
 Université du Luxembourg

Faculté des Sciences de la Technologie
et de la Communication

A thesis submitted in

partial ful�llment for the degree of

Bachelor en sciences

et ingénierie

Primes in P

Student project by

Luca Notarnicola

under the supervision of

Prof. Dr. Gabor Wiese

Luxembourg

Summer semester 2015

2

Abstract

It is a known result from high school that prime numbers are numbers that only
have two divisors, 1 an themselves. But there is much more beyond the theory of prime
numbers, which has actually become an important component of number theory. For
di�erent purposes, it is of great use to know whether a given number is prime or not,
but this task results to be even more di�cult, the larger the number is. But the
enormous growth of computer science can help us make giant steps forward in this
direction.

Contents

1 Introduction 5

2 The Miller-Rabin primality test 7

2.1 Preliminaries . 7
2.1.1 Fermat's Little Theorem . 7
2.1.2 Carmichael numbers . 8

2.2 Key points and description of the algorithm 9
2.3 The algorithm . 12
2.4 Correctness and complexity . 13

2.4.1 Correctness of the algorithm . 13
2.4.2 Running time . 17

3 The AKS primality test 17

3.1 Preliminaries . 17
3.1.1 Roots of unity . 17
3.1.2 Cyclotomic polynomials . 18
3.1.3 Binomial coe�cients . 20
3.1.4 Introspective numbers . 22

3.2 Key points and description of the algorithm 23
3.3 The algorithm . 25
3.4 Correctness and complexity . 26

3.4.1 Proof of correctness . 26
3.4.2 Running time . 32
3.4.3 Improvements of the running time 33

4 Implementations 36

4.1 Implementation of the Miller-Rabin primality test 36
4.2 Implementation of the AKS primality test 38

List of Algorithms

2.1 Miller-Rabin primality test . 12
3.1 AKS primality test . 25

3

4

1 Introduction

Determining whether a given number is a prime number or not is referred to as a primality
test. The best cryptographers can no longer think prime numbers away since their daily
use in cryptography makes it numbers like no other. E�cient cryposystems often make
use of prime numbers and the larger1 these numbers are, the more di�cult it is to break
the system. But breaking the system would mean having access to all sort of data, and
this is why the study of prime numbers is a serious task. One of the most famous cryp-
tosystems is the RSA public key algorithm, developped by Ronald Rivest, Adi Shamir and
Leonard Adleman2 in 1977. The algorithm uses two large prime numbers, which makes it
very hard to break. Nowadays many security applications are based on the RSA algorithm.

Many primality tests are known, but whether they are e�cient or not is another im-
portant question. The e�ciency of an algorithm is best measured by its running time,
which is a basic component of complexity theory of an algorithm. For instance to check
whether an integer n is prime, the standard trial division primality test, known since the
time of the ancient Greeks, consists in trying to divide n by every integer k in the range
2 ≤ k ≤

√
n. If there is any integer k that divides n, then n is composite, otherwise n is

prime. In the case that n is prime, it takes b
√
nc−1 steps to see that n is prime and hence

results to be extremely slow when applied to large integers n. This primality test is the
basis of the famous Sieve of Erathosthenes3 which generates all the prime numbers up to n.

A central result that many primality algorithms use, is Fermat's Little Theorem, which
states that for any prime number p, and any integer a relatively prime to p, one has the
congruence ap−1 ≡ 1 (mod p). Based on this formulation, Fermat's primality test suggests
to verify the above equality for coprime integers a and n (to be checked for primality and
hence playing the role of p). If the equality does not hold, then n cannot be a prime num-
ber. On the other hand, if the equality holds, then n is probably prime. Probably? Yes,
probably since there are composite numbers n that nevertheless satisfy the equality. Such
numbers are called Carmichael numbers, but we should discuss them later on. Due to this,
Fermat's primality test is a probabilistic primality test. In contrast to such probabilistic
tests, there are deterministic tests, which yield proved results.

