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II. BUNDLE GERBES WITH CONNECTION AND THEIR HOLONOMY

• Bundle gerbes with (unitary) connection are 1-degree higher structures as compared to line bundles
with connection.

• They were introduced by Michael K. Murray in J. London Math. Soc. (2) 54 (1996), 403-416, as
simple geometric examples of more abstract gerbes of J. Giraud (1971) and J.-L. Brylinski (1993).

• They were applied in physics to describe topological Wess-Zumino amplitudes in conformal field theory
and string theory.

• Here I shall discuss how they relate to the topological insulators studied in condensed matter physics.

Definition. A bundle gerbe G with unitary connection (below, gerbe for short) over manifold M is a
quadruple (Y,B,L, t) s.t.

- Y is a manifold equipped with a surjective submersion π : Y → M
- B is a 2-form on Y
- L is a line bundle with hermitian structure and unitary connection over Y [2] ≡ Y ×M Y with
curvature p∗2B − p∗1B where p1,2 are the two projections from Y [2] to Y

- t is a smooth bilinear groupoid multiplication on L−→
−→Y

Ly1,y2
× Ly2,y3

t
−→ Ly1,y3

where Ly1,y2
denotes the fiber of L over (y1, y2) ∈ Y [2].

• Necessarily, dB = π∗H where H is a closed 3-form on M called the curvature of the gerbe G.

• Gerbes over M form a 2-category with 1-morphisms η : G1 −→ G2 and 2-morphisms µ : η1 −→ η2
between a pair of 1-morphisms η : G1 −→ G2. 1-isomorphic gerbes have the same curvature.

• As line bundles, gerbes may be tensored (with curvatures adding up) or pulled back.

• The set of 1-isomorphism classes of flat gerbes (i.e. with zero curvature) over M is naturally isomorphic
to H2(M,U(1)).

• A gerbe G with curvature 3-form H exists iff H has periods in 2πZ.

• In the latter case, there is a free transitive action of H2(M,U(1)) on the set of 1-isomorphism classes
of gerbes over M with fixed curvature form H generated by the tensor product with flat gerbes.

• If Σ is an oriented closed 2-surface and φ : Σ −→ M is a smooth then for any gerbe G over M ,

φ∗G ∈ H2(Σ, U(1)) ∼= U(1).

The corresponding phase in U(1) is called the holonomy of G along the map φ and is denoted HolG(φ).
Physicists’ name for HolG(φ) is the Wess-Zumino amplitude of φ.



• If there exists an extension of φ to a map φ̃ : Σ̃ −→ M from an oriented 3-manifold Σ̃ with the

boundary ∂Σ̃ = Σ then

HolG(φ) = exp
[
i

∫

Σ̃

φ̃∗H
]
.

III. SQUARE ROOT OF THE GERBE HOLONOMY

Suppose that G is a gerbe over M with curvature H and Θ : M −→ M is an involution.

Definition. A Θ-equivariant structure on G is composed of

- a 1-isomorphism η : G −→ Θ∗G
- a 2-isomorphism µ : Θ∗η ◦ η −→ IdG between 1-isomorphisms of gerbe G s.t.
- there is an equality Idη ◦ µ = Θ∗µ ◦ Idη of the 2-isomorphisms between the 1-isomorphisms
η ◦Θ∗η ◦ η : G −→ Θ∗G and η : G −→ Θ∗G.

• Note that the existence of a Θ-equivariant structure on G implies that Θ∗H = H .

• Let ϑ : Σ −→ Σ be an orientation-preserving map with a non-empty discrete set of fixed points.
Examples: for the 2-torus R2/(2πZ2) ≡ T2 one may take ϑ generated by k 7→ −k for k ∈ R;
for the hyperelliptic curve given by the equation y2 = p(z) one may take ϑ(y, z) = (−y, z).

• We shall call a smooth map φ : Σ −→ M equivariant if φ ◦ ϑ = Θ ◦ φ.

Proposition. If the fixed point set M ′ ⊂ M of Θ is connected and simply connected then a Θ-equivariant
structure on a gerbe G over M permits to fix an unambiguous square root

√
HolG(φ) of the holonomy

of G along equivariant maps φ : Σ −→ M .

• If there exists an extension φ̃ : Σ̃ −→ M of φ and an orientation-preserving involution ϑ̃ : Σ̃ −→ Σ̃

reducing to ϑ on ∂Σ̃ = Σ s. t. φ̃ ◦ ϑ̃ = Θ ◦ φ̃ then

√
HolG(φ) = exp

[
i

2

∫

Σ̃

φ̃∗H
]
.

• We shall call a gerbe G over M equipped with a Θ-equivariant structure a Θ-equivariant gerbe.

IV. A 3d INDEX

• Let R be an oriented compact 3-manifold without boundary and ρ : R −→ R an orientation-reversing

involution with a non-empty set of fixed points. Example: for the 3-torus R3/(2πZ3) ≡ T3 we may
take ρ generated by k 7→ −k for k ∈ R3.

• We shall call a smooth map Φ : R 7−→ M equivariant if Φ ◦ ρ = Θ ◦ Φ.

