics.

• *GK* structure on
$$M^6 = S_{1,rac{\pi}{2}}/\Gamma$$

$$\varphi^1_+ = e^1 + ie^2, \quad \varphi^2_+ = e^3 + ie^4, \quad \varphi^3_+ = e^5 + ie^6,$$

 $\varphi_{-}^{1} = e^{1} - ie^{2}, \quad \varphi_{-}^{2} = e^{3} + ie^{4}, \quad \varphi_{-}^{3} = e^{5} + ie^{6}.$

 $(\varphi_{\pm}^1, \varphi_{\pm}^2, \varphi_{\pm}^3)$ (1,0)-forms associated with J_{\pm} .

• J_{\pm} integrable.

• $g = \sum_{\alpha=1}^{\circ} e^{\alpha} \otimes e^{\alpha}$ J_{\pm} -Hermitian.

l hen

 $d^{c}_{+}F_{+} + d^{c}_{-}F_{=}0$, $dd^{c}_{+}F_{+} = 0$, $dd^{c}_{-}F_{-} = 0$,

 (g, J_+, J_-) defines a left-invariant *GK* structure on M^6 . $d_+^c F_+ = e^1 \wedge e^3 \wedge e^4$ closed non-exact

• *GK* structure on
$$M^6 = S_{1,rac{\pi}{2}}/\Gamma$$

$$\varphi^1_+ = {\bf e}^1 + i {\bf e}^2, \quad \varphi^2_+ = {\bf e}^3 + i {\bf e}^4, \quad \varphi^3_+ = {\bf e}^5 + i {\bf e}^6,$$

 $\varphi_{-}^{1} = e^{1} - ie^{2}, \quad \varphi_{-}^{2} = e^{3} + ie^{4}, \quad \varphi_{-}^{3} = e^{5} + ie^{6}.$

• J_+ integrable.

• *GK* structure on
$$M^6 = S_{1,rac{\pi}{2}}/\Gamma$$

$$\varphi^1_+ = {\bf e}^1 + i {\bf e}^2, \quad \varphi^2_+ = {\bf e}^3 + i {\bf e}^4, \quad \varphi^3_+ = {\bf e}^5 + i {\bf e}^6,$$

 $\varphi^1 = e^1 - ie^2$, $\varphi^2 = e^3 + ie^4$, $\varphi^3 = e^5 + ie^6$.

 $(\varphi_+^1, \varphi_+^2, \varphi_+^3)$ (1,0)-forms associated with J_+ .

• J_+ integrable. • $g = \sum^{n} e^{\alpha} \otimes e^{\alpha}$ J_{\pm} -Hermitian.

• *GK* structure on
$$M^6 = S_{1,rac{\pi}{2}}/\Gamma$$

$$\varphi^1_+ = {\bf e}^1 + i {\bf e}^2, \quad \varphi^2_+ = {\bf e}^3 + i {\bf e}^4, \quad \varphi^3_+ = {\bf e}^5 + i {\bf e}^6,$$

 $\varphi^1 = e^1 - ie^2$, $\varphi^2 = e^3 + ie^4$, $\varphi^3 = e^5 + ie^6$.

 $(\varphi_+^1, \varphi_+^2, \varphi_+^3)$ (1,0)-forms associated with J_+ .

- J₊ integrable.
- $g = \sum e^{\alpha} \otimes e^{\alpha}$ J_{\pm} -Hermitian.

• *GK* structure on
$$M^6 = S_{1,rac{\pi}{2}}/\Gamma$$

$$\varphi^1_+ = {\bf e}^1 + i {\bf e}^2, \quad \varphi^2_+ = {\bf e}^3 + i {\bf e}^4, \quad \varphi^3_+ = {\bf e}^5 + i {\bf e}^6,$$

 $\varphi^1 = e^1 - ie^2$, $\varphi^2 = e^3 + ie^4$, $\varphi^3 = e^5 + ie^6$.

 $(\varphi_+^1, \varphi_+^2, \varphi_+^3)$ (1,0)-forms associated with J_+ .

• J₊ integrable. • $g = \sum_{\alpha}^{6} e^{\alpha} \otimes e^{\alpha}$ J_{\pm} -Hermitian. $\alpha = 1$

• *GK* structure on
$$M^6 = S_{1,rac{\pi}{2}}/\Gamma$$

$$\varphi^1_+ = {\it e}^1 + i {\it e}^2, \quad \varphi^2_+ = {\it e}^3 + i {\it e}^4, \quad \varphi^3_+ = {\it e}^5 + i {\it e}^6,$$

 $\varphi^1 = e^1 - ie^2$, $\varphi^2 = e^3 + ie^4$, $\varphi^3 = e^5 + ie^6$.

 $(\varphi_+^1, \varphi_+^2, \varphi_+^3)$ (1,0)-forms associated with J_+ .

• J₊ integrable. • $g = \sum_{\alpha}^{6} e^{\alpha} \otimes e^{\alpha}$ J_{\pm} -Hermitian. $\alpha = 1$

Then

• *GK* structure on
$$M^6=S_{1,rac{\pi}{2}}/\Gamma$$

$$\varphi^1_+ = {\it e}^1 + i {\it e}^2, \quad \varphi^2_+ = {\it e}^3 + i {\it e}^4, \quad \varphi^3_+ = {\it e}^5 + i {\it e}^6,$$

 $\varphi_{-}^{1} = e^{1} - ie^{2}, \quad \varphi_{-}^{2} = e^{3} + ie^{4}, \quad \varphi^{3} = e^{5} + ie^{6}.$

 $(\varphi_+^1, \varphi_+^2, \varphi_+^3)$ (1,0)-forms associated with J_+ .

- J₊ integrable.
- $g = \sum_{\alpha}^{6} e^{\alpha} \otimes e^{\alpha}$ J_{\pm} -Hermitian. $\alpha = 1$

Then

$d^{c}_{+}F_{+} + d^{c}_{-}F_{=}0, \quad dd^{c}_{+}F_{+} = 0, \quad dd^{c}_{-}F_{-} = 0,$

• *GK* structure on
$$M^6 = S_{1,rac{\pi}{2}}/\Gamma$$

$$\varphi^1_+ = {\bf e}^1 + i {\bf e}^2, \quad \varphi^2_+ = {\bf e}^3 + i {\bf e}^4, \quad \varphi^3_+ = {\bf e}^5 + i {\bf e}^6,$$

 $\varphi^1 = e^1 - ie^2$, $\varphi^2 = e^3 + ie^4$, $\varphi^3 = e^5 + ie^6$.

 $(\varphi_+^1, \varphi_+^2, \varphi_+^3)$ (1,0)-forms associated with J_+ .

- J₊ integrable.
- $g = \sum_{\alpha}^{6} e^{\alpha} \otimes e^{\alpha}$ J_{\pm} -Hermitian. $\alpha = 1$

Then

 $d^{c}_{\perp}F_{+} + d^{c}_{-}F_{=}0, \quad dd^{c}_{\perp}F_{+} = 0, \quad dd^{c}_{-}F_{-} = 0,$

 (g, J_+, J_-) defines a left-invariant GK structure on M^6 .

• *GK* structure on
$$M^6 = S_{1,rac{\pi}{2}}/\Gamma$$

$$\varphi^1_+ = {\bf e}^1 + i {\bf e}^2, \quad \varphi^2_+ = {\bf e}^3 + i {\bf e}^4, \quad \varphi^3_+ = {\bf e}^5 + i {\bf e}^6,$$

 $\varphi^1 = e^1 - ie^2$, $\varphi^2 = e^3 + ie^4$, $\varphi^3 = e^5 + ie^6$.

 $(\varphi_+^1, \varphi_+^2, \varphi_+^3)$ (1,0)-forms associated with J_+ .

- J₊ integrable.
- $g = \sum_{\alpha}^{6} e^{\alpha} \otimes e^{\alpha}$ J_{\pm} -Hermitian. $\alpha = 1$

Then

$$d^{c}_{+}F_{+} + d^{c}_{-}F_{=}0, \quad dd^{c}_{+}F_{+} = 0, \quad dd^{c}_{-}F_{-} = 0,$$

 (g, J_+, J_-) defines a left-invariant GK structure on M^6 . $d^{c}_{+}F_{+}=e^{1}\wedge e^{3}\wedge e^{4}$ closed non-exact

Uniform subgroup

•
$$S_{1,\frac{\pi}{2}}$$
 is isomorphic to $(\mathbb{R}^6 = \mathbb{R} \ltimes (\mathbb{R} \times \mathbb{C} \times \mathbb{C}), *)$ where
 $(t, u, z, w) * (t', u', z', w') = (t + t', c^t u' + u,$
 $\alpha^t z' + z, e^{i\frac{\pi}{2}t} w' + w),$

 $\forall t, t', u, u' \in \mathbb{R} \text{ and } z, z', w, w' \in \mathbb{C}.$ • Γ is isomorphic to $\mathbb{Z} \ltimes (\mathbb{Z}^3 \times \mathbb{Z}^2)$

$$g_{0}: (t, u, z, w) \mapsto (t + 1, cu, \alpha z, iw),$$

$$g_{j}: (t, u, z, w) \mapsto (t, u + c_{j}, z + \alpha_{j}, w), j = 1, 2, 3,$$

$$g_{4}: (t, u, z, w) \mapsto (t, u, z, w + 1),$$

$$g_{5}: (t, u, z, w) \mapsto (t, u, z, w + i).$$

It can be checked that

i) Γ acts freely and in a properly discontinuos way on S_{1, π/2}
 ii) S_{1, π/2}/Γ is compact. Furthermore

Uniform subgroup

• $S_{1,\frac{\pi}{2}}$ is isomorphic to $(\mathbb{R}^6 = \mathbb{R} \ltimes (\mathbb{R} \times \mathbb{C} \times \mathbb{C}), *)$ where $(t, u, z, w) * (t', u', z', w') = (t + t', c^t u' + u, \alpha^t z' + z, e^{i\frac{\pi}{2}t} w' + w).$

 $\forall t, t', u, u' \in \mathbb{R} \text{ and } z, z', w, w' \in \mathbb{C}.$ • Γ is isomorphic to $\mathbb{Z} \ltimes (\mathbb{Z}^3 \times \mathbb{Z}^2)$

> $g_{0}: (t, u, z, w) \mapsto (t + 1, cu, \alpha z, iw),$ $g_{j}: (t, u, z, w) \mapsto (t, u + c_{j}, z + \alpha_{j}, w), j = 1, 2, 3,$ $g_{4}: (t, u, z, w) \mapsto (t, u, z, w + 1),$ $g_{5}: (t, u, z, w) \mapsto (t, u, z, w + i).$

It can be checked that

i) Γ acts freely and in a properly discontinuos way on $S_{1,\frac{\pi}{2}}$ ii) $S_{1,\frac{\pi}{2}}/\Gamma$ is compact. Furthermore

Uniform subgroup

•
$$S_{1,\frac{\pi}{2}}$$
 is isomorphic to $(\mathbb{R}^6 = \mathbb{R} \ltimes (\mathbb{R} \times \mathbb{C} \times \mathbb{C}), *)$ where
 $(t, u, z, w) * (t', u', z', w') = (t + t', c^t u' + u,$
 $\alpha^t z' + z, e^{i\frac{\pi}{2}t} w' + w),$

$$\forall t, t', u, u' \in \mathbb{R} \text{ and } z, z', w, w' \in \mathbb{C}.$$

• Γ is isomorphic to $\mathbb{Z} \ltimes (\mathbb{Z}^3 \times \mathbb{Z}^2)$

$$g_{0} : (t, u, z, w) \mapsto (t + 1, cu, \alpha z, iw),$$

$$g_{j} : (t, u, z, w) \mapsto (t, u + c_{j}, z + \alpha_{j}, w), j = 1, 2, 3,$$

$$g_{4} : (t, u, z, w) \mapsto (t, u, z, w + 1),$$

$$g_{5} : (t, u, z, w) \mapsto (t, u, z, w + i).$$

It can be checked that

i) Γ acts freely and in a properly discontinuos way on S_{1, π/2}
 ii) S_{1, π/2}/Γ is compact. Furthermore