It has been shown that there are e�cient probabilistic primality tests that run in poly-
nomial time, which means that their run time is bounded from above by a polynomial in
the size of their input. We say that algorithms of this type of running time belong to the
class P. They run in time at most O(nk) for some k ∈ N for an input of size n. Denoting
by T (n) the maximum amount of time that takes an algorithm on an input of size n, we
obtain that P = ∪k≥1T (nk). It can be shown4 that O(n log(n)) is as well in P, where
log(n) stands5 for the logarithm of n in base 2. It is proven that there are primality tests
of which the run time is bounded by a polynomial in log(n) (meaning that there is some
m ∈ N such that the run time is bounded by logm(n)).

1By large numbers we mean numbers of more than 600 decimal digits.
2Ronald Rivest (born in 1947) is an American crytographer, Adi Shamir (born in 1962) is an Israeli

mathematician and cryptographer, and Leonard Adleman (born in 1945) is an American theoretical com-
puter scientist.

3Eratosthenes of Cyrene (ca. 284 - ca. 200 BC) was a Greek mathematician.
4Using the de�nition that we recall: Let f, g be two functions. Then f(n) = O(g(n)) if and only if there

exist two constants n0 and C > 0 such that for all n ≥ n0 : |f(n)| ≤ C|g(n)|, and the fact that log(n) ≤ n
implies that n log(n) ≤ n2.

5We will use this notation all the time, instead of explicitely writing log2(n).

5

In this paper, we are going to study in depth two primality tests: The Miller-Rabin

primality test and the quite recent AKS primality test. Both tests are in class P and
the �rst one results to be probabilistic. Apart giving the algorithm, we will study their
complexity and understand how and why both work. The paper is divided into three main
parts. The �rst part presents the Miller-Rabin primality test, including a pseudocode of
the algorithm. A special focus is made on the fact that this is a probabilistic test, �nding
out how reliable its results are. In a second part, we will expose the AKS primality test,
with pseudocode too. Both sections are described and the corresponding theory is worked
out. Finally, the last part of the paper gathers possible implementations of both algorithms
in SAGE, a free software, that allows to perform all sort of computations and programs.
There are more reasons for choosing SAGE to implement our algorithms; as for instance
its simplicity. It has many functions already implemented and uses a very basic code (for
instance without need to specify delimiters or declare variable types). And that it is free,
of course. Included in this part, we also discuss some examples of compilations.

6

2 The Miller-Rabin primality test

In this section, we are going to present with full details the Miller-Rabin primality test, due
�rst to Gary Lee Miller (1976), an American computer scientist, and later (1980) modi�ed
by Michael Oser Rabin, an Israeli computer scientist. The algorithm presented by Miller
is a deterministic test, but relies on the unproven Generalized Riemann Hypothesis, which
we will discuss at some point. Rabin modi�ed this algorithm in order to turn it into
a probabilistic test, unconditionally of the generalized Riemann hypothesis. Today the
algorithm is linked to both scientists.

Before discussing the algorithm, we present some theory in order to understand it
better.

2.1 Preliminaries

In this section we are going through some materia that will occur at several points in the
following part.

2.1.1 Fermat's Little Theorem

We start by recalling a famous result, namely Fermat's Little Theorem. We state in the
next theorem, which we will prove by using some basic group theory.

Theorem 2.1 (Little Fermat). Let p be a prime number. Then it holds

ap−1 ≡ 1 (mod p). (1)

for all a ∈ Z with gcd(a, p) = 1.

Proof. Consider the set G = {1, 2, . . . , p−1} which under multiplication modulo p forms a
group. For simplicity, we can assume that 1 ≤ a ≤ p− 1, since gcd(a, p) = 1. This means
that a ∈ G. De�ne

k := ord(a) = min{j ∈ N : aj ≡ 1 (mod p)}.

Using a corollary of Lagrange's theorem6, we see that k divides |G| = p− 1, so that there
exists some integer n such that p− 1 = kn. It follows that

ap−1 ≡ akn ≡ (ak)n ≡ 1n ≡ 1 (mod p).

Let us view this result on an example.