• Let F ⊂ R be the closure of a fundamental domain for ρ that is a submanifold with boundary of
R. Then ρ preserves ∂F together with its orientation inherited from R.
Example: for R = T3 with ρ generated by k 7→ −k we may take F = [0, π]× T2 with ∂F
composed of two connected components: {π} × R2/(2πZ2) and {0} × R2/(2πZ2).

Proposition. Let G be a Θ-equivariant gerbe over M with curvature H and Φ : R −→ M an
equivariant map. If the fixed-point set M ′ ⊂ M is connected and simply connected then the ratio

exp
[
i
2

∫
F

Φ∗H
]

√
HolG(Φ|∂F )

≡ KG(Φ)

taking the values ±1 is independent of the choice of the fundamental domain F ⊂ R .
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V. BASIC GERBE OVER U(N)

• For the condensed matter applications, we shall need to apply the above general constructions to the
case where M = U(N) and H = 1

12π tr(V −1dV )3 is the closed bi-invariant 3-form on U(N) normalized
so that its set of periods is 2πZ.

• A gerbe G on U(N) with curvature H is called basic. It is unique up to 1-isomorphisms.

• We use a construction of such a gerbe adapted from from a 2008 paper of Murray-Stevenson based on
the ambiguities in taking the logarithm of a unitary matrix.

• In this construction, G = (Y,B,L, t) where

- Y =
{
(ǫ, V ) ∈ ]− 2π, 0[×U(N) | e−iǫ 6∈ spec(V )

}
with π : Y −→ U(N) forgetting ǫ

- B such that dB = π∗H is defined from the Poincaré Lemma using the homotopy h : [0, 1]×Y −→ Y

h(t, ǫ, V ) = (ǫ, e−itHǫ(V ))

where Hǫ(V ) = i ln−ǫ V with the cut in ln−ǫ at the argument −ǫ
- For ǫ1 ≤ ǫ2,

Hǫ1(V )−Hǫ2(V ) = 2πPǫ1,ǫ2(V )

where Pǫ1,ǫ2(V ) is the spectral projector of V on the subspace Eǫ1,ǫ2(V ) ⊂ CN corresponding
to the eigenvalues e−ie with ǫ1 < e < ǫ2. One takes

Lǫ1,ǫ2,V = ∧maxEǫ1,ǫ2(V )

for the fiber of line bundle L over (ǫ1, ǫ2, V ) ∈ Y [2]

- The connection on L is essentially the Berry one (slightly modified)
- The groupoid multiplication t on L−→

−→Y is induced by the isomorphism

∧maxEǫ1,ǫ2(V ) ⊗ ∧maxEǫ2,ǫ3(V ) ∼= ∧maxEǫ1,ǫ3(V )

for ǫ1 ≤ ǫ2 ≤ ǫ3.

VI. TIME-REVERSAL ON U(N)

• In quantum mechanics with the space of states CN , the time reversal is realized by an anti-unitary
map θ : CN −→ C such that θ2 = ±I.

• For the plus sign, one can take for θ the complex conjugation whereas for the minus sign, θ exists only
for N even and can be taken as the product of the unitary Pauli matrices σ2 placed diagonally and
the complex conjugation.

• In both cases, θ induces an involution Θ : U(N) −→ U(N) by the formula Θ(V ) = θV θ−1 and
Θ∗H = H for the bi-invariant 3-form H considered above.

Proposition. 1. If θ2 = I then the basic gerbe G over U(N) may be equipped with the Θ-equivariant
structure. However, in this case the the set of fixed points under Θ is isomorphic to O(N) and is neither
connected nor simply connected.
2. If θ2 = −I then there is no Θ-equivariant structure on the basic gerbe G over U(N). However Θ

lifts to the involution Θ̂ on the double cover Û(N) of U(N) and there exists a Θ̂-equivariant structure

on the pullback Ĝ to Û(N) of the basic gerbe over U(N). The fixed-point set of Θ̂ is isomorphic to
two disjoint copies of Sp(N) and is simply connected.

• For θ2 = I the lack of 1-connectivity of the fixed point set does not allow to define the square root√
HolG(φ) nor of the 3d index K(Φ) for equivariant maps φ and Φ.

• For θ2 = −I, every equivariant map φ : T2 :−→ U(N) and every equivariant map Φ : T3 −→ U(N)

may be lifted to an equivariant map φ̂ : T2 :−→ Û(N) and Φ̂ : T3 :−→ Û(N) and one can still define

uniquely
√
Hol

Ĝ
(φ̂) and K(φ̂) in spite of the lack of connectivity of the fixed point set of Θ̂. Besides

these quantities do not depend on the choice of the lifts φ̂ and Φ̂. We shall then use the notation√
HolG(φ) and K(Φ) for them.