Uniform subgroup

•
$$S_{1,\frac{\pi}{2}}$$
 is isomorphic to $(\mathbb{R}^6 = \mathbb{R} \ltimes (\mathbb{R} \times \mathbb{C} \times \mathbb{C}), *)$ where
 $(t, u, z, w) * (t', u', z', w') = (t + t', c^t u' + u, \alpha^t z' + z, e^{i\frac{\pi}{2}t} w' + w),$

 $\forall t, t', u, u' \in \mathbb{R} \text{ and } z, z', w, w' \in \mathbb{C}.$ • Γ is isomorphic to $\mathbb{Z} \ltimes (\mathbb{Z}^3 \times \mathbb{Z}^2)$

$$g_{0}: (t, u, z, w) \mapsto (t + 1, cu, \alpha z, iw),$$

$$g_{j}: (t, u, z, w) \mapsto (t, u + c_{j}, z + \alpha_{j}, w), j = 1, 2, 3,$$

$$g_{4}: (t, u, z, w) \mapsto (t, u, z, w + 1),$$

$$g_{5}: (t, u, z, w) \mapsto (t, u, z, w + i).$$

It can be checked that

i) Γ acts freely and in a properly discontinuos way on S_{1, π/2}
 ii) S_{1, π/2} / Γ is compact. Furthermore

Uniform subgroup

•
$$S_{1,\frac{\pi}{2}}$$
 is isomorphic to $(\mathbb{R}^6 = \mathbb{R} \ltimes (\mathbb{R} \times \mathbb{C} \times \mathbb{C}), *)$ where
 $(t, u, z, w) * (t', u', z', w') = (t + t', c^t u' + u,$
 $\alpha^t z' + z, e^{i\frac{\pi}{2}t} w' + w),$

 $\forall t, t', u, u' \in \mathbb{R} \text{ and } z, z', w, w' \in \mathbb{C}.$ • Γ is isomorphic to $\mathbb{Z} \ltimes (\mathbb{Z}^3 \times \mathbb{Z}^2)$

$$g_{0}: (t, u, z, w) \mapsto (t + 1, cu, \alpha z, iw),$$

$$g_{j}: (t, u, z, w) \mapsto (t, u + c_{j}, z + \alpha_{j}, w), j = 1, 2, 3,$$

$$g_{4}: (t, u, z, w) \mapsto (t, u, z, w + 1),$$

$$g_{5}: (t, u, z, w) \mapsto (t, u, z, w + i).$$

It can be checked that

i) Γ acts freely and in a properly discontinuos way on S_{1, π/2}
 ii) S_{1, π/2}/Γ is compact. Furthermore

Uniform subgroup

•
$$S_{1,\frac{\pi}{2}}$$
 is isomorphic to $(\mathbb{R}^6 = \mathbb{R} \ltimes (\mathbb{R} \times \mathbb{C} \times \mathbb{C}), *)$ where
 $(t, u, z, w) * (t', u', z', w') = (t + t', c^t u' + u,$
 $\alpha^t z' + z, e^{i\frac{\pi}{2}t} w' + w),$

 $\forall t, t', u, u' \in \mathbb{R} \text{ and } z, z', w, w' \in \mathbb{C}.$ • Γ is isomorphic to $\mathbb{Z} \ltimes (\mathbb{Z}^3 \times \mathbb{Z}^2)$

$$g_{0}: (t, u, z, w) \mapsto (t + 1, cu, \alpha z, iw),$$

$$g_{j}: (t, u, z, w) \mapsto (t, u + c_{j}, z + \alpha_{j}, w), j = 1, 2, 3,$$

$$g_{4}: (t, u, z, w) \mapsto (t, u, z, w + 1),$$

$$g_{5}: (t, u, z, w) \mapsto (t, u, z, w + i).$$

It can be checked that

i) Γ acts freely and in a properly discontinuos way on S_{1, π/2}
 ii) S_{1, π/2}/Γ is compact. Furthermore

Uniform subgroup

•
$$S_{1,\frac{\pi}{2}}$$
 is isomorphic to $(\mathbb{R}^6 = \mathbb{R} \ltimes (\mathbb{R} \times \mathbb{C} \times \mathbb{C}), *)$ where
 $(t, u, z, w) * (t', u', z', w') = (t + t', c^t u' + u,$
 $\alpha^t z' + z, e^{i\frac{\pi}{2}t} w' + w),$

 $\forall t, t', u, u' \in \mathbb{R} \text{ and } z, z', w, w' \in \mathbb{C}.$ • Γ is isomorphic to $\mathbb{Z} \ltimes (\mathbb{Z}^3 \times \mathbb{Z}^2)$

$$g_{0} : (t, u, z, w) \mapsto (t + 1, cu, \alpha z, iw),$$

$$g_{j} : (t, u, z, w) \mapsto (t, u + c_{j}, z + \alpha_{j}, w), j = 1, 2, 3,$$

$$g_{4} : (t, u, z, w) \mapsto (t, u, z, w + 1),$$

$$g_{5} : (t, u, z, w) \mapsto (t, u, z, w + i).$$

It can be checked that

i) Γ acts freely and in a properly discontinuos way on $S_{1,\frac{\pi}{2}}$ ii) $S_{1,\frac{\pi}{2}}/\Gamma$ is compact. Furthermore

Uniform subgroup

•
$$S_{1,\frac{\pi}{2}}$$
 is isomorphic to $(\mathbb{R}^6 = \mathbb{R} \ltimes (\mathbb{R} \times \mathbb{C} \times \mathbb{C}), *)$ where
 $(t, u, z, w) * (t', u', z', w') = (t + t', c^t u' + u,$
 $\alpha^t z' + z, e^{i\frac{\pi}{2}t} w' + w),$

 $\forall t, t', u, u' \in \mathbb{R} \text{ and } z, z', w, w' \in \mathbb{C}.$ • Γ is isomorphic to $\mathbb{Z} \ltimes (\mathbb{Z}^3 \times \mathbb{Z}^2)$

$$g_{0}: (t, u, z, w) \mapsto (t + 1, cu, \alpha z, iw),$$

$$g_{j}: (t, u, z, w) \mapsto (t, u + c_{j}, z + \alpha_{j}, w), j = 1, 2, 3,$$

$$g_{4}: (t, u, z, w) \mapsto (t, u, z, w + 1),$$

$$g_{5}: (t, u, z, w) \mapsto (t, u, z, w + i).$$

It can be checked that

i) Γ acts freely and in a properly discontinuos way on $S_{1,\frac{\pi}{2}}$ ii) $S_{1,\frac{\pi}{2}}/\Gamma$ is compact. Furthermore

$\pi: \quad \mathbb{R} \ltimes (\mathbb{R} imes \mathbb{C} imes \mathbb{C}) o \mathbb{R} \ltimes (\mathbb{R} imes \mathbb{C}), \ (t, u, z, w) \mapsto (t, u, z)$

 M^6 is a \mathbb{T}^2 -bundle over the lnoue surface.

$$\pi: \quad \mathbb{R} \ltimes (\mathbb{R} \times \mathbb{C} \times \mathbb{C}) \to \mathbb{R} \ltimes (\mathbb{R} \times \mathbb{C}), \\ (t, u, z, w) \mapsto (t, u, z)$$

 M^6 is a \mathbb{T}^2 -bundle over the Inoue surface.

• $\Omega^{p,q}(M)$ (respectively by $\mathcal{D}^{p,q}(M)$) space of (p,q)-forms (respectively (p,q)-forms with compact support) on M. On $\mathcal{D}^{p,q}(M)$ consider the \mathcal{C}^{∞} -topology.

• The *space of currents* of *bi-dimension* (p, q) or of *bi-degree* (n - p, n - q) is the topological dual $\mathcal{D}'_{p,q}(M)$ of $\mathcal{D}^{p,q}(M)$.

• $\Omega^{p,q}(M)$ (respectively by $\mathcal{D}^{p,q}(M)$) space of (p,q)-forms (respectively (p,q)-forms with compact support) on M.

On $\mathcal{D}^{p,q}(M)$ consider the \mathcal{C}^{∞} -topology.

• The space of currents of bi-dimension (p, q) or of bi-degree (n - p, n - q) is the topological dual $\mathcal{D}'_{p,q}(M)$ of $\mathcal{D}^{p,q}(M)$.

• $\Omega^{p,q}(M)$ (respectively by $\mathcal{D}^{p,q}(M)$) space of (p,q)-forms (respectively (p,q)-forms with compact support) on M.

On $\mathcal{D}^{p,q}(M)$ consider the \mathcal{C}^{∞} -topology.

• The space of currents of bi-dimension (p, q) or of bi-degree (n - p, n - q) is the topological dual $\mathcal{D}'_{p,q}(M)$ of $\mathcal{D}^{p,q}(M)$.

• $\Omega^{p,q}(M)$ (respectively by $\mathcal{D}^{p,q}(M)$) space of (p,q)-forms (respectively (p,q)-forms with compact support) on M. On $\mathcal{D}^{p,q}(M)$ consider the \mathcal{C}^{∞} -topology.

• The space of currents of bi-dimension (p, q) or of bi-degree (n - p, n - q) is the topological dual $\mathcal{D}'_{p,q}(M)$ of $\mathcal{D}^{p,q}(M)$.

• $\Omega^{p,q}(M)$ (respectively by $\mathcal{D}^{p,q}(M)$) space of (p,q)-forms (respectively (p,q)-forms with compact support) on M. On $\mathcal{D}^{p,q}(M)$ consider the \mathcal{C}^{∞} -topology.

• The space of currents of bi-dimension (p, q) or of bi-degree (n - p, n - q) is the topological dual $\mathcal{D}'_{p,q}(M)$ of $\mathcal{D}^{p,q}(M)$.

• $\Omega^{p,q}(M)$ (respectively by $\mathcal{D}^{p,q}(M)$) space of (p,q)-forms (respectively (p,q)-forms with compact support) on M. On $\mathcal{D}^{p,q}(M)$ consider the \mathcal{C}^{∞} -topology.

• The space of currents of bi-dimension (p, q) or of bi-degree (n - p, n - q) is the topological dual $\mathcal{D}'_{p,q}(M)$ of $\mathcal{D}^{p,q}(M)$.

• A current T of bi-dimension (p, p) is *real* if $T(\varphi) = T(\overline{\varphi})$, for any $\varphi \in \mathcal{D}^{p,p}(M)$. If $T \in \mathcal{D}'_{p,p}(M)$ is real, \Rightarrow

$$T = \sigma_{n-p} \sum_{I,\overline{J}} T_{I\overline{J}} dz_I \wedge d\overline{z}_J \,,$$

where $\sigma_{n-p} = \frac{i^{(n-p)^2}}{2^{(n-p)}}$, $T_{I\overline{J}}$ are distributions on Ω such that $T_{J\overline{I}} = \overline{T}_{I\overline{J}}$

and I, J are multi-indices of length n - p, $I = (i_1, \dots, i_{n-p})$,

$$dz_I = dz_{i_1} \wedge \cdots \wedge dz_{i_{n-p}}$$

• A current T of bi-dimension (p, p) is *real* if $T(\varphi) = T(\overline{\varphi})$, for any $\varphi \in \mathcal{D}^{p,p}(M)$. If $T \in \mathcal{D}'_{p,p}(M)$ is real, \Rightarrow

$$T = \sigma_{n-p} \sum_{I,\overline{J}} T_{I\overline{J}} dz_I \wedge d\overline{z}_J,$$

where $\sigma_{n-p} = \frac{i^{(n-p)^2}}{2^{(n-p)}}$, $T_{I\overline{J}}$ are distributions on Ω such that $T_{J\overline{I}} = \overline{T}_{I\overline{J}}$

and I, J are multi-indices of length n - p, $I = (i_1, \dots, i_{n-p})$,

$$dz_I = dz_{i_1} \wedge \cdots \wedge dz_{i_{n-p}}$$

• A current T of bi-dimension (p, p) is *real* if $T(\varphi) = T(\overline{\varphi})$, for any $\varphi \in \mathcal{D}^{p,p}(M)$. If $T \in \mathcal{D}'_{p,p}(M)$ is real, \Rightarrow

