

Homotopy versions of Jacobi bundles

Andrew James Bruce

Polish Academy of Sciences

Algebraic Topology, Geometry and Physics Seminar University of Luxembourg 9th June 2016

Research partially funded by the Polish National Science Centre grant under the contract number DEC-2012/06/A/ST1/00256.

"You cannot criticize geometry. It's never wrong."

Paul Rand, 1914-1996

Joint work with Alfonso Giuseppe Tortorella University of Florence, Italy (Ph.D student of Luca Vitagliano)

To appear in Differential Geom. Appl.

Preprint: 'Jacobi structures up to homotopy' arXiv:1507.00454 [math.DG]

Introduction

Jacobi Manifolds + Bundles

 Jacobi manifolds: Lichnerowicz 1978 & Kirillov 1976 (Marle 1991)

Jacobi structure: (Λ,D) such that $[D,\Lambda]=0$ and $[\Lambda,\Lambda]=2D\wedge\Lambda$

$$\{f,g\} = \Lambda(f,g) + fD(g) - gD(f)$$

The Jacobi bracket is local in the sense of Kirillov

$$supp(\{f,g\}) \subseteq supp(f) \cap supp(g)$$

On the other hand Jacobi manifolds are specialisations of Poisson manifolds via the 'Poissonisation' process...

Question: is there a *reasonable* notion of a 'Jacobi- ∞ manifold'?

Why ask?

- Huebschmann (2005) "... a first step in taming the bracket zoo that arose recently in topological field theory."
- Le, Oh, Tortorella & Vitagliano (2014) deformation of coisotopic submanifolds of Jacobi manifolds.
- Grabowski (2013) graded contact/Jacobi geometry.

Lada + Stasheff (1993) and super-setting Voronov (2005). $V = V_0 \oplus V_1$, with odd *n*-linear operators that satisfy:

1. the operators are graded symmetric

$$(a_1,\cdots,a_i,a_{i+1},\cdots,a_n)=(-1)^{\widetilde{a}_i\widetilde{a}_{i+1}}(a_1,\cdots,a_{i+1},a_i,\cdots,a_n),$$

2. the generalised Jacobi identities (Jacobiators)

$$\sum_{k+l=n}\sum_{(k,l)-\text{unshuffles}}\pm\left((a_{\sigma(1)},\cdots,a_{\sigma(k)}),a_{\sigma(k+1)},\cdots,a_{\sigma(k+l)}\right)=0$$

An (k, l)-unshuffle is a permutation of the indices $1, 2, \dots, k+l$ such that $\sigma(1) < \dots < \sigma(k)$ and $\sigma(k+1) < \dots < \sigma(k+l)$.

If $V = \Pi U$ is an L_{∞} -algebra then we have a series of brackets on U, denoted by $\{\bullet, \ldots, \bullet\}$, that are *skew-symmetric* and *even/odd* for an *even/odd* number of arguments.

$$\Pi\{x_1, \cdots, x_n\} = (-1)^{(\widetilde{x}_1(n-1)+\widetilde{x}_2(n-2)+\cdots+\widetilde{x}_{n-1})}(\Pi x_1, \cdots, \Pi x_n),$$

where $x_i \in U$.

(now closer to the original definition)

Set $(\emptyset) = 0$ and write dx = (x)

Intuitively we almost have a differential Lie algebra $+\mbox{ more brackets}$ and higher Jacobi identities.

Th. Voronov's higher derived bracket formalism

- ► A Lie (super)algebra *L*
- ► A projector onto an abelian subalgebra $V \subset \mathcal{L}$ satisfying $\pi[a, b] = \pi[\pi a, b] + \pi[a, \pi b]$ for all $a, b \in \mathcal{L}$
- A chosen element $\Delta \in \mathcal{L}$

Get a series of brackets on the abelian subalgebra

$$(a_1, a_2, \cdots, a_n) = \pi[\cdots [[\Delta, a_1], a_2], \cdots a_n],$$

with a_i in V.