Example 2.2. Take p = 7 and choose a = 12 (indeed gcd(12, 7) = 1). Then 127−1 ≡
2985984 (mod 7) ≡ 426569 · 7 + 1 ≡ 1 (mod 7).

This leads us to make the link with Fermat's primality test, which is based on this
idea. If we want to check whether an integer p is prime, we randomly pick a such that
gcd(a, p) = 1. If (1) does not hold, then, by the contrapositive of Theorem 2.1, we are sure
that p cannot be prime.

Let us now think about the converse of Theorem 2.1. Let n ∈ N, n ≥ 2. The question
that arises reads as follows: replacing p by n in (1), are we ensured that n is prime,
whenever (1) holds for some integers a and n? This can be formulated as follows:(

∀a ∈ Z with gcd(a, n) = 1 and an−1 ≡ 1 (mod n)
) ?

=⇒ n is a prime number

6We recall the corollary here: Given a �nite group G, then the order of any element a ∈ G divides the
cardinality of the group G.

7

One may think so, but this is wrong. Indeed, there are integers n that satisfy the modular
equality an−1 ≡ 1 (mod n) for all a ∈ Z with gcd(a, n) = 1, but that are not prime. This
brings us to de�ne the so called Carmichael numbers in the next section.

Due to this argument, we can conclude that Fermat's primality test is only deterministic
in the case for composite numbers. But this is not su�cient to state that the whole test is
deterministic. Hence this is a probabilistic test, since it does not prove whether the integer
given as input is prime or not. Summarizing, we conclude that Fermat's primality test can
only prove compositenenss of a number, but not primality.

2.1.2 Carmichael numbers

In this section we will �rst de�ne Carmichael numbers7 and study some of their most
important properties afterwards.

De�nition 2.3. Let n ∈ N, n ≥ 2 be composite. Then n is called a Carmichael number if
an−1 ≡ 1 (mod n) for all a ∈ Z with gcd(a, n) = 1.

Remark 2.4. Carmichael numbers are sometimes called Fermat pseudoprimes. If n satis�es
an−1 ≡ 1 (mod n) only for special a, then n is called pseudoprime in base a. It follows
that Carmichal numbers are pseudoprimes in any base a.

Let us see some examples of such integers.

Example 2.5. We are looking for an integer n that satis�es Little Fermat, though it is not
prime. A classical example is n = 561, since it is the smallest such number. It results that
for all a ∈ Z with gcd(a, 561) = 1, one has the modular congruence a560 ≡ 1 (mod 561),
but 561 = 3 · 11 · 17 is composite. This does not yet give a formal proof that 561 is a
Carmichael number, but we will soon develop a tool to check directly whether a number
is a Carmichael number or not. Other Carmichael numbers are for instance 1104, 1728 or
2464. There are in�nitely many.

De�nition 2.6. Let n ∈ N. Then n is called squarefree if n is not divisble by the square
of any prime number.

Example 2.7. For instance, 238 = 2 · 7 · 17 is squarefree, but 275 = 52 · 11 is not, since
52 | 275.

Let us now start to formulate an important property of Carmichael numbers, which
will provide us a characterization of them and thus help us recognize them. We have the
following theorem, often referred to as Korselt's criterion8.

Theorem 2.8. Let n ∈ N, n ≥ 2 be composite. Then n is a Carmichael number if and

only if n is squarefree and p | n implies (p− 1) | (n− 1), for each prime p.

Proof. (=⇒) Write n = pα1
1 · . . . ·pαrr , with p1, . . . , pr distict primes and α1, . . . , αr ≥ 1. We

�rst want to show that n is squarefree, i.e. that αi = 1 for all 1 ≤ i ≤ r. For each 1 ≤ i ≤ r,
let ai be a primitive root modulo pαii .9 Then, by the Chinese Remainder Theorem, there
exists a ∈ Z such that a ≡ ai (mod pαii) for all i and such that gcd(a, n) = 1. Therefore,
and since we assume that n is a Carmichael number, we have that an−1 ≡ 1 (mod n), and
thus an−1 ≡ an−1i ≡ 1 (mod pαii), for all 1 ≤ i ≤ r. Moreover, since ai is a primitive root
modulo pαii , it has order ϕ(pαii) = pαi−1i (pi − 1) in Z/pαii Z, and together with an−1i ≡ 1
(mod pαii), we obtain that pαi−1i (pi − 1) must divide n − 1, for all i. But since pi | n, we