$$T = \sigma_{n-p} \sum_{I,\overline{J}} T_{I\overline{J}} dz_I \wedge d\overline{z}_J,$$

where $\sigma_{n-p} = \frac{i^{(n-p)^2}}{2^{(n-p)}}$, $T_{I\overline{J}}$ are distributions on Ω such that $T_{J\overline{J}} = \overline{T}_{I\overline{J}}$

and I, J are multi-indices of length n - p, $I = (i_1, \dots, i_{n-p})$,

$$dz_I = dz_{i_1} \wedge \cdots \wedge dz_{i_{n-p}}$$

• A current T of bi-dimension (p, p) is *real* if $T(\varphi) = T(\overline{\varphi})$, for any $\varphi \in \mathcal{D}^{p,p}(M)$. If $T \in \mathcal{D}'_{p,p}(M)$ is real, \Rightarrow

$$T = \sigma_{n-p} \sum_{I,\overline{J}} T_{I\overline{J}} dz_I \wedge d\overline{z}_J,$$

where $\sigma_{n-p} = \frac{i^{(n-p)^2}}{2^{(n-p)}}$, $T_{I\overline{J}}$ are distributions on Ω such that $T_{J\overline{I}} = \overline{T}_{I\overline{J}}$

and I, J are multi-indices of length n - p, $I = (i_1, \ldots, i_{n-p})$,

$$dz_I = dz_{i_1} \wedge \cdots \wedge dz_{i_{n-p}}$$

• A real current $T \in \mathcal{D}'_{p,p}(M)$ is *positive* if,

$$T(\sigma_p \, \varphi^1 \wedge \cdots \wedge \varphi^p \wedge \overline{\varphi}^1 \wedge \cdots \wedge \overline{\varphi}^p) \ge 0$$

for any choice of $\varphi^1, \ldots, \varphi^p \in \mathcal{D}^{1,0}(\Omega)$, where $\sigma_p = rac{i^{p^2}}{2^p}$.

• A current *T* is *strictly positive* if

$$\varphi^1 \wedge \dots \wedge \varphi^p \neq 0$$

 $T(\sigma_{p} \varphi^{1} \wedge \cdots \wedge \varphi^{p} \wedge \overline{\varphi}^{1} \wedge \cdots \wedge \overline{\varphi}^{p}) > 0.$

• A real current $T \in \mathcal{D}'_{p,p}(M)$ is *positive* if,

$$T(\sigma_p \, \varphi^1 \wedge \cdots \wedge \varphi^p \wedge \overline{\varphi}^1 \wedge \cdots \wedge \overline{\varphi}^p) \geq 0$$

for any choice of $\varphi^1, \ldots, \varphi^p \in \mathcal{D}^{1,0}(\Omega)$, where $\sigma_p = \frac{i^{p^2}}{2^p}$.

• A current *T* is *strictly positive* if

 $\varphi^1 \wedge \cdots \wedge \varphi^p \neq 0$

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

3

 $T(\sigma_p \, \varphi^1 \wedge \cdots \wedge \varphi^p \wedge \overline{\varphi}^1 \wedge \cdots \wedge \overline{\varphi}^p) > 0.$

• A real current $T \in \mathcal{D}'_{p,p}(M)$ is *positive* if,

$$T(\sigma_{p} \varphi^{1} \wedge \cdots \wedge \varphi^{p} \wedge \overline{\varphi}^{1} \wedge \cdots \wedge \overline{\varphi}^{p}) \geq 0$$

for any choice of $\varphi^1, \ldots, \varphi^p \in \mathcal{D}^{1,0}(\Omega)$, where $\sigma_p = \frac{i^{p^2}}{2^p}$.

• A current T is *strictly positive* if

$$\varphi^1 \wedge \dots \wedge \varphi^p \neq 0$$

 $T(\sigma_{p} \varphi^{1} \wedge \cdots \wedge \varphi^{p} \wedge \overline{\varphi}^{1} \wedge \cdots \wedge \overline{\varphi}^{p}) > 0.$

- If F is the fundamental 2-form of a Hermitian structure on a complex manifold M, then F corresponds to a real strictly positive current of bi-degree (1, 1).
- N. Egidi (*Diff. Geom. and its Appl.* '98) showed that a compact complex manifold has a strong KT metric if and only if there is no non-zero positive current of bi-dimension (1,1) which is i $\partial \overline{\partial}$ -exact.

• If F is the fundamental 2-form of a Hermitian structure on a complex manifold M, then F corresponds to a real strictly positive current of bi-degree (1, 1).

• N. Egidi (*Diff. Geom. and its Appl.* '98) showed that a compact complex manifold has a strong KT metric if and only if there is no non-zero positive current of bi-dimension (1,1) which is i $\partial \overline{\partial}$ -exact.

• If F is the fundamental 2-form of a Hermitian structure on a complex manifold M, then F corresponds to a real strictly positive current of bi-degree (1, 1).

• N. Egidi (*Diff. Geom. and its Appl.* '98) showed that a compact complex manifold has a strong KT metric if and only if there is no non-zero positive current of bi-dimension (1,1) which is i $\partial \overline{\partial}$ -exact.

• If F is the fundamental 2-form of a Hermitian structure on a complex manifold M, then F corresponds to a real strictly positive current of bi-degree (1, 1).

• N. Egidi (*Diff. Geom. and its Appl.* '98) showed that a compact complex manifold has a strong KT metric if and only if there is no non-zero positive current of bi-dimension (1,1) which is $i \partial \overline{\partial}$ -exact.

We have the following

Theorem(A. Fino, —, to appear in Adv. in Math.) Let M be a complex manifold of complex dimension $n \ge 2$. If $M \setminus \{p\}$ admits a strong KT metric, then there exists a strong KT metric on M.

Idea of the proof

It is sufficient to show that

- i) F̂ is the fundamental 2-form of a strong KT metric on metric on Bⁿ(R),
- ii) $\hat{F} = F$ on $\mathbb{B}^n(R) \setminus \mathbb{B}^n(\frac{2}{3}R)$.

We have the following

Theorem(A. Fino, —, to appear in *Adv. in Math.*)

Let M be a complex manifold of complex dimension $n \ge 2$. If $M \setminus \{p\}$ admits a strong KT metric, then there exists a strong KT metric on M.

Idea of the proof

It is sufficient to show that

- i) F̂ is the fundamental 2-form of a strong KT metric on metric on Bⁿ(R),
- ii) $\hat{F} = F$ on $\mathbb{B}^n(R) \setminus \mathbb{B}^n(\frac{2}{3}R)$.

We have the following

Theorem(A. Fino, —, to appear in Adv. in Math.) Let M be a complex manifold of complex dimension $n \ge 2$. If $M \setminus \{p\}$ admits a strong KT metric, then there exists a stron KT metric on M.

Idea of the proof

It is sufficient to show that

- i) F̂ is the fundamental 2-form of a strong KT metric on metric on Bⁿ(R),
- ii) $\hat{F} = F$ on $\mathbb{B}^n(R) \setminus \mathbb{B}^n(\frac{2}{3}R)$.

We have the following

Theorem(A. Fino, —, to appear in Adv. in Math.) Let M be a complex manifold of complex dimension $n \ge 2$. If $M \setminus \{p\}$ admits a strong KT metric, then there exists a strong KT metric on M.

Idea of the proof

It is sufficient to show that

- i) F̂ is the fundamental 2-form of a strong KT metric on metric on Bⁿ(R),
- ii) $\hat{F} = F$ on $\mathbb{B}^n(R) \setminus \mathbb{B}^n(\frac{2}{3}R)$.

We have the following

Theorem(A. Fino, —, to appear in Adv. in Math.) Let M be a complex manifold of complex dimension $n \ge 2$. If $M \setminus \{p\}$ admits a strong KT metric, then there exists a strong KT metric on M.

Idea of the proof

It is sufficient to show that

- i) F̂ is the fundamental 2-form of a strong KT metric on metric on Bⁿ(R),
- ii) $\hat{F} = F$ on $\mathbb{B}^n(R) \setminus \mathbb{B}^n(\frac{2}{3}R)$.

We have the following

Theorem(A. Fino, —, to appear in Adv. in Math.) Let M be a complex manifold of complex dimension $n \ge 2$. If $M \setminus \{p\}$ admits a strong KT metric, then there exists a strong KT metric on M.

Idea of the proof

It is sufficient to show that

- i) F̂ is the fundamental 2-form of a strong KT metric on metric on Bⁿ(R),
- ii) $\hat{F} = F$ on $\mathbb{B}^n(R) \setminus \mathbb{B}^n(\frac{2}{3}R)$.

We have the following

Theorem(A. Fino, —, to appear in Adv. in Math.) Let M be a complex manifold of complex dimension $n \ge 2$. If $M \setminus \{p\}$ admits a strong KT metric, then there exists a strong KT metric on M.

Idea of the proof

It is sufficient to show that

- i) F̂ is the fundamental 2-form of a strong KT metric on metric on Bⁿ(R),
- ii) $\hat{F} = F$ on $\mathbb{B}^n(R) \setminus \mathbb{B}^n(\frac{2}{3}R)$.

We have the following

Theorem(A. Fino, —, to appear in Adv. in Math.) Let M be a complex manifold of complex dimension $n \ge 2$. If $M \setminus \{p\}$ admits a strong KT metric, then there exists a strong KT metric on M.

Idea of the proof

It is sufficient to show that

- i) F̂ is the fundamental 2-form of a strong KT metric on metric on Bⁿ(R),
- ii) $\hat{F} = F$ on $\mathbb{B}^n(R) \setminus \mathbb{B}^n(\frac{2}{3}R)$.

We have the following

Theorem(A. Fino, —, to appear in Adv. in Math.) Let M be a complex manifold of complex dimension $n \ge 2$. If $M \setminus \{p\}$ admits a strong KT metric, then there exists a strong KT metric on M.

Idea of the proof

It is sufficient to show that

If F is the fundamental 2-form of a strong KT metric on $\mathbb{B}^n(r) \setminus \{0\}$, $n \ge 2$, then there exist $0 < R \le r$ and $\hat{F} \in \Lambda^{1,1}(\mathbb{B}^n(R))$ such that

 i) F̂ is the fundamental 2-form of a strong KT metric on metric on Bⁿ(R),

ii)
$$\hat{F} = F$$
 on $\mathbb{B}^n(R) \setminus \mathbb{B}^n(\frac{2}{3}R)$.

We have the following

Theorem(A. Fino, —, to appear in Adv. in Math.) Let M be a complex manifold of complex dimension $n \ge 2$. If $M \setminus \{p\}$ admits a strong KT metric, then there exists a strong KT metric on M.

Idea of the proof

It is sufficient to show that

If F is the fundamental 2-form of a strong KT metric on $\mathbb{B}^n(r) \setminus \{0\}$, $n \ge 2$, then there exist $0 < R \le r$ and $\hat{F} \in \Lambda^{1,1}(\mathbb{B}^n(R))$ such that

i) \hat{F} is the fundamental 2-form of a strong KT metric on metric on $\mathbb{B}^n(R)$,

ii) $\hat{F} = F$ on $\mathbb{B}^n(R) \setminus \mathbb{B}^n(\frac{2}{3}R)$.

We have the following

Theorem(A. Fino, —, to appear in Adv. in Math.) Let M be a complex manifold of complex dimension $n \ge 2$. If $M \setminus \{p\}$ admits a strong KT metric, then there exists a strong KT metric on M.

Idea of the proof

It is sufficient to show that

If F is the fundamental 2-form of a strong KT metric on $\mathbb{B}^n(r) \setminus \{0\}$, $n \ge 2$, then there exist $0 < R \le r$ and $\hat{F} \in \Lambda^{1,1}(\mathbb{B}^n(R))$ such that

i) \hat{F} is the fundamental 2-form of a strong KT metric on metric on $\mathbb{B}^n(R)$,

ii)
$$\hat{F} = F$$
 on $\mathbb{B}^n(R) \setminus \mathbb{B}^n(\frac{2}{3}R)$.