Theorem (Th. Voronov)

If $\Delta\in\mathcal{L}$ is Grassmann odd and $[\Delta,\Delta]=0$ then we have an $L_\infty\text{-algebra}.$

Aside on supermanifolds

 $\label{eq:supermanifold} \begin{array}{l} {\sf Supermanifold} = `manifold' \mbox{ with commuting and anticommuting coordinates} \end{array}$

$$(x^{\mu}, \xi^{\alpha}) := x^{a}$$

Such that $x^{\mu}x^{\nu} = x^{\nu}x^{\mu}$, $x^{\mu}\xi^{\alpha} = \xi^{\alpha}x^{\mu}$ and $\xi^{\alpha}\xi^{\beta} = -\xi^{\beta}\xi^{\alpha}$ Note $\xi^{\alpha}\xi^{\alpha} = -\xi^{\alpha}\xi^{\alpha} = 0$ Grassmann parity $\tilde{x}^{a} = \tilde{a} \in \{0, 1\}$

$$x^a x^b = (-1)^{\widetilde{a}\widetilde{b}} x^b x^a$$

Grassmann parity extends to tensor and tensor-like objects.

Example: Pure odd supermanifold = Grassmann algebra Example: Vector bundle *E* local coordinates (x^{μ}, y^{α}) , then ΠE is the supermanifold formed by shifting the parity of the fibre coordinates $\Pi(y^{\alpha}) = \xi^{\alpha}$

Example: Homotopy Poisson structure $\mathcal{P} \in C^{\infty}(\Pi T^*M)$, Grassmann even and $\llbracket \mathcal{P}, \mathcal{P} \rrbracket = 0$.

(Note we have shifted the parity here)

Higher Poisson bracket

$$\{f_1, f_2, \cdots, f_r\} = \pm \llbracket \cdots \llbracket \llbracket \mathcal{P}, f_1 \rrbracket, f_2 \rrbracket, \cdots f_r \rrbracket |_M$$

Leibniz rule

$$\{f_1, f_2, \cdots, f_r f_{r+1}\} = \{f_1, f_2, \cdots, f_r\}f_{r+1} \pm f_r\{f_1, f_2, \cdots, f_{r+1}\}$$

Used by; Cattaneo + Felder (2007), Khudaverdian + Voronov (2008), Mehta (2011), Braun + Lazarev (2013), Bashkirov + (A) Voronov (2014), Vitagliano (2015)

(We will use these structures later)

Kirillov Manifolds

Line bundle $L \rightarrow M$ over a manifold M

Sec(L) correspond to homogeneous functions of degree 1 on the principal \mathbb{R}^{\times} -bundle

$$P = (L^*)^{\times} := L^* \setminus \{\underline{0}\}$$

 $f \in C^{\infty}(P)$ s.t. $(h_s)^* f = s f$, where h is the action of \mathbb{R}^{\times} .

$$u \rightsquigarrow \iota_u$$
,

where $u \in Sec(L)$.

Definition (Grabowski 2013)

A principal Poisson \mathbb{R}^{\times} -bundle, shortly Kirillov manifold, is a principal \mathbb{R}^{\times} -bundle (P, h) equipped with a Poisson structure Λ of degree -1, i.e. such that $(h_s)_*\Lambda = s^{-1}\Lambda$.

Kirillov Manifolds

Theorem (Grabowski 2013)

There is a one-to-one correspondence between Kirillov brackets $[\cdot, \cdot]_L$ on a line bundle $L \to M$ and Poisson structures Λ of degree -1 on the principal \mathbb{R}^{\times} -bundle $P = (L^*)^{\times}$ given by

$$\iota_{[u,v]_L} = \{\iota_u, \iota_v\}_{\mathsf{A}}.$$

Attitude: Jacobi manifolds and Jacobi bundles are *specialisations* and not *generalisations* of Poisson manifolds!

(For contact/Jacobi groupoids Bruce, Grabowska + Grabowski 2015)

Kirillov Manifolds

In local coordinates (t, x^a) on P

$$\Lambda = \frac{1}{2t} \Lambda^{ab}(x) \frac{\partial}{\partial x^b} \wedge \frac{\partial}{\partial x^a} + \Lambda^a(x) \frac{\partial}{\partial x^a} \wedge \frac{\partial}{\partial t}$$

- If Λ is non-degenerate then we are in world of contact geometry
- If $P \simeq \mathbb{R}^{\times} \times M$ then we are in the world of *Jacobi geometry*

Note: The Jacobi bracket is a bracket on sections of a *trivial line bundle* and <u>not</u> a bracket on *functions*!

The idea now is clear...