7named after Robert Daniel Carmichael (1879− 1967), an American mathematician.
8named after Alwin Reinhold Korselt (1864− 1947), a German mathematician.
9We recall the de�nition here: g is a primitive root modulo p, if for all 0 < i < p − 1, one has gi 6≡ 1

(mod p) and gp−1 ≡ 1 (mod p). Equivalently, one could de�ne g to be a primitive root modulo p, if
p− 1 = min{j ∈ N : gj ≡ 1 (mod p)}, i.e. if g has order p− 1 in Z/pZ.

8

have gcd(pi, n− 1) = 1, and thus αi = 1, for all i, which shows that n is squarefree. Then
(since αi = 1) it is also clear that pi − 1 divides n− 1.
(⇐=) Suppose that n = p1p2 · . . . · pr and (pi − 1) | (n − 1) for all 1 ≤ i ≤ r. So there
exist integers ki such that n − 1 = ki(pi − 1), for 1 ≤ i ≤ r. We want to see that n is
a Carmichael number, i.e. that an−1 ≡ 1 (mod n) for a ∈ Z coprime to n. The idea is
that we �rst prove that an−1 ≡ 1 (mod pi) for each i. If a is a multiple of pi, then clearly
an ≡ a (mod pi). If a is not a multiple of pi, i.e. gcd (a, pi) = 1, then by Little Fermat,
api−1 ≡ 1 (mod pi). Then

an ≡ a(n−1)+1 ≡ aki(pi−1)a ≡ (api−1)
kia ≡ 1kia ≡ a (mod pi),

which shows that for all i, pi | (an − a), and hence n = p1p2 · . . . · pr | (an − a), since n is
squarefree. So an ≡ a (mod n) for all a with gcd (a, n) = 1, thus an−1 ≡ 1 (mod n). This
achieves the proof.

Let us come back to Example 2.5. We are now in a position to check that 561 is a
Carmichael number using the theorem above. Since 561 is 3 · 11 · 17 when decomposed
in prime factors, we see that all prime factor only occurs once (i.e. with multiplicity 1),
which means that 561 is squarefree. Moreover, we note that

(3− 1) | (561− 1) since 560 = 2 · 280
(11− 1) | (561− 1) since 560 = 10 · 56
(17− 1) | (561− 1) since 560 = 16 · 35,

which by the theorem above shows that 561 is a Carmichael number.

Corollary 2.9. Let n be a Carmichael number. Then n is odd and has at least three prime

factors.

Proof. Let n be a Carmichael number. Suppose that n is even, so n− 1 is odd. Let p | n.
Then (p− 1) | (n− 1) would imply that only 2 can be a prime factor of n, and since n is
squarefree by de�nition, this means that n = 2, thus prime. This contradicts the fact that
n is a Carmichael number.
To show that n has at least three prime factors, we write n = pq with p, q two di�erent
prime numbers (since n is composite and squarefree), and see that this will lead to a
contradiction. Since n is a Carmichael number, we know that p− 1 and q − 1 both divide

n− 1 = pq − 1 = (p− 1)q + (q − 1) = (q − 1)p+ (p− 1),

whence (p− 1) | (q − 1), and (q − 1) | (p− 1), implying that p = q, which contradicts the
fact that p and q are distinct primes. This means that n must have at least three prime
factors.

2.2 Key points and description of the algorithm

This section serves us as a preparation for the Miller-Rabin primality test. We go through
some key points that are used in the algorithm, that we will provide later on.

Square roots of 1. We start by recalling the Chinese Remainder Theorem. Given a
prime factorization of n, say n = pα1

1 · . . . · pαrr , the theorem induces the ring isomorphism

Z/nZ '−→ Z/pα1
1 Z× · · · × Z/pαrr Z

a+ (n) 7−→ (a+ (pα1
1), . . . , a+ (pαrr))

.