Let F be the fundamental form of a strong KT metric on $\mathbb{B}^n(r) \setminus \{0\}$. Set T = -F. Then by

• By Alessandrini and Bassanelli (*Forum Math. '93*) the $\partial \overline{\partial}$ -closed current T can be extended as a current to $\mathbb{B}^n(r)$ by

$$\mathcal{T}^{0}(\varphi) = \int_{\mathbb{B}^{n}(r)\setminus\{0\}} F \wedge \varphi, \ \forall \varphi \in \mathcal{D}^{n-1,n-1}(\mathbb{B}^{n}(r))$$

Set $F^0 = -T^0$. Then

• By Siu (Inv. Math. '74), Bassanelli (Forum Math. '93)

$$F^0 = \partial G + \overline{\partial G}$$
, on $\mathbb{B}^n(R)$

for some $0 < R \leq r$, where G is a current of bi-degree (0,1).

Let F be the fundamental form of a strong KT metric on $\mathbb{B}^n(r) \setminus \{0\}$. Set T = -F. Then by

• By Alessandrini and Bassanelli (*Forum Math. '93*) the $\partial \overline{\partial}$ -closed current T can be extended as a current to $\mathbb{B}^n(r)$ by

$$\mathcal{T}^{0}(\varphi) = \int_{\mathbb{B}^{n}(r) \setminus \{0\}} F \wedge \varphi, \ \forall \varphi \in \mathcal{D}^{n-1,n-1}(\mathbb{B}^{n}(r))$$

Set $F^0 = -T^0$. Then

• By Siu (Inv. Math. '74), Bassanelli (Forum Math. '93)

$$F^0 = \partial G + \overline{\partial G}$$
, on $\mathbb{B}^n(R)$

for some $0 < R \leq r$, where G is a current of bi-degree (0, 1).

Let F be the fundamental form of a strong KT metric on $\mathbb{B}^n(r) \setminus \{0\}$. Set T = -F. Then by

• By Alessandrini and Bassanelli (*Forum Math. '93*) the $\partial \overline{\partial}$ -closed current T can be extended as a current to $\mathbb{B}^n(r)$ by

$$\mathcal{T}^{0}(arphi) = \int_{\mathbb{B}^{n}(r) \setminus \{0\}} \mathcal{F} \wedge arphi \,, \,\, orall arphi \in \mathcal{D}^{n-1,n-1}(\mathbb{B}^{n}(r))$$

Set $F^0 = -T^0$. Then

• By Siu (Inv. Math. '74), Bassanelli (Forum Math. '93)

$$F^0 = \partial G + \overline{\partial G}$$
, on $\mathbb{B}^n(R)$

for some $0 < R \leq r$, where G is a current of bi-degree (0, 1).

Let F be the fundamental form of a strong KT metric on $\mathbb{B}^n(r) \setminus \{0\}$. Set T = -F. Then by

• By Alessandrini and Bassanelli (*Forum Math. '93*) the $\partial \overline{\partial}$ -closed current T can be extended as a current to $\mathbb{B}^n(r)$ by

$$T^0(arphi) = \int_{\mathbb{B}^n(r) \setminus \{0\}} F \wedge arphi \,, \,\, orall arphi \in \mathcal{D}^{n-1,n-1}(\mathbb{B}^n(r))$$

Set $F^0 = -T^0$. Then

• By Siu (Inv. Math. '74), Bassanelli (Forum Math. '93)

$$F^0 = \partial G + \overline{\partial G}$$
, on $\mathbb{B}^n(R)$

for some $0 < R \leq r$, where G is a current of bi-degree (0, 1).

Let *F* be the fundamental form of a strong KT metric on $\mathbb{B}^n(r) \setminus \{0\}$. Set T = -F. Then by

• By Alessandrini and Bassanelli (*Forum Math. '93*) the $\partial \overline{\partial}$ -closed current T can be extended as a current to $\mathbb{B}^n(r)$ by

$$T^{0}(\varphi) = \int_{\mathbb{B}^{n}(r) \setminus \{0\}} F \wedge \varphi, \ \forall \varphi \in \mathcal{D}^{n-1,n-1}(\mathbb{B}^{n}(r))$$

Set $F^0 = -T^0$. Then

• By Siu (Inv. Math. '74), Bassanelli (Forum Math. '93)

$$F^0 = \partial G + \overline{\partial G}$$
, on $\mathbb{B}^n(R)$

for some $0 < R \leq r$, where G is a current of bi-degree (0, 1).

Let *F* be the fundamental form of a strong KT metric on $\mathbb{B}^n(r) \setminus \{0\}$. Set T = -F. Then by

• By Alessandrini and Bassanelli (*Forum Math. '93*) the $\partial \overline{\partial}$ -closed current T can be extended as a current to $\mathbb{B}^n(r)$ by

$$T^{0}(\varphi) = \int_{\mathbb{B}^{n}(r) \setminus \{0\}} F \wedge \varphi, \ \forall \varphi \in \mathcal{D}^{n-1,n-1}(\mathbb{B}^{n}(r))$$

Set $F^0 = -T^0$. Then

• By Siu (Inv. Math. '74), Bassanelli (Forum Math. '93)

$$F^0 = \partial G + \overline{\partial G}$$
, on $\mathbb{B}^n(R)$

for some $0 < R \leq r$, where G is a current of bi-degree (0, 1).

• Finally, we can regularize G, in order that we obtain a $\partial \overline{\partial}$ -closed and positive (1, 1)-form on $\mathbb{B}^n(R)$.

• The last theorem is the generalization of the *Miyaoka Extension Theorem* (*Proc. Japan Acad. '74*) for Kähler manifolds, to the strong KT case.

As a corollary, we have the following

Theorem

• The last theorem is the generalization of the *Miyaoka Extension Theorem* (*Proc. Japan Acad. '74*) for Kähler manifolds, to the strong KT case.

As a corollary, we have the following

Theorem

• The last theorem is the generalization of the *Miyaoka Extension Theorem* (*Proc. Japan Acad. '74*) for Kähler manifolds, to the strong KT case.

As a corollary, we have the following

Theorem

• The last theorem is the generalization of the *Miyaoka Extension Theorem* (*Proc. Japan Acad. '74*) for Kähler manifolds, to the strong KT case.

As a corollary, we have the following

Theorem

Let M be a complex manifold of complex dimension $n \ge 2$ and \tilde{M} be the blow-up of M at a point $p \in M$.

Then M has a strong KT metric if and only if M admits a strong KT metric.

• The last theorem is the generalization of the *Miyaoka Extension Theorem* (*Proc. Japan Acad. '74*) for Kähler manifolds, to the strong KT case.

As a corollary, we have the following

Theorem

Theorem (A. Fino, —, to appear in Adv. in Math.)

On the Iwasawa manifold $\mathbb{I}(3) = \Gamma \setminus H_3^{\mathbb{C}}$ the condition for a Hermitian metric to be strong KT is not stable under small deformations of the complex structure underlying the strong KT structure.

n_{t,s} family of 2-step nilpotent Lie algebras with structure equations

$$\left\{ egin{array}{ll} de^i = 0, & i = 1, \dots, 4, \ de^5 = t(e^1 \wedge e^2 + 2\,e^3 \wedge e^4) + s(e^1 \wedge e^3 - e^2 \wedge e^4), \ de^6 = s(e^1 \wedge e^4 + e^2 \wedge e^3), \end{array}
ight.$$

 $t,s\in\mathbb{R}$, s
eq 0.

Theorem (A. Fino, —, to appear in Adv. in Math.) On the Iwasawa manifold $\mathbb{I}(3) = \Gamma \setminus H_3^{\mathbb{C}}$ the condition for a Hermitian metric to be strong KT is not stable under small deformations of the complex structure underlying the strong KT structure.

n_{t,s} family of 2-step nilpotent Lie algebras with structure equations

$$\left\{ egin{array}{ll} de^i = 0, & i = 1, \dots, 4, \ de^5 = t(e^1 \wedge e^2 + 2\,e^3 \wedge e^4) + s(e^1 \wedge e^3 - e^2 \wedge e^4), \ de^6 = s(e^1 \wedge e^4 + e^2 \wedge e^3), \end{array}
ight.$$

 $t,s\in\mathbb{R},\ s
eq 0.$

Theorem (A. Fino, —, to appear in Adv. in Math.) On the Iwasawa manifold $\mathbb{I}(3) = \Gamma \setminus H_3^{\mathbb{C}}$ the condition for a Hermitian metric to be strong KT is not stable under small deformations of the complex structure underlying the strong KT structure.

• $\mathfrak{n}_{t,s}$ family of 2-step nilpotent Lie algebras with structure equations

$$\left\{ egin{array}{ll} de^i = 0, & i = 1, \dots, 4, \ de^5 = t(e^1 \wedge e^2 + 2\,e^3 \wedge e^4) + s(e^1 \wedge e^3 - e^2 \wedge e^4), \ de^6 = s(e^1 \wedge e^4 + e^2 \wedge e^3), \end{array}
ight.$$

 $t,s\in\mathbb{R}$, s
eq 0.

Theorem (A. Fino, —, to appear in Adv. in Math.) On the Iwasawa manifold $\mathbb{I}(3) = \Gamma \setminus H_3^{\mathbb{C}}$ the condition for a Hermitian metric to be strong KT is not stable under small deformations of the complex structure underlying the strong KT structure.

• $\mathfrak{n}_{t,s}$ family of 2-step nilpotent Lie algebras with structure equations

$$\begin{cases} de^{i} = 0, \quad i = 1, \dots, 4, \\ de^{5} = t(e^{1} \wedge e^{2} + 2e^{3} \wedge e^{4}) + s(e^{1} \wedge e^{3} - e^{2} \wedge e^{4}), \\ de^{6} = s(e^{1} \wedge e^{4} + e^{2} \wedge e^{3}), \end{cases}$$

 $t, s \in \mathbb{R}, s \neq 0.$

This family was already considered by Fino and Grantcharov (*Adv. in Math.* '04) for Hermitian structures whose Bismut connection has holonomy in SU(3) and it was proved that for any t and $s \neq 0$ the Lie algebra $n_{t,s}$ is isomorphic to the Lie algebra of the complex Heisenberg group H_3^{C} with structure equations

$$\left\{ egin{array}{ll} de^i = 0, & i = 1, \dots, 4, \ de^5 = e^1 \wedge e^3 - e^2 \wedge e^4, \ de^6 = e^1 \wedge e^4 + e^2 \wedge e^3, \end{array}
ight.$$

(see also Lauret Ann. Glob. Anal. and Geom. '06)

This family was already considered by Fino and Grantcharov (*Adv. in Math.* '04) for Hermitian structures whose Bismut connection has holonomy in SU(3) and it was proved that for any t and $s \neq 0$ the Lie algebra $n_{t,s}$ is isomorphic to the Lie algebra of the complex Heisenberg group H_3^C with structure equations

$$\left\{ egin{array}{ll} de^{i} = 0, & i = 1, \dots, 4, \ de^{5} = e^{1} \wedge e^{3} - e^{2} \wedge e^{4}, \ de^{6} = e^{1} \wedge e^{4} + e^{2} \wedge e^{3}, \end{array}
ight.$$

(see also Lauret Ann. Glob. Anal. and Geom. '06).

This family was already considered by Fino and Grantcharov (*Adv.* in Math. '04) for Hermitian structures whose Bismut connection has holonomy in SU(3) and it was proved that for any t and $s \neq 0$ the Lie algebra $\mathfrak{n}_{t,s}$ is isomorphic to the Lie algebra of the complex Heisenberg group $H_3^{\mathbb{C}}$ with structure equations

$$\left\{ egin{array}{ll} de^i=0, & i=1,\ldots,4, \ de^5=e^1\wedge e^3-e^2\wedge e^4, \ de^6=e^1\wedge e^4+e^2\wedge e^3, \end{array}
ight.$$

(see also Lauret Ann. Glob. Anal. and Geom. '06).

This family was already considered by Fino and Grantcharov (*Adv.* in Math. '04) for Hermitian structures whose Bismut connection has holonomy in SU(3) and it was proved that for any t and $s \neq 0$ the Lie algebra $\mathfrak{n}_{t,s}$ is isomorphic to the Lie algebra of the complex Heisenberg group $H_3^{\mathbb{C}}$ with structure equations

$$\left\{ egin{array}{ll} de^i = 0, & i = 1, \dots, 4, \ de^5 = e^1 \wedge e^3 - e^2 \wedge e^4, \ de^6 = e^1 \wedge e^4 + e^2 \wedge e^3, \end{array}
ight.$$

(see also Lauret Ann. Glob. Anal. and Geom. '06).