- 1. consider (even) line bundles over supermanifolds in terms of principal $\mathbb{R}^{\times}\text{-bundles}$
- 2. equip the total space with a homogeneous homotopy Poisson structure
- 3. the brackets restricted to homogeneous functions are the homotopy Kirillov brackets

Consider a principal \mathbb{R}^{\times} -bundle $P \to M$ with action h and employ homogeneous local coordinates

$$(t, x^a)$$

$$\widetilde{t} = 0$$
 and $\widetilde{x}^a = \widetilde{a} \in \{0, 1\}.$
The action

$$\mathsf{h}:\mathbb{R}^{ imes} imes P o P$$

at the level of coordinates is

$$h_s^*(t) = s t, \qquad h_s^*(x^a) = x^a$$

Let us pick homogeneous local coordinates on ΠT^*P

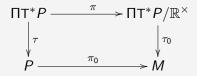
$$(\underbrace{t}_{(1,0)}, \underbrace{x^{a}}_{(0,0)}, \underbrace{t^{*}}_{(0,1)}, \underbrace{x^{*}_{b}}_{(1,1)}),$$

$$\widetilde{t}^* = 1$$
 and $\widetilde{x}^*_a = \widetilde{a} + 1$.

The graded structure defined via phase lift

(Grabowski 2013)

We thus have a *double structure*



where τ, τ_0 are vector bundles, and π, π_0 are principal \mathbb{R}^{\times} -bundles

(Grabowski 2013)

The supermanifold ΠT^*P comes canonically equipped with a Schouten bracket which is homogeneous of degree -1

$$\llbracket F, G \rrbracket = (-1)^{(\widetilde{a}+1)(\widetilde{F}+1)} \frac{\partial F}{\partial x_a^*} \frac{\partial G}{\partial x^a} - (-1)^{\widetilde{a}(\widetilde{F}+1)} \frac{\partial F}{\partial x^a} \frac{\partial G}{\partial x_a^*}$$

$$+ (-1)^{\widetilde{F}+1} \frac{\partial F}{\partial t^*} \frac{\partial G}{\partial t} - \frac{\partial F}{\partial t} \frac{\partial G}{\partial t^*},$$

for any F and $G \in C^{\infty}(\Pi T^*P)$.

Definition (Bruce + Tortorella 2016)

A higher Kirillov manifold is a homogeneous higher Poisson manifold; that is a triple (P, h, \mathcal{P}) , such that (P, h) is a principal \mathbb{R}^{\times} -bundle and $\mathcal{P} \in C^{\infty}(\Pi T^*P)$ is a homogeneous higher Poisson structure i.e. Grassmann even, weight one, and $\llbracket \mathcal{P}, \mathcal{P} \rrbracket = 0$.

$$\mathcal{P} = \sum_{k=0}^{k} \frac{1}{k!} t^{1-k} \mathcal{P}^{a_1 \cdots a_k}(x) x^*_{a_k} \cdots x^*_{a_1} + \sum_{k=0}^{k} \frac{1}{k!} t^{1-k} \bar{\mathcal{P}}^{a_1 \cdots a_k}(x) x^*_{a_k} \cdots x^*_{a_1} t^*$$

(Note \mathcal{P} is of degree 1 and not -1)

Homotopy Poisson algebra on $C^{\infty}(P)$ viz

$$\{f_1, f_2, \cdots, f_r\}_{\mathcal{P}} := \pm \llbracket \cdots \llbracket \llbracket \mathcal{P}, f_1 \rrbracket, f_2 \rrbracket, \cdots, f_r \rrbracket |_{\mathcal{P}}$$

Note that each *r*-arity bracket is of degree $(1 - r) \Rightarrow$ submodule of homogeneous functions of weight one is closed.

$$\iota: \operatorname{Sec}(L) \hookrightarrow C^{\infty}(P)$$

We then define an L_{∞} -algebra on Sec(L) viz

$$\iota_{[\sigma_1,\sigma_2,\cdots\sigma_r]} = \{\iota_{\sigma_1},\iota_{\sigma_2},\cdots,\iota_{\sigma_r}\}$$

Theorem (Bruce + Tortorella 2016)

Given a higher Kirillov manifold (P, h, \mathcal{P}), then the module of sections of the corresponding even line bundle $L \to M$ comes equipped with the structure of an L_{∞} -algebra via the proceeding constructions.

where $\sigma(t,x) = t\sigma(x)$ is a section of L

Quasi-derivation rule which defines a series of anchors

$$\rho_k : \operatorname{Sec}(L)^k \to \operatorname{Vect}(M)$$

viz

$$[\sigma_1, \cdots, \sigma_k, f\sigma_{k+1}] = \rho_k(\sigma_1, \cdots, \sigma_k)(f)\sigma_{k+1} \pm f[\sigma_1, \cdots, \sigma_k, \sigma_{k+1}],$$

for $f \in C^{\infty}(M)$.

$$\rho_k(\sigma_1,\cdots,\sigma_k)(f) = \{\sigma_1,\cdots,\sigma_k,f\}$$

The anchors depend on the first order derivatives of the sections.