We are now interested in �nding all the square roots of 1. Let n be an odd integer. Square
roots of 1 are solutions of the equation X2 ≡ 1 (mod n), or equivalently of X2 − 1 ≡ 0

9

(mod n). We now use the factorization that we get by Chinese Remainder Theorem. Since
the unit group of Z/pαii Z is cyclic10 for all 1 ≤ i ≤ r, it follows that the only solutions are
−1 and 1 in Z/pαii Z. Hence we get a total of |{±1}|r = 2r solutions in Z/nZ, namely the
elements (a1, . . . , ar) with ai ∈ {−1, 1} for all 1 ≤ i ≤ r.

Example 2.10. Let us fnd out all elements of order 2 in Z/15Z. Note that 15 is odd and
hence we can apply the reasoning above. According to what is stated above, the equation
X2 − 1 ≡ 0 (mod 15) has exactly 22 = 4 solutions since in its prime factorization, 15 is
written as 3 ·5 (ie. with two factors). To see this, we draw a table (see Table 2.1) of squares
in Z/15Z, and we observe that there are indeed 4 solutions, namely 1, 4, 11 and 14.

x x2

0 0
1 1

2 4
3 9
4 1

x x2

5 10
6 6
7 4
8 4
9 6

x x2

10 10
11 1

12 9
13 4
14 1

Table 2.1: Squares in Z/15Z

This brings us to formulate an easy primality criterion, that we state in the following
lemma. The Miller-Rabin primality test is based on a variation of this criterion, which we
will soon discover.

Lemma 2.11. Let n ∈ N be squarefree. Then n is prime if and only if the equation

X2 − 1 ≡ 0 (mod n) only has solutions {−1, 1} in Z/nZ.

Proof. It follows from the reasoning above.
(=⇒) Assume that n is prime. Then Z/nZ is a �eld and hence an integral domain. It
follows that in Z/nZ, we obtain

X2 − 1 = 0 ⇐⇒ (X − 1)(X + 1) = 0 ⇐⇒ X − 1 = 0 or X + 1 = 0,

so that the only solutions are −1 and 1.
(⇐=) Assume that n is composite and squarefree, say n = p1 · . . . · pr with r ≥ 2, in
its prime factorization (we can assume that there are no exponents since n is squarefree).
By the Chinese Remainder Theorem, we have that Z/nZ ' Z/p1Z × · · · × Z/prZ, which
suggests us to consider the elements (−1, 1, . . . , 1), (1,−1, 1, . . . , 1), 1 = (1, . . . , 1) and −1 =
(−1, . . . ,−1) in Z/nZ. The squares of these elements are all 1 and thus they are solutions
of the equation X2− 1 ≡ 0 (mod n), which contradicts the fact that its only solutions are
1 and −1. Therefore n must be prime.

Fast exponentiation. Since good algorithms are those that have minimal running time,
it is important to implement fast methods of calculations. In the Miller-Rabin test, as we
will see later on, it can occur that large power calculations have to be computed. Let x ∈

10For p > 2 prime and m ∈ N,m ≥ 1, there is a group isomorphism (Z/pmZ)× ' Z/(p−1)Z×Z/pm−1Z.
To see this, it su�ces to take a generator, say a + (p) in (Z/pZ)× (thus has order p − 1) and compute
its order inside (Z/pmZ)×, which turns out to be the same. Via the congruence (1 + p)p

n

≡ 1 + pn+1

(mod pn+2), for all n ∈ N, n ≥ 0, one shows that the order of 1+p+(pm) inside (Z/pmZ)× is pm−1. Finally,
since p and pm are coprime, it follows that the order of a(1 + p) + (pm) is (p− 1)pm−1 = ϕ(pm), and thus
(Z/pmZ)× is cyclic. To obtain the factorization in the right hand side of the the group isomorphism, one
uses the Chinese Remainder Theorem.