Take the almost complex structure J on $n_{t,s}$ given by

$$Je^1 = e^2, Je^3 = e^4, Je^5 = e^6.$$
 (2)

The associated (1,0)-forms

$$\varphi^1 = e^1 + ie^2, \ \varphi^2 = e^3 + ie^4, \ \varphi^3 = e^5 + ie^6,$$

satisfy

$$\begin{split} d\varphi^{i} &= 0, \quad i = 1, 2, \\ d\varphi^{3} &= -\frac{1}{2}i t \left(\varphi^{1} \wedge \overline{\varphi}^{1} + 2\varphi^{2} \wedge \overline{\varphi}^{2}\right) + s \varphi^{1} \wedge \varphi^{2}, \end{split}$$

and therefore J is integrable.

• In this way the Iwasawa manifold $\mathbb{I}(3) = \Gamma \setminus H_3^{\mathbb{C}}$ is endowed with a family of complex structures $J_{t,s}$, with $t, s \in \mathbb{R}$ and $s \neq 0$.

Take the almost complex structure J on $n_{t,s}$ given by

$$Je^1 = e^2, Je^3 = e^4, Je^5 = e^6.$$
 (2)

The associated (1,0)-forms

$$\varphi^1 = e^1 + ie^2, \ \varphi^2 = e^3 + ie^4, \ \varphi^3 = e^5 + ie^6,$$

satisfy

$$\begin{split} d\varphi^{i} &= 0, \quad i = 1, 2, \\ d\varphi^{3} &= -\frac{1}{2}i t \left(\varphi^{1} \wedge \overline{\varphi}^{1} + 2\varphi^{2} \wedge \overline{\varphi}^{2}\right) + s \varphi^{1} \wedge \varphi^{2}, \end{split}$$

and therefore J is integrable.

• In this way the Iwasawa manifold $\mathbb{I}(3) = \Gamma \setminus H_3^{\mathbb{C}}$ is endowed with a family of complex structures $J_{t,s}$, with $t, s \in \mathbb{R}$ and $s \neq 0$.

・ロット 御 マ イロット キャー

Take the almost complex structure J on $n_{t,s}$ given by

$$Je^1 = e^2, Je^3 = e^4, Je^5 = e^6.$$
 (2)

The associated (1,0)-forms

$$\varphi^1 = e^1 + ie^2, \ \varphi^2 = e^3 + ie^4, \ \varphi^3 = e^5 + ie^6,$$

satisfy

$$\begin{split} d\varphi^{i} &= 0, \quad i = 1, 2, \\ d\varphi^{3} &= -\frac{1}{2}i t \left(\varphi^{1} \wedge \overline{\varphi}^{1} + 2\varphi^{2} \wedge \overline{\varphi}^{2}\right) + s \varphi^{1} \wedge \varphi^{2}, \end{split}$$

and therefore J is integrable.

• In this way the Iwasawa manifold $\mathbb{I}(3) = \Gamma \setminus H_3^{\mathbb{C}}$ is endowed with a family of complex structures $J_{t,s}$, with $t, s \in \mathbb{R}$ and $s \neq 0$.

・ロット 御マット ボビマ ・ロット

Take the almost complex structure J on $n_{t,s}$ given by

$$Je^1 = e^2, Je^3 = e^4, Je^5 = e^6.$$
 (2)

The associated (1,0)-forms

$$\varphi^1 = e^1 + ie^2, \ \varphi^2 = e^3 + ie^4, \ \varphi^3 = e^5 + ie^6,$$

satisfy

$$\begin{split} d\varphi^{i} &= 0, \quad i = 1, 2, \\ d\varphi^{3} &= -\frac{1}{2}i t \left(\varphi^{1} \wedge \overline{\varphi}^{1} + 2\varphi^{2} \wedge \overline{\varphi}^{2}\right) + s \varphi^{1} \wedge \varphi^{2}, \end{split}$$

and therefore J is integrable.

• In this way the Iwasawa manifold $\mathbb{I}(3) = \Gamma \setminus H_3^{\mathbb{C}}$ is endowed with a family of complex structures $J_{t,s}$, with $t, s \in \mathbb{R}$ and $s \neq 0$.

Take the almost complex structure J on $n_{t,s}$ given by

$$Je^1 = e^2, Je^3 = e^4, Je^5 = e^6.$$
 (2)

The associated (1,0)-forms

$$\varphi^1 = e^1 + ie^2, \ \varphi^2 = e^3 + ie^4, \ \varphi^3 = e^5 + ie^6,$$

satisfy

$$\begin{split} d\varphi^{i} &= 0, \quad i = 1, 2, \\ d\varphi^{3} &= -\frac{1}{2}i t \left(\varphi^{1} \wedge \overline{\varphi}^{1} + 2\varphi^{2} \wedge \overline{\varphi}^{2}\right) + s \varphi^{1} \wedge \varphi^{2}, \end{split}$$

and therefore J is integrable.

• In this way the Iwasawa manifold $\mathbb{I}(3) = \Gamma \setminus H_3^{\mathbb{C}}$ is endowed with a family of complex structures $J_{t,s}$, with $t, s \in \mathbb{R}$ and $s \neq 0$.

Take the almost complex structure J on $n_{t,s}$ given by

$$Je^1 = e^2, Je^3 = e^4, Je^5 = e^6.$$
 (2)

The associated (1,0)-forms

$$\varphi^1 = e^1 + ie^2, \ \varphi^2 = e^3 + ie^4, \ \varphi^3 = e^5 + ie^6,$$

satisfy

$$egin{aligned} darphi^i &= 0, \quad i = 1, 2, \ darphi^3 &= -rac{1}{2}i\,t\,(arphi^1 \wedge \overline{arphi}^1 + 2arphi^2 \wedge \overline{arphi}^2) + s\,arphi^1 \wedge arphi^2, \end{aligned}$$

and therefore J is integrable.

• In this way the Iwasawa manifold $\mathbb{I}(3) = \Gamma \setminus H_3^{\mathbb{C}}$ is endowed with a family of complex structures $J_{t,s}$, with $t, s \in \mathbb{R}$ and $s \neq 0$.

Take the almost complex structure J on $n_{t,s}$ given by

$$Je^1 = e^2, Je^3 = e^4, Je^5 = e^6.$$
 (2)

The associated (1,0)-forms

$$\varphi^1 = e^1 + ie^2, \ \varphi^2 = e^3 + ie^4, \ \varphi^3 = e^5 + ie^6,$$

satisfy

$$egin{aligned} darphi^i &= 0, \quad i = 1, 2, \ darphi^3 &= -rac{1}{2}i\,t\,(arphi^1 \wedge \overline{arphi}^1 + 2arphi^2 \wedge \overline{arphi}^2) + s\,arphi^1 \wedge arphi^2, \end{aligned}$$

and therefore J is integrable.

• In this way the Iwasawa manifold $\mathbb{I}(3) = \Gamma \setminus H_3^{\mathbb{C}}$ is endowed with a family of complex structures $J_{t,s}$, with $t, s \in \mathbb{R}$ and $s \neq 0$.

・ロット 御 マ イロット キャー

Take the almost complex structure J on $n_{t,s}$ given by

$$Je^1 = e^2, Je^3 = e^4, Je^5 = e^6.$$
 (2)

The associated (1,0)-forms

$$\varphi^1 = e^1 + ie^2, \ \varphi^2 = e^3 + ie^4, \ \varphi^3 = e^5 + ie^6,$$

satisfy

$$egin{aligned} darphi^i &= 0, \quad i = 1, 2, \ darphi^3 &= -rac{1}{2}i\,t\,(arphi^1 \wedge \overline{arphi}^1 + 2arphi^2 \wedge \overline{arphi}^2) + s\,arphi^1 \wedge arphi^2, \end{aligned}$$

and therefore J is integrable.

• In this way the Iwasawa manifold $\mathbb{I}(3) = \Gamma \setminus H_3^{\mathbb{C}}$ is endowed with a family of complex structures $J_{t,s}$, with $t, s \in \mathbb{R}$ and $s \neq 0$.

・ロット 御 マ イロット キャー

Take the almost complex structure J on $n_{t,s}$ given by

$$Je^1 = e^2, Je^3 = e^4, Je^5 = e^6.$$
 (2)

The associated (1,0)-forms

$$\varphi^1 = e^1 + ie^2, \ \varphi^2 = e^3 + ie^4, \ \varphi^3 = e^5 + ie^6,$$

satisfy

$$egin{aligned} darphi^i &= 0, \quad i = 1, 2, \ darphi^3 &= -rac{1}{2}i\,t\,(arphi^1 \wedge \overline{arphi}^1 + 2arphi^2 \wedge \overline{arphi}^2) + s\,arphi^1 \wedge arphi^2, \end{aligned}$$

and therefore J is integrable.

• In this way the Iwasawa manifold $\mathbb{I}(3) = \Gamma \setminus H_3^{\mathbb{C}}$ is endowed with a family of complex structures $J_{t,s}$, with $t, s \in \mathbb{R}$ and $s \neq 0$.

э

• The complex structure J_0 cannot admit any compatible strong KT metric, since otherwise it has to be balanced and by Fino-Parton-Salamon (*Comm. Math. Helv.* '04) the balanced condition is complementary to the strong KT one.

• The complex structure J_0 cannot admit any compatible strong KT metric, since otherwise it has to be balanced and by Fino-Parton-Salamon (*Comm. Math. Helv.* '04) the balanced condition is complementary to the strong KT one.

• The complex structure J_0 cannot admit any compatible strong KT metric, since otherwise it has to be balanced and by Fino-Parton-Salamon (*Comm. Math. Helv.* '04) the balanced condition is complementary to the strong KT one.

• The complex structure J_0 cannot admit any compatible strong KT metric, since otherwise it has to be balanced and by Fino-Parton-Salamon (*Comm. Math. Helv.* '04) the balanced condition is complementary to the strong KT one.

• The complex structure J_0 cannot admit any compatible strong KT metric, since otherwise it has to be balanced and by Fino-Parton-Salamon (*Comm. Math. Helv.* '04) the balanced condition is complementary to the strong KT one.

• The complex structure J_0 cannot admit any compatible strong KT metric, since otherwise it has to be balanced and by Fino-Parton-Salamon (*Comm. Math. Helv.* '04) the balanced condition is complementary to the strong KT one.

• By Ugarte (*Transf. Groups.* '07) and Fino-Grantcharov, if there exists a non-left-invariant strong KT metric compatible with $J_{t,s}$, then there is also a left-invariant one. This is possible if and only if $t^2 = s^2$.

• Thus if t = s = 1 the Iwasawa manifold has a strong KT metric g compatible with $J_{1,1}$, but for any $t \neq s \neq 1$ there exists no strong KT metric compatible with the complex structure $J_{t,s}$.

• By Ugarte (*Transf. Groups.* '07) and Fino-Grantcharov, if there exists a non-left-invariant strong KT metric compatible with $J_{t,s}$, then there is also a left-invariant one. This is possible if and only if $t^2 = s^2$.

• Thus if t = s = 1 the Iwasawa manifold has a strong KT metric g compatible with $J_{1,1}$, but for any $t \neq s \neq 1$ there exists no strong KT metric compatible with the complex structure $J_{t,s}$.

• By Ugarte (*Transf. Groups.* '07) and Fino-Grantcharov, if there exists a non-left-invariant strong KT metric compatible with $J_{t,s}$, then there is also a left-invariant one. This is possible if and only if $t^2 = s^2$.

• Thus if t = s = 1 the Iwasawa manifold has a strong KT metric g compatible with $J_{1,1}$, but for any $t \neq s \neq 1$ there exists no strong KT metric compatible with the complex structure $J_{t,s}$.

Let (M, J) be a complex manifold of complex dimension *n*. **Def.** An Hermitian metric *g* on (M, J) is said to be balanced if

$$dF^{n-1}=0\,,$$

where $F(\cdot, \cdot) = g(\cdot, J \cdot)$ is the fundamental form of g.