Remark. The last point, however, does not hold for arbitrary (Σ.ϑ) and (R, ρ).
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VII. APPLICATION TO TOPOLOGICAL INSULATORS

• In the simplest case, the d-dimensional insulators are described by lattice Hamiltonians that, after the
discrete Fourier(-Bloch) transformation, give rise to a map

T
d ∋ k 7−→ H(k) = H(k +G) ∈ End(CN )

with G ∈ 2πZd and all the Hermitian matrices H(k) have a spectral gap around the Fermi energy ǫF .
We shall denote by P (k) = P (k+G) the spectral projectors on the eigenstates of H(k) with energies
< ǫF .

• For the time-reversal symmetric insulators,

θH(k)θ−1 = H(−k) and θP (k)θ−1 = P (−k)

where θ2 = −I.

• We shall denote by VP (k) the unitary matrix I − 2P (k). Note that in two or three dimensions, the
map Td ∋ k 7−→ VP (k) ∈ U(N) is then equivariant, i.e. Θ(VP (k)) = VP (−k).

Theorem. 1. For d = 2,
√

HolG(VP ) = (−1)KM where KM ∈ Z2 is the Kane-Mele (2005)
invariant of the time-reversal symmetric 2d topological insulators.
2. For d = 3, K(VP ) = (−1)KMs

where KMs ∈ Z2 is the strong Fu-Kane-Mele (2007) invariant of
the time-reversal symmetric 3d topological insulators.

• The physical importance of the Kane-Mele invariants relies on the fact that they count the parity of
the number of massless modes carrying topological protected currents localized near the boundary that
appear once we put the lattice system in a half-infinite space. This is the bulk-edge correspondence.

VIII. APPLICATION TO FLOQUET SYSTEMS

• Floquet systems are described by lattice Hamiltonians periodically depending on time that after the
discrete Fourier(-Bloch) transformation, give rise to a map

R× T
d ∋ (t, k) 7−→ H(t, k) = H(t+ 1, k) = H(t, k +G) ∈ End(CN )

where we fixed the period of temporal driving to 1.

• The evolution of such systems is described by the unitary matrices U(t, k) such that

i∂tU(t, k) = H(t, k)U(t, k), U(0, k) = I, U(t+ 1, k) = U(t, k)U(1, k).

• Suppose that ǫ ∈ [−2π, 0[ is such that e−iǫ 6∈ spec(U(1, k)) for all k. Then Hǫ(U(1, k)) =
i ln−ǫ(U(1, k)) is well defined and

Vǫ(t, k) = U(t, k) e−itHǫ(U(1,k)) = Vǫ(t+ 1, k)

may be viewed as a periodized evolution.

• For ǫ1 ≤ ǫ2,

Hǫ2(U(1, k))−Hǫ1(U(1, k)) = 2πPǫ1,ǫ2(U(1, k)).

• For the time-reversal symmetric Floquet systems

θH(t, k)θ−1 = H(−t,−k), θU(t, k)θ−1 = Θ(U(t, k)) = U(−t,−k)

where θ2 = −I.

• It follows that

θHǫ(U(1, k))θ−1 = Hǫ(U(1,−k)), Θ(Vǫ(t, k)) = Vǫ(1− t,−k).

and for ǫ1 ≤ ǫ2,

θPǫ1,ǫ2(U(1, k))θ−1 = Pǫ1,ǫ2(U(1,−k)).

• In particular, in 2d one may consider the Kane-Mele invariants KM ǫ1,ǫ2 ∈ Z2 given by the relation
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(−1)KMǫ1,ǫ2 =
√
HolG(VPǫ1 ,ǫ2

)

where VPǫ1 ,ǫ2
(k) = I − 2Pǫ1,ǫ2(U(1, k)) depend only on the time-1 evolution operators U(1, k).

Definition. In 2d take R = R/Z× T2 with the orientation-reversing involution ρ(t, k) = (1− t,−k).
Then Vǫ : R −→ U(N) is an equivariant map and we define the additional dynamical topological
invariants Kǫ ∈ Z2 of the gapped time-reversal symmetric Floquet system by the relation

(−1)Kǫ = K(Vǫ).

Proposition. The above invariants are related by the identity

Kǫ2 −Kǫ1 = KM ǫ1,ǫ2 .

• Similarly in 3d we may define the strong Fu-Kane-Mele invariants KM s
ǫ1,ǫ2

∈ Z2 depending
on U(1, k) by

(−1)KMs

ǫ1,ǫ2 = K(VPǫ1 ,ǫ2
).

Definition. In 3d take R = T3 with the orientation-reversing involution ρ(k) = (−k). Then
Vǫ|t= 1

2

: R −→ U(N) is an equivariant map and we define the additional dynamical topological

invariants Ks
ǫ ∈ Z2 of the time-reversal symmetric gapped Floquet system by the relation

(−1)K
s

ǫ = K(Vǫ|t= 1

2

).

Proposition. The 3d invariants are related by the identity

Ks
ǫ2
−Ks

ǫ1
= KMs

ǫ1,ǫ2
.

• The indices Kǫ and Ks
ǫ seem to count the parity of the number of current-carrying eigen-modes

of the time-1 evolution operator that are localized near the boundary of the half-space lattice
system that appear in the bulk spectral gap around e−iǫ.
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