10

Z, n ∈ N and assume we wish to compute xn minimalizing the number of multiplications.
The idea of the fast exponentiation method is to write n in its binary decomposition, say

n =

r∑
i=0

ai2
i,

with ai ∈ {0, 1} for each i. We then compute xn by

xn = x(
∑r
i=0 ai2

i) = (x2
0
)
a0 · . . . · (x2r)ar =

r∏
i=0

(x2
i
)
ai
,

which takes at most 2r multiplications11. For instance, since 99 = (1100011)2, this method
needs at most 2 · 6 = 12 multiplications in order to compute x99, versus the 98 multiplica-
tions that standard multiplication would require.

Towards a probabilistic primality test. Before we describe the criterion onto which
the Miller-Rabin algorithm will be based, we should shortly discuss another very simple
idea that will arise in the algorithm. It is that all integer n can be decomposed as

n = 2rk with r = max{j ∈ N : 2j | n} and k =
n

2r
is odd. (2)

In this decomposition, r and k are clearly integers, r is the greatest power of 2 in n and k
is the odd part in n. For instance, by doing so, 584 is decomposed as 584 = 23 · 73.

We already have encountered two primality criteria, that are Fermat's test and Lemma
2.11. These criteria result to be basic reference points for the Miller-Rabin primality test.
Let n ∈ N, n > 1 a prime number, and decompose n − 1 as 2rk accordingly to (2). Let
a ∈ Z with gcd(a, n) = 1. We conclude by Fermat's Little Theorem that

an−1 ≡ a2rk ≡ 1 (mod n).

Now the idea is to work inductively with square roots of 1 and make use of Lemma 2.11.
We can write the latter congruence as

a2
rk ≡ (a2

r−1k)
2
≡ 1 (mod n)

and therefore by Lemma 2.11, we have that either a2
r−1k ≡ 1 (mod n) or a2

r−1k ≡ −1
(mod n) if n is prime. Taking square root in the �rst case, we get again two possibilities,
that are either a2

r−2k ≡ 1 (mod n) or a2
r−2k ≡ −1 (mod n). We see that continuing on this

way, if we always get as result 1 when reducing modulo n, then we come to a2
0k ≡ ak ≡ 1

(mod n). Note that the sequence of numbers

a2
0k = ak, a2

1k = a2k, . . . , a2
r−2k, a2

r−1k, (3)

is very simple to construct, in the sense that any term (except for the �rst one) of the
sequence is the square of the previous term.

This reasoning suggests a good idea for primality testing: Given an input n, we �rst
decompose it as in (2). Then we can randomly pick an integer a relatively prime to n and
check whether either ak ≡ 1 (mod n) or a2

ik ≡ −1 (mod n), for some 0 ≤ i ≤ r − 1.
However, it results that this is a probabilistic test, in the sense that it cannot prove

primality. Clearly, the only case that is proven is when n is composite, which occurs when
any of the two conditions fail. We should later on focus on the question of how sure we
are of the output. As we already mentioned, the test could be turned into a deterministic
version, under the assumption of the Generalized Riemann Hypothesis. Roughly spoken,
this consists in choosing the values of a in an interval bounded by a polynomial in log(n).
This makes the test run in polynomial time.

11The product has exactly r+1 factors (x2
i

)
ai
, i = 1 . . . , r. In the worst case, when all the terms appear,

we need r multiplications to multiply the r + 1 factors together. Then to compute each of the x2
i

, for
i = 1, . . . r, we need r more multiplications. Thus a total of 2r multiplications.

11

2.3 The algorithm

After having studied the main ingredients, we are now in a position to present the algo-
rithm. We will not assume the Generalized Riemann hypothesis, and hence present the
probabilistic version of the test. In order to simplify, we give a pseudocode of it, and
discuss its complexity afterwards.