Example

 \bullet Let \ast be the product on \mathbb{C}^3 given by

$${}^{t}(z_{1}, z_{2}, z_{3}) * {}^{t}(w_{1}, w_{2}, w_{3}) =$$

$$t(z_1 + w_1, e^{-w_1}z_2 + w_2, e^{w_1}z_3 + w_3)$$

Then (\mathbb{C}^3,\ast) has a uniform discrete subgroup Γ and

$$M = (\mathbb{C}^3, *)/\Gamma$$

is a compact complex solvmanifold.

Then

$$\varphi_1 = dz_1 \,, \ \varphi_2 = e^{z_1} dz_2 \,, \ \varphi_3 = e^{-z_1} dz_3 \,,$$

induce invariant complex (1,0)-forms on M and

$$g = rac{1}{2}\sum_{j=1}^{3} arphi_{j}\otimes \overline{arphi}_{j} + \overline{arphi}_{j}\otimes arphi_{j}$$

is a balanced metric on M.

• N 5-dimensional manifold L(N) principal bundle of linear frames on N.

An SU(2)-structure on N is an SU(2)-reduction of L(N). We have the following

Proposition(Conti, Salamon *Trans. Amer. Math. Soc.* '07) SU(2)-structures on a 5-manifold N are in 1 : 1 correspondence with quadruplets $(\eta, \omega_1, \omega_2, \omega_3)$, where η is a 1-form and ω_i are 2-forms on N satisfying

$$\omega_i \wedge \omega_j = \delta_{ij} \mathbf{v}, \quad \mathbf{v} \wedge \eta \neq \mathbf{0},$$

for some 4-form v, and $i_X\omega_3 = i_Y\omega_1 \Rightarrow \omega_2(X, Y) \ge 0$, where i_X denotes the contraction by X. Equivalently, an SU(2)-structure on N can be viewed as the datum of (η, ω_3, Φ) , where η is a 1-form, ω_3 is a 2-form and $\Phi = \omega_1 + i\omega_2$ is a complex 2-form such that

$$\eta \wedge \omega_3^2 \neq 0$$
, $\Phi^2 = 0$
 $\omega_3 \wedge \Phi = 0$, $\Phi \wedge \overline{\Phi} = 2\omega_3^2$

and Φ is of type (2,0) with respect to ω_3 .

Proposition(Conti, Salamon Trans. Amer. Math. Soc. '07) SU(2)-structures on a 5-manifold N are in 1 : 1 correspondence with quadruplets $(\eta, \omega_1, \omega_2, \omega_3)$, where η is a 1-form and ω_i are 2-forms on N satisfying

$$\omega_i \wedge \omega_j = \delta_{ij} \mathbf{v}, \quad \mathbf{v} \wedge \eta \neq \mathbf{0},$$

for some 4-form v, and $i_X\omega_3 = i_Y\omega_1 \Rightarrow \omega_2(X, Y) \ge 0$, where i_X denotes the contraction by X. Equivalently, an SU(2)-structure on N can be viewed as the datum of (η, ω_3, Φ) , where η is a 1-form, ω_3 is a 2-form and $\Phi = \omega_1 + i\omega_2$ is a complex 2-form such that

$$\eta \wedge \omega_3^2 \neq 0$$
, $\Phi^2 = 0$
 $\omega_3 \wedge \Phi = 0$, $\Phi \wedge \overline{\Phi} = 2\omega_3^2$

and Φ is of type (2,0) with respect to ω_3 .

As a corollary of the last Proposition, we obtain the useful local characterization of ${\rm SU}(2)\text{-structures}$ (see Conti-Salamon):

Corollary

If $(\eta, \omega_1, \omega_2, \omega_3)$ is an SU(2)-structure on a 5-dimensional manifold N, then locally, there exists a basis of 1-forms $\{e^1, \ldots, e^5\}$ such that

$$\eta = e^1, \ \omega_1 = e^{24} + e^{53}, \ \omega_2 = e^{25} + e^{34}, \ \omega_3 = e^{23} + e^{45}$$

As a corollary of the last Proposition, we obtain the useful local characterization of ${\rm SU}(2)$ -structures (see Conti-Salamon):

Corollary

If $(\eta, \omega_1, \omega_2, \omega_3)$ is an SU(2)-structure on a 5-dimensional manifold N, then locally, there exists a basis of 1-forms $\{e^1, \ldots, e^5\}$ such that

 $\eta = e^1, \ \omega_1 = e^{24} + e^{53}, \ \omega_2 = e^{25} + e^{34}, \ \omega_3 = e^{23} + e^{45}.$

As a corollary of the last Proposition, we obtain the useful local characterization of ${\rm SU}(2)\text{-structures}$ (see Conti-Salamon):

Corollary

If $(\eta, \omega_1, \omega_2, \omega_3)$ is an SU(2)-structure on a 5-dimensional manifold N, then locally, there exists a basis of 1-forms $\{e^1, \ldots, e^5\}$ such that

$$\eta = e^1, \ \omega_1 = e^{24} + e^{53}, \ \omega_2 = e^{25} + e^{34}, \ \omega_3 = e^{23} + e^{45}$$

• $f : N \longrightarrow M$ oriented hypersurface in a 6-manifold M endowed with an SU(3)-structure (F, Ψ_+, Ψ_-) , \mathbb{U} the unit normal vector field. Then

 $\eta = -i_{\mathbb{U}}F, \quad \omega_1 = i_{\mathbb{U}}\Psi_-, \quad \omega_2 = -i_{\mathbb{U}}\Psi_+, \quad \omega_3 = f^*F.$ (3)

defines an SU(2)-structure on N.

• Conversely, an SU(2)-structure $(\eta, \omega_1, \omega_2, \omega_3)$ on N induces an SU(3)-structure (F, Ψ_+, Ψ_-) on $N \times \mathbb{R}$ given by

 $F = \omega_3 + \eta \wedge dt, \qquad \Psi = \Psi_+ + i\Psi_- = (\omega_1 + i\omega_2) \wedge (\eta + idt), \quad (4)$

• $f: N \longrightarrow M$ oriented hypersurface in a 6-manifold M endowed with an SU(3)-structure (F, Ψ_+, Ψ_-) , \mathbb{U} the unit normal vector field. Then

$$\eta = -i_{\mathbb{U}}F, \quad \omega_1 = i_{\mathbb{U}}\Psi_-, \quad \omega_2 = -i_{\mathbb{U}}\Psi_+, \quad \omega_3 = f^*F.$$
(3)

defines an SU(2)-structure on N.

• Conversely, an SU(2)-structure $(\eta, \omega_1, \omega_2, \omega_3)$ on N induces an SU(3)-structure (F, Ψ_+, Ψ_-) on $N \times \mathbb{R}$ given by

 $F = \omega_3 + \eta \wedge dt, \qquad \Psi = \Psi_+ + i\Psi_- = (\omega_1 + i\omega_2) \wedge (\eta + idt), \quad (4)$

・ロット 御 マ イロット キャー

3

• $f: N \longrightarrow M$ oriented hypersurface in a 6-manifold M endowed with an SU(3)-structure (F, Ψ_+, Ψ_-) , \mathbb{U} the unit normal vector field. Then

$$\eta = -i_{\mathbb{U}}F, \quad \omega_1 = i_{\mathbb{U}}\Psi_-, \quad \omega_2 = -i_{\mathbb{U}}\Psi_+, \quad \omega_3 = f^*F.$$
(3)

defines an SU(2)-structure on N.

• Conversely, an SU(2)-structure $(\eta, \omega_1, \omega_2, \omega_3)$ on N induces an SU(3)-structure (F, Ψ_+, Ψ_-) on $N \times \mathbb{R}$ given by

 $F = \omega_3 + \eta \wedge dt, \qquad \Psi = \Psi_+ + i\Psi_- = (\omega_1 + i\omega_2) \wedge (\eta + idt), \quad (4)$

・ロット (雪) (山) (山)

3

• $f: N \longrightarrow M$ oriented hypersurface in a 6-manifold M endowed with an SU(3)-structure (F, Ψ_+, Ψ_-) , \mathbb{U} the unit normal vector field. Then

$$\eta = -i_{\mathbb{U}}F, \quad \omega_1 = i_{\mathbb{U}}\Psi_-, \quad \omega_2 = -i_{\mathbb{U}}\Psi_+, \quad \omega_3 = f^*F.$$
(3)

defines an SU(2)-structure on N.

• Conversely, an SU(2)-structure $(\eta, \omega_1, \omega_2, \omega_3)$ on N induces an SU(3)-structure (F, Ψ_+, Ψ_-) on $N \times \mathbb{R}$ given by

$$F = \omega_3 + \eta \wedge dt, \qquad \Psi = \Psi_+ + i\Psi_- = (\omega_1 + i\omega_2) \wedge (\eta + idt),$$
 (4)

・ロット (雪) (日) (日)

э

Definition

An SU(2)-structure $(\eta, \omega_1, \omega_2, \omega_3)$ on a 5-dimensional manifold N is called *balanced* if it satisfies

 $d(\omega_1 \wedge \eta) = 0, \qquad d(\omega_2 \wedge \eta) = 0, \qquad d(\omega_3 \wedge \omega_3) = 0.$ (5)

Definition

An SU(2)-structure $(\eta, \omega_1, \omega_2, \omega_3)$ on a 5-dimensional manifold N is called *balanced* if it satisfies

$$d(\omega_1 \wedge \eta) = 0, \qquad d(\omega_2 \wedge \eta) = 0, \qquad d(\omega_3 \wedge \omega_3) = 0.$$
 (5)

In Conti-Salamon (*Trans. Amer. Math. Soc.* '07), an SU(2)-structure is said to be *hypo* if

$$d(\omega_1 \wedge \eta) = d(\omega_2 \wedge \eta) = d\omega_3 = 0 \tag{6}$$

are satisfied.

Hence,

hypo \implies balanced.

 There are nilmanifolds admitting no invariant hypo structure, but having balanced SU(2)-structures. The Lie algebras

In Conti-Salamon (*Trans. Amer. Math. Soc.* '07), an SU(2)-structure is said to be *hypo* if

$$d(\omega_1 \wedge \eta) = d(\omega_2 \wedge \eta) = d\omega_3 = 0 \tag{6}$$

are satisfied.

Hence,

hypo \Longrightarrow balanced.

 There are nilmanifolds admitting no invariant hypo structure, but having balanced SU(2)-structures. The Lie algebras

In Conti-Salamon (*Trans. Amer. Math. Soc.* '07), an SU(2)-structure is said to be *hypo* if

$$d(\omega_1 \wedge \eta) = d(\omega_2 \wedge \eta) = d\omega_3 = 0 \tag{6}$$

are satisfied.

Hence,

hypo \implies balanced.

• There are nilmanifolds admitting no invariant hypo structure, but having balanced ${
m SU}(2)$ -structures.

The Lie algebras

In Conti-Salamon (*Trans. Amer. Math. Soc.* '07), an SU(2)-structure is said to be *hypo* if

$$d(\omega_1 \wedge \eta) = d(\omega_2 \wedge \eta) = d\omega_3 = 0 \tag{6}$$

are satisfied.

Hence,

hypo \implies balanced.

• There are nilmanifolds admitting no invariant hypo structure, but having balanced ${
m SU}(2)$ -structures. The Lie algebras

In Conti-Salamon (*Trans. Amer. Math. Soc.* '07), an SU(2)-structure is said to be *hypo* if

$$d(\omega_1 \wedge \eta) = d(\omega_2 \wedge \eta) = d\omega_3 = 0 \tag{6}$$

are satisfied.

Hence,

hypo \implies balanced.

• There are nilmanifolds admitting no invariant hypo structure, but having balanced SU(2)-structures. The Lie algebras

(0, 0, 0, 12, 14), (0, 0, 12, 13, 23), (0, 0, 12, 13, 14 + 23)

have no hypo structure (Conti-Salamon). We have

Any 5-dimensional compact nilmanifold has an invariant balanced ${ m SU}(2)$ -structure.