Example: If $P \simeq \mathbb{R}^{\times} \times M$ and M is a manifold, then we have a classical Jacobi manifold.

$$\mathcal{P} = \frac{t^{-1}}{2} \mathcal{P}^{ab}(x) x_b^* x_a^* + \bar{\mathcal{P}}^a(x) x_a^* t^*,$$

which is the 'superisation' of the 'Poissonisation' of the classical Jacobi structure.

Example: If the homogeneous homotopy Poisson structure is concentrated in order r and the line bundle is trivial, then up to matters of conventions and 'superisation' the resulting structure is equivalent to the generalised Jacobi structures of Pérez Bueno (1997).

Example: Any semisimple Lie algebra $(\mathfrak{g}, [\cdot, \cdot])$ comes with a canonical 3-cocycle

$$C_{ijk} = k_{il}Q_{kj}^{l} + k_{jl}Q_{ki}^{l} + k_{kl}Q_{ij}^{l},$$

where $k_{ij} = Q_{il}^k Q_{kj}^l$ is the Killing metric

 \mathfrak{g}^* comes with a canonical linear Poisson structure. C[3] can also be considered as a cocycle of the Lichnerowicz complex

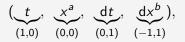
$$\mathcal{P} := t^{-1} \Lambda[2] + t^{-3} C[3] E[1] + t^{-2} C[3] t^*$$

provides the trivial principle bundle $\mathbb{R}^{\times} \times \mathfrak{g}^* \to \mathfrak{g}^*$ with an order 4 homotopy Jacobi structure. Here $E[1] = \xi^i y_i$.

The associated homotopy BV-algebra

Differential forms on P are identified with functions on $\Pi T P$.

Let us pick homogeneous local coordinates



Grassmann parity of the fibre coordinates is assigned as dt = 1 and $dx^a = \tilde{a} + 1$.

$$\mathsf{d} = \mathsf{d} x^{\mathsf{a}} \frac{\partial}{\partial x^{\mathsf{a}}} + \mathsf{d} t \frac{\partial}{\partial t},$$

is homogeneous and of degree -1 with respect to the action of \mathbb{R}^{\times} .

The associated homotopy BV-algebra

Send the homogeneous higher Poisson structure to its interior derivative $\mathcal{P} \rightsquigarrow i_{\mathcal{P}}$ viz

$$t^* \longleftrightarrow \frac{\partial}{\partial dt}, \qquad \qquad x^*_a \longleftrightarrow \frac{\partial}{\partial dx^a},$$

(with an overall minus sign)

Definition (Bruce + Tortorella 2016)

The *higher Koszul–Brylinski* operator on a higher Kirillov manifold is the differential operator (Lie derivative)

$$L_{\mathcal{P}} := [\mathsf{d}, i_{\mathcal{P}}].$$

Note: $[L_{\mathcal{P}}, L_{\mathcal{P}}] = L_{\llbracket \mathcal{P}, \mathcal{P} \rrbracket} = 0$

The associated homotopy BV-algebra

Define a homotopy BV-algebra:

$$(\omega_1, \omega_2, \cdots, \omega_r)_{\mathcal{P}} := [\cdots [[L_{\mathcal{P}}, \omega_1], \omega_2], \cdots \omega_r](1)$$

for all $\omega_i \in C^{\infty}(\Pi T P)$.

The brackets closes on $\mathcal{A}_0(P) := C^{\infty}(\Pi T P / \mathbb{R}^{\times}) = C^{\infty}(\Pi J_1^*(L)).$

Theorem (Bruce + Tortorella 2016)

Given any higher Kirillov manifold (P, h, \mathcal{P}) there is canonically a homotopy BV-algebra on the \mathbb{R}^{\times} -invariant differential forms $\mathcal{A}_0(P)$ generated by the higher Koszul–Brylinski operator $L_{\mathcal{P}}$.

Generalises Vaisman 2000

Take home message

- ► We do have a good notion of Kirillov and Jacobi structures up to homotopy via principle ℝ[×]-bundles and homogeneous homotopy Poisson structures.
- Trying to work directly with brackets is clumsy and could miss the geometry.

 $``\ensuremath{\mathsf{I}}$ can no other answer make but thanks, and thanks and ever thanks..."

William Shakespeare, Twelfth Night, Act III, Scene III