Algorithm 2.1 Miller-Rabin primality test

Require: n, t ∈ N, n ≥ 3
Ensure: n is Probably Prime or n is Composite
1: function Miller-Rabin(n, t)
2: if n is a multiple of 2, 3 or 5 then
3: return Composite

4: end if

5: Decompose n− 1 = 2rk with r, k ∈ N, and k odd
6: for i = 1 to t do
7: Choose a ∈ (Z/nZ)× randomly
8: Compute b = ak mod n
9: if b 6= 1 then
10: j ← 0
11: while j ≤ r − 1 and b 6= −1 do
12: b← b2 mod n
13: j ← j + 1
14: end while

15: if b 6= −1 then

16: return Composite

17: end if

18: end if

19: end for

20: return Probably Prime

21: end function

Main steps. Let us analyze and describe the main steps of this algorithm. One may ask
what role the input t has in the algorithm. This is just a bound for the number of a's we
want to consider in (Z/nZ)× (see line 7). One could also decide not to give this value as
input, but woluld then need to run the program t times, which is not as comfortable.

step lines description

I 2− 4 Clearly, the input n is composite if it is divisible by
2, 3 or 5.

II 5 The algorithm decomposes n− 1 accordingly to (2).
III 6− 8 All what follows is repeated t times, where t is the

bound chosen in the input. Firstly, the algorithm
chooses at rondom a number in (Z/nZ)× and raises
it to the power k by fast exponentiation method, and
is then reduced modulo n. This is the content of b.

IV 9− 20 This step is the main test. If b computed above is
not equal to 1, then we have to see whether there is
some 0 ≤ j ≤ r − 1 so that a2

jk equals −1 modulo
n. This sequence is set up by squaring previous terms
and incrementing j. If no such j is detected, then n
is composite. If ak mod n equals 1, then n is likely
prime.

12

2.4 Correctness and complexity

First of all we will argue why the algorithm works, using part of the theory we studied so
far, whereas later, we will discuss time complexity of the algorithm.

2.4.1 Correctness of the algorithm

We start by proving the main argument of the primality test, that is the following propo-
sition.

Proposition 2.12. Let n ∈ N, n ≥ 3. Let the decomposition n − 1 = 2rk with r, k ∈ N
and k odd. Then the following statements are equivalent.

(i) n is a prime number

(ii) For all a ∈ (Z/nZ)×, one of the following conditions holds:

(α) ak ≡ 1 (mod n)

(β) ∃ i ∈ {0, . . . , r − 1} such that a2
ik ≡ −1 (mod n)

Proof. (=⇒) This part is based on Fermat's Little Theorem. Since, by assumption n is
prime, and a is in (Z/nZ)×, the conditions of Theorem 2.1 are ful�lled. Thus, an−1 ≡ 1
(mod n). Given the decomposition of n− 1 as 2rk, we obtain that

an−1 ≡ a2rk ≡ (a2
r−1k)

2
≡ 1 (mod n). (4)

By Lemma 2.11, we see that a2
r−1k ≡ ±1 (mod n). Let us discuss both cases separately.

Assume �rst that a2
r−1k ≡ −1 (mod n). Then condition (β) holds. In the other case,

let us suppose that a2
r−1k ≡ 1 (mod n). By proceeding exactly as in (4), we get that

(a2
r−2k)

2
≡ ±1 (mod n). Again, if (a2

r−2k)
2
≡ −1 (mod n), we are left with condition

(β). Assuming that we never get a congruence to −1, we repeat the procedure in (4) until
we obtain a2

0k ≡ ak ≡ 1 (mod n), which is condition (α).
(⇐=) Instead of proving this implication, we show its contrapositive. Therefore, assume
that n is composite, say n = p1 · . . . · pm with pi prime numbers for i = 1, . . . ,m. Let
a ∈ (Z/nZ)×. We will now see that an−1 ≡ 1 (mod n) whenever (α) or (β) hold. Indeed,
if (α) holds, then

an−1 ≡ a2rk ≡ (ak)
2r ≡ 12

r ≡ 1 (mod n),

and if (β) holds, then there exists i ∈ {0, . . . , r − 1} such that a2
ik ≡ −1 (mod n). By

repeated squarings we get that a2
rk ≡ an−1 ≡ 1 (mod n). Since n is not prime but still