Proof. It is easy to check that the SU(2)-structure given by

$$\eta = e^1, \ \omega_1 = e^{24} + e^{53}, \ \omega_2 = e^{25} + e^{34}, \ \omega_3 = e^{23} + e^{45},$$

defines a balanced SU(2)-structures on each one of these three Lie algebras.

Any 5-dimensional compact nilmanifold has an invariant balanced SU(2)-structure.

Proof. It is easy to check that the $\mathrm{SU}(2)$ -structure given by

$$\eta = e^1, \ \omega_1 = e^{24} + e^{53}, \ \omega_2 = e^{25} + e^{34}, \ \omega_3 = e^{23} + e^{45},$$

defines a balanced $\mathrm{SU}(2)$ -structures on each one of these three Lie algebras.

Any 5-dimensional compact nilmanifold has an invariant balanced SU(2)-structure.

Proof. It is easy to check that the SU(2)-structure given by

$$\eta = e^1, \ \omega_1 = e^{24} + e^{53}, \ \omega_2 = e^{25} + e^{34}, \ \omega_3 = e^{23} + e^{45},$$

defines a balanced $\mathrm{SU}(2)$ -structures on each one of these three Lie algebras.

Any 5-dimensional compact nilmanifold has an invariant balanced SU(2)-structure.

Proof. It is easy to check that the SU(2)-structure given by

$$\eta = e^1, \ \omega_1 = e^{24} + e^{53}, \ \omega_2 = e^{25} + e^{34}, \ \omega_3 = e^{23} + e^{45},$$

defines a balanced $\mathrm{SU}(2)$ -structures on each one of these three Lie algebras.

Any 5-dimensional compact nilmanifold has an invariant balanced SU(2)-structure.

Proof. It is easy to check that the SU(2)-structure given by

$$\eta = e^1, \ \omega_1 = e^{24} + e^{53}, \ \omega_2 = e^{25} + e^{34}, \ \omega_3 = e^{23} + e^{45},$$

defines a balanced SU(2)-structures on each one of these three Lie algebras.

• The solvable non-nilpotent Lie algebra

(0, 0, 13, -14, 34)

has a balanced SU(2)-structure, but it has no hypo structure and the corresponding solvable Lie group G has a compact quotient $N = G/\Gamma$.

$$\eta = e^1, \ \omega_1 = e^{24} + e^{53}, \ \omega_2 = e^{25} + e^{34}, \ \omega_3 = e^{23} + e^{45}$$

satisfy

$$d(\omega_1 \wedge \eta) = d(\omega_3 \wedge \eta) = d(\omega_3 \wedge \omega_3) = 0,$$

and thus they define a balanced SU(2)-structure on N.

• The solvable non-nilpotent Lie algebra

$$(0, 0, 13, -14, 34)$$

has a balanced SU(2)-structure, but it has no hypo structure and the corresponding solvable Lie group G has a compact quotient $N = G/\Gamma$.

$$\eta=e^1, \ \omega_1=e^{24}+e^{53}, \ \omega_2=e^{25}+e^{34}, \ \omega_3=e^{23}+e^{45}$$

satisfy

$$d(\omega_1 \wedge \eta) = d(\omega_3 \wedge \eta) = d(\omega_3 \wedge \omega_3) = 0,$$

and thus they define a balanced SU(2)-structure on N.

• The solvable non-nilpotent Lie algebra

$$(0, 0, 13, -14, 34)$$

has a balanced SU(2)-structure, but it has no hypo structure and the corresponding solvable Lie group G has a compact quotient $N = G/\Gamma$.

$$\eta = e^1, \ \omega_1 = e^{24} + e^{53}, \ \omega_2 = e^{25} + e^{34}, \ \omega_3 = e^{23} + e^{45}$$

satisfy

$$d(\omega_1 \wedge \eta) = d(\omega_3 \wedge \eta) = d(\omega_3 \wedge \omega_3) = 0,$$

and thus they define a balanced ${
m SU}(2)$ -structure on N.

• The solvable non-nilpotent Lie algebra

$$(0, 0, 13, -14, 34)$$

has a balanced SU(2)-structure, but it has no hypo structure and the corresponding solvable Lie group G has a compact quotient $N = G/\Gamma$.

$$\eta=e^1,\ \omega_1=e^{24}+e^{53},\ \omega_2=e^{25}+e^{34},\ \omega_3=e^{23}+e^{45}$$

satisfy

$$d(\omega_1 \wedge \eta) = d(\omega_3 \wedge \eta) = d(\omega_3 \wedge \omega_3) = 0,$$

and thus they define a balanced SU(2)-structure on N.

(X, J) complex surface.

A holomorphic symplectic structure on X is the datum of a *d*-closed and non-degenerate (2, 0)-form ω on X. Let g be a J-Hermitian metric on X and ω_3 be the fundamental form of (g, J). Then, up to a conformal change, we may assume that

$$\omega_1^2 = \omega_2^2 = \omega_3^2 \,.$$

Then we have the following

Let (X, J) be a complex surface equipped with a holomorphic symplectic structure $\omega = \omega_1 + i\omega_2$ and let ω_3 be the Kähler form of a J-Hermitian metric g as above. Then, for any integral closed 2-form Ω on X annihilating $\cos \theta \, \omega_1 + \sin \theta \, \omega_2$ and $-\sin \theta \, \omega_1 + \cos \theta \, \omega_2$ for some θ , there is a principal circle bundle $\pi \colon N \longrightarrow X$ with connection form ρ such that Ω is the curvature of ρ and such that the SU(2)-structure $(\eta, \omega_1^{\theta}, \omega_2^{\theta}, \omega_3^{\theta})$ on N given by

$$\begin{split} \eta &= \rho, \\ \omega_1^{\theta} &= \pi^* (\cos \theta \, \omega_1 + \sin \theta \, \omega_2), \\ \omega_2^{\theta} &= \pi^* (-\sin \theta \, \omega_1 + \cos \theta \, \omega_2), \\ \omega_3^{\theta} &= \pi^* (\omega_3) \end{split}$$

is a balanced SU(2)-structure.

Example

Let $X = \Gamma \setminus G$ be the *Kodaira-Thurston* manifold, where the Lie algebra \mathfrak{g} of G has the following structure equations

$$de^1=0\,,\quad de^2=0\,,\quad de^3=0\,,\quad de^4=-e^{23}\,.$$

Then

$$\varphi^1 = e^1 + ie^4$$
, $\varphi^2 = e^2 + ie^3$
 $\omega = (e^{12} + e^{34}) + i(e^{13} - e^{24}) = \omega_1 + i\omega_2$

define a complex structure and holomorphic symplectic structure on X respectively. If $g = \sum_{i=1}^4 e^i \otimes e^i$, then

$$\omega_3 = e^{14} + e^{23}$$
.

Therefore, the previous Proposition applies.

We establish the evolution equations that allow the construction of new balanced structures in dimension six from balanced ${
m SU}(2)$ -structures in dimension five.

Proposition (M. Fernández, —, L. Ugarte, R. Villacampa, J. Math. Phys. '09) Let $(\eta(t), \omega_1(t), \omega_2(t), \omega_3(t))$ be a family of SU(2)-structures on a 5-manifold N, for $t \in I = (a, b)$. Then, the SU(3)-structure on $M = N \times I$ given by

 $F = \omega_3(t) + \eta(t) \wedge dt, \qquad \Psi = (\omega_1(t) + i\omega_2(t)) \wedge (\eta(t) + idt),$ (7)

is balanced if and only if $(\eta(t), \omega_1(t), \omega_2(t), \omega_3(t))$ is a balanced SU(2)-structure for any t in the open interval I, and the following evolution equations

$$\begin{cases} \partial_t(\omega_1 \wedge \eta) = -d\omega_2\\ \partial_t(\omega_2 \wedge \eta) = d\omega_1\\ \partial_t(\omega_3 \wedge \omega_3) = -2 d(\omega_3 \wedge \eta) \end{cases}$$
(8)

are satisfied.

Proposition (M. Fernández, —, L. Ugarte, R. Villacampa, J. Math. Phys. '09) Let $(\eta(t), \omega_1(t), \omega_2(t), \omega_3(t))$ be a family of SU(2)-structures on a 5-manifold N, for $t \in I = (a, b)$. Then, the SU(3)-structure on $M = N \times I$ given by

 $F = \omega_3(t) + \eta(t) \wedge dt, \qquad \Psi = (\omega_1(t) + i\omega_2(t)) \wedge (\eta(t) + idt),$ (7)

is balanced if and only if $(\eta(t), \omega_1(t), \omega_2(t), \omega_3(t))$ is a balanced SU(2)-structure for any t in the open interval I, and the following evolution equations

$$\begin{cases} \partial_t(\omega_1 \wedge \eta) = -d\omega_2\\ \partial_t(\omega_2 \wedge \eta) = d\omega_1\\ \partial_t(\omega_3 \wedge \omega_3) = -2 d(\omega_3 \wedge \eta) \end{cases}$$
(8)

are satisfied.

Proposition (M. Fernández, —, L. Ugarte, R. Villacampa, J. Math. Phys. '09) Let $(\eta(t), \omega_1(t), \omega_2(t), \omega_3(t))$ be a family of SU(2)-structures on a 5-manifold N, for $t \in I = (a, b)$. Then, the SU(3)-structure on $M = N \times I$ given by

$$F = \omega_3(t) + \eta(t) \wedge dt, \qquad \Psi = (\omega_1(t) + i\omega_2(t)) \wedge (\eta(t) + idt),$$
(7)

is balanced if and only if $(\eta(t), \omega_1(t), \omega_2(t), \omega_3(t))$ is a balanced SU(2)-structure for any t in the open interval I, and the following evolution equations

$$\begin{cases} \partial_t(\omega_1 \wedge \eta) = -d\omega_2\\ \partial_t(\omega_2 \wedge \eta) = d\omega_1\\ \partial_t(\omega_3 \wedge \omega_3) = -2 d(\omega_3 \wedge \eta) \end{cases}$$
(8)

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

э

are satisfied.

Proposition (M. Fernández, —, L. Ugarte, R. Villacampa, J. Math. Phys. '09) Let $(\eta(t), \omega_1(t), \omega_2(t), \omega_3(t))$ be a family of SU(2)-structures on a 5-manifold N, for $t \in I = (a, b)$. Then, the SU(3)-structure on $M = N \times I$ given by

$$F = \omega_3(t) + \eta(t) \wedge dt, \qquad \Psi = (\omega_1(t) + i\omega_2(t)) \wedge (\eta(t) + idt),$$
(7)

is balanced if and only if $(\eta(t), \omega_1(t), \omega_2(t), \omega_3(t))$ is a balanced SU(2)-structure for any t in the open interval I, and the following evolution equations

$$\begin{cases} \partial_t(\omega_1 \wedge \eta) = -d\omega_2 \\ \partial_t(\omega_2 \wedge \eta) = d\omega_1 \\ \partial_t(\omega_3 \wedge \omega_3) = -2 d(\omega_3 \wedge \eta) \end{cases}$$
(8)

・ 日 ・ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

э

are satisfied.

Proof. A direct calculation shows that the SU(3)-structure given by (7) satisfies

$$dF^2 = d(\omega_3 \wedge \omega_3) + (\partial_t(\omega_3 \wedge \omega_3) + 2 d(\omega_3 \wedge \eta)) \wedge dt,$$

and

$$d\Psi = d(\omega_1 \wedge \eta) - (\partial_t(\omega_1 \wedge \eta) + d\omega_2) \wedge dt + i d(\omega_2 \wedge \eta) - i (\partial_t(\omega_2 \wedge \eta) - d\omega_1) \wedge dt.$$

The forms F^2 and Ψ are both closed if and only if $(\eta(t), \omega_1(t), \omega_2(t), \omega_3(t))$ is a balanced SU(2)-structure for any $t \in I$, and satisfies equations (8).

Lie algebra (0,0,0,12,14): The family of balanced SU(2)-structures

$$\begin{split} \eta(t) &= \sqrt[3]{\frac{2-3t}{2}}e^{1},\\ \omega_{1}(t) &= \frac{1}{2}\left(\sqrt[3]{\frac{2}{2-3t}} - \frac{2-3t}{2}\right)e^{23} + \sqrt[3]{\frac{2-3t}{2}}e^{24} - \sqrt[3]{\frac{2}{2-3t}}e^{35},\\ \omega_{2}(t) &= \sqrt[3]{\frac{2}{2-3t}}e^{25} + \sqrt[3]{\frac{2-3t}{2}}e^{34},\\ \omega_{3}(t) &= e^{23} - \frac{1}{2}\left(1 - \frac{2-3t}{2}\sqrt[3]{\frac{2-3t}{2}}\right)e^{24} + e^{45}, \end{split}$$

The family of balanced SU(2)-structures

$$\begin{split} \eta(t) &= \sqrt[3]{\frac{2-3t}{2}}e^{1},\\ \omega_{1}(t) &= \frac{1}{2}\left(\sqrt[3]{\frac{2}{2-3t}} - \frac{2-3t}{2}\right)e^{23} + \sqrt[3]{\frac{2-3t}{2}}e^{24} - \sqrt[3]{\frac{2}{2-3t}}e^{35},\\ \omega_{2}(t) &= \sqrt[3]{\frac{2}{2-3t}}e^{25} + \sqrt[3]{\frac{2-3t}{2}}e^{34},\\ \omega_{3}(t) &= e^{23} - \frac{1}{2}\left(1 - \frac{2-3t}{2}\sqrt[3]{\frac{2-3t}{2}}\right)e^{24} + e^{45}, \end{split}$$

The family of balanced SU(2)-structures

$$\begin{split} \eta(t) &= \sqrt[3]{\frac{2-3t}{2}}e^{1},\\ \omega_{1}(t) &= \frac{1}{2}\left(\sqrt[3]{\frac{2}{2-3t}} - \frac{2-3t}{2}\right)e^{23} + \sqrt[3]{\frac{2-3t}{2}}e^{24} - \sqrt[3]{\frac{2}{2-3t}}e^{35},\\ \omega_{2}(t) &= \sqrt[3]{\frac{2}{2-3t}}e^{25} + \sqrt[3]{\frac{2-3t}{2}}e^{34},\\ \omega_{3}(t) &= e^{23} - \frac{1}{2}\left(1 - \frac{2-3t}{2}\sqrt[3]{\frac{2-3t}{2}}\right)e^{24} + e^{45}, \end{split}$$

The family of balanced SU(2)-structures

$$\begin{split} \eta(t) &= \sqrt[3]{\frac{2-3t}{2}}e^{1},\\ \omega_{1}(t) &= \frac{1}{2}\left(\sqrt[3]{\frac{2}{2-3t}} - \frac{2-3t}{2}\right)e^{23} + \sqrt[3]{\frac{2-3t}{2}}e^{24} - \sqrt[3]{\frac{2}{2-3t}}e^{35},\\ \omega_{2}(t) &= \sqrt[3]{\frac{2}{2-3t}}e^{25} + \sqrt[3]{\frac{2-3t}{2}}e^{34},\\ \omega_{3}(t) &= e^{23} - \frac{1}{2}\left(1 - \frac{2-3t}{2}\sqrt[3]{\frac{2-3t}{2}}\right)e^{24} + e^{45}, \end{split}$$

The family of balanced SU(2)-structures

$$\begin{split} \eta(t) &= \sqrt[3]{\frac{2-3t}{2}}e^{1},\\ \omega_{1}(t) &= \frac{1}{2}\left(\sqrt[3]{\frac{2}{2-3t}} - \frac{2-3t}{2}\right)e^{23} + \sqrt[3]{\frac{2-3t}{2}}e^{24} - \sqrt[3]{\frac{2}{2-3t}}e^{35},\\ \omega_{2}(t) &= \sqrt[3]{\frac{2}{2-3t}}e^{25} + \sqrt[3]{\frac{2-3t}{2}}e^{34},\\ \omega_{3}(t) &= e^{23} - \frac{1}{2}\left(1 - \frac{2-3t}{2}\sqrt[3]{\frac{2-3t}{2}}\right)e^{24} + e^{45}, \end{split}$$

The family of balanced SU(2)-structures

$$\begin{split} \eta(t) &= \sqrt[3]{\frac{2-3t}{2}}e^{1},\\ \omega_{1}(t) &= \frac{1}{2}\left(\sqrt[3]{\frac{2}{2-3t}} - \frac{2-3t}{2}\right)e^{23} + \sqrt[3]{\frac{2-3t}{2}}e^{24} - \sqrt[3]{\frac{2}{2-3t}}e^{35},\\ \omega_{2}(t) &= \sqrt[3]{\frac{2}{2-3t}}e^{25} + \sqrt[3]{\frac{2-3t}{2}}e^{34},\\ \omega_{3}(t) &= e^{23} - \frac{1}{2}\left(1 - \frac{2-3t}{2}\sqrt[3]{\frac{2-3t}{2}}\right)e^{24} + e^{45}, \end{split}$$

The basis of 1-forms on the product manifold $G \times I$ given by

$$\begin{aligned} \alpha^{1} &= e^{2}, \alpha^{2} = e^{3}, \alpha^{3} = \sqrt[3]{\frac{2-3t}{2}}e^{4}, \\ \alpha^{4} &= \frac{1}{2}\sqrt[3]{\frac{2}{2-3t}}(e^{2} + 2e^{5}) - \frac{2-3t}{4}e^{2}, \alpha^{5} = \sqrt[3]{\frac{2-3t}{2}}e^{1}, \alpha^{6} = dt \end{aligned}$$

The basis of 1-forms on the product manifold $G \times I$ given by

$$\alpha^{1} = e^{2}, \alpha^{2} = e^{3}, \alpha^{3} = \sqrt[3]{\frac{2-3t}{2}}e^{4},$$

$$\alpha^{4} = \frac{1}{2}\sqrt[3]{\frac{2}{2-3t}}(e^{2} + 2e^{5}) - \frac{2-3t}{4}e^{2}, \alpha^{5} = \sqrt[3]{\frac{2-3t}{2}}e^{1}, \alpha^{6} = dt$$

The basis of 1-forms on the product manifold $G \times I$ given by

$$\begin{aligned} \alpha^{1} &= e^{2}, \alpha^{2} = e^{3}, \alpha^{3} = \sqrt[3]{\frac{2-3t}{2}}e^{4}, \\ \alpha^{4} &= \frac{1}{2}\sqrt[3]{\frac{2}{2-3t}}(e^{2} + 2e^{5}) - \frac{2-3t}{4}e^{2}, \alpha^{5} = \sqrt[3]{\frac{2-3t}{2}}e^{1}, \alpha^{6} = dt \end{aligned}$$

The basis of 1-forms on the product manifold $G \times I$ given by

$$\begin{aligned} \alpha^{1} &= e^{2}, \alpha^{2} = e^{3}, \alpha^{3} = \sqrt[3]{\frac{2-3t}{2}}e^{4}, \\ \alpha^{4} &= \frac{1}{2}\sqrt[3]{\frac{2}{2-3t}}(e^{2} + 2e^{5}) - \frac{2-3t}{4}e^{2}, \alpha^{5} = \sqrt[3]{\frac{2-3t}{2}}e^{1}, \alpha^{6} = dt \end{aligned}$$

The Hermitian balanced structure on $G \times I$ is given by

$$\begin{split} F &= e^{23} - \frac{1}{2}e^{24} + e^{45} + \frac{2-3t}{4}\sqrt[3]{\frac{2-3t}{2}}e^{24} + \sqrt[3]{\frac{2-3t}{2}}e^{1} \wedge dt, \\ \Psi_{+} &= \frac{1}{2}e^{123} - e^{135} - \frac{2-3t}{4}\sqrt[3]{\frac{2-3t}{2}}e^{123} + \sqrt[3]{\frac{(2-3t)^{2}}{4}}e^{124} + \\ &\qquad \left(\sqrt[3]{\frac{2}{2-3t}}e^{25} + \sqrt[3]{\frac{2-3t}{2}}e^{34}\right) \wedge dt, \\ \Psi_{-} &= e^{125} + \sqrt[3]{\frac{(2-3t)^{2}}{4}}e^{134} + \left(\frac{1}{2}\sqrt[3]{\frac{2}{2-3t}}e^{23} - \frac{2-3t}{4}e^{23} + \\ &\qquad \sqrt[3]{\frac{2-3t}{2}}e^{24} - \sqrt[3]{\frac{2}{2-3t}}e^{35}\right) \wedge dt. \end{split}$$

The Hermitian balanced structure on $G \times I$ is given by

$$\begin{split} F &= e^{23} - \frac{1}{2}e^{24} + e^{45} + \frac{2-3t}{4}\sqrt[3]{\frac{2-3t}{2}}e^{24} + \sqrt[3]{\frac{2-3t}{2}}e^{1} \wedge dt, \\ \Psi_{+} &= \frac{1}{2}e^{123} - e^{135} - \frac{2-3t}{4}\sqrt[3]{\frac{2-3t}{2}}e^{123} + \sqrt[3]{\frac{(2-3t)^{2}}{4}}e^{124} + \\ &\qquad \left(\sqrt[3]{\frac{2}{2-3t}}e^{25} + \sqrt[3]{\frac{2-3t}{2}}e^{34}\right) \wedge dt, \\ \Psi_{-} &= e^{125} + \sqrt[3]{\frac{(2-3t)^{2}}{4}}e^{134} + \left(\frac{1}{2}\sqrt[3]{\frac{2}{2-3t}}e^{23} - \frac{2-3t}{4}e^{23} + \\ &\qquad \sqrt[3]{\frac{2-3t}{2}}e^{24} - \sqrt[3]{\frac{2}{2-3t}}e^{35}\right) \wedge dt. \end{split}$$

Theorem M. Fernández, —, L. Ugarte, R. Villacampa, J. Math. Phys. '09) Any 3-dimensional complex-parallelizable (non-abelian) solvable Lie group has a Hermitian metric such that the holonomy of its Bismut connection is equal to SU(3).

Example Consider the Lie algebra defined by the complex structure equations

$$d\varphi^1 = d\varphi^2 = 0, \quad d\varphi^3 = -\varphi^{12}, \quad d\varphi^4 = -2\varphi^{13}.$$

Let $\varphi^j = e^{2j-1} + i e^{2j}, j = 1, \dots, 4.$
Then

$$de^1 = de^2 = de^3 = de^4 = 0, \ de^5 = -e^{13} + e^{24},$$

 $de^6 = -e^{14} - e^{23}, \ de^7 = -2(e^{15} - e^{26}),$
 $de^8 = -2(e^{16} + e^{25}).$

Examples of manifolds with full holonomy

J complex structure given by

$$Je^1 = -e^2$$
, $Je^2 = e^1$, $Je^3 = -e^4$, $Je^4 = e^3$,
 $Je^5 = -e^6$, $Je^6 = e^5$, $Je^7 = -e^8$, $Je^8 = e^7$.

The fundamental form *F* associated with the *J*-Hermitian metric $g = \sum_{i=1}^{8} e^i \otimes e^i$ is given by

$$F=\sum_{j=1}^4 e^{2j-1}\wedge e^{2j}$$
 ,

• g is balanced and the torsion T is given by

 $T = JdF = e^{135} + e^{146} + 2e^{157} + 2e^{168} + e^{236} - e^{245} + 2e^{258} - 2e^{267}.$

The following curvature forms of the Bismut connection are linearly independent:

Examples of manifolds with full holonomy

$$\begin{split} \Omega_3^1 &= -e^{13} - e^{24}, \ \Omega_4^1 &= -e^{14} + e^{23}, \ \Omega_5^1 &= -4(e^{15} + e^{26}), \\ \Omega_6^1 &= -4(e^{16} - e^{25}), \ \Omega_4^3 &= 2e^{12}, \ \Omega_6^5 &= 2(3e^{12} - e^{34}), \\ \Omega_7^5 &= -2(e^{35} + e^{46}), \ \Omega_8^5 &= -2(e^{36} - e^{45}), \\ \Omega_8^7 &= -8(e^{12} + e^{56}). \end{split}$$

This gives a 9-dimensional space.

By computing the covariant the derivative of the curvature it follows that $Hol(\nabla^B)=SU(4)$.