satis�es an−1 ≡ 1 (mod n) with a ∈ (Z/nZ)×, n must be a Carmichael number. Then by
Corollary 2.9, it follows that n has at least three odd prime factors, i.e. that m ≥ 3. By the
Chinese Remainder Theorem, we have the ring isomorphism Z/nZ ' Z/p1Z×· · ·×Z/pmZ.
Let us now show that (α) and (β) cannot hold, by exhibiting an a ∈ (Z/nZ)× that does
not �t any of the conditions. By the isomporphism, we choose a = (a1, . . . , am) with at
least one ai equal to −1, say a1, and at least one ai equal to 1, say a2, for simplicity. Then
a looks like (−1, 1, ?, . . . , ?). Since k is odd in the factorization of n − 1, we immediately
see that ak 6≡ 1 (mod n) because a1

k ≡ −1 (mod n). Hence (α) cannot be satis�ed.
Analogously, it can never occur that a2

rk ≡ −1 (mod n), since for any exponent j, we will
have a2

j ≡ 1 (mod n). So (β) fails as well, and hence (ii) is not satis�ed.

Remark 2.13. We note that in (β), the sequence built up with i running through integers
1 up to r− 1 is set up such that each element is the square of its previous element (except
for the �rst one).

Let us apply this to a concrete example.

13

Example 2.14. Let us check the �rst implication of this criterion on the example n = 7.
We write 6 = 2 · 3, so that r = 1 and k = 3. Since 7 is prime, we need to check that for
all a ∈ (Z/7Z)× = {0, . . . , 6}, either a3 ≡ 1 (mod 7), or a2

0·3 = a3 ≡ −1 (mod 7) (since
i ∈ {1, . . . , r − 1}, we have the only case i = 0). Indeed, for a ∈ {1, 2, 4}, we have that
a3 ≡ 1 (mod 7), whereas for a ∈ {3, 5, 6}, a3 ≡ −1 (mod 7). Hence one of the conditions
holds for all a ∈ (Z/7Z)×.

Let us now move on to the question related to the probability estimate of a correct
output.

How sure are we about the output? Let n ∈ N. The only case where the correctness
of the output is guaranteed, is the case when (ii) is not satis�ed for any of its conditions.
In this case we know for sure that n must be composite. But assuming that we are not in
this case, we now focus on the question of how sure we are about the result. If n is not
prime, there could exist some a ∈ (Z/nZ)× such that condition (ii) is satis�ed anyway.
Put another way, there exist some values of a that ful�ll condition (ii) without n being
prime. Thus, for composite n, it is convenient to de�ne the set

An :=
{
a ∈ (Z/nZ)× : (α) or (β) holds

}
, (5)

that is the set{
a ∈ (Z/nZ)× : ak ≡ 1 (mod n) or ∃ i ∈ {0, . . . , r − 1}, a2ik ≡ −1 (mod n)

}
,

where k (odd) and r are the integers in the decomposition n − 1 = 2rk. The next
proposition will lead us towards an answer to this question, by estimating the size of An,
i.e. the number of a's that satisfy both conditions although n is composite.

Proposition 2.15. Let n ∈ N be composite such that n is not divisible by 2 and 3. Write

the decomposition n− 1 = 2rk with r, k ∈ N and k odd. De�ne An as in (5). Then

|An| ≤
ϕ(n)

4
,

where ϕ denotes Euler's totient function12.

Proof. We consider the prime factorization n = pα1
1 · . . . · pαmm with p1, . . . , pm distinct odd

primes. Let 0 ≤ s ≤ r − 1 denote the maximum such that there exists some a ∈ (Z/nZ×)
that satis�es a2

sk ≡ −1 (mod n) (thus a2
s+1k ≡ 1 (mod n)). From this it follows that for

all 1 ≤ i ≤ m, one has that 2s+1 | (pi − 1). Indeed a2
sk ≡ −1 (mod n) implies a2

sk ≡ −1
(mod pi), and therefore ord(ak) = 2s+1 in Z/piZ× (by construction of s). Therefore 2s+1

divides the order of Z/piZ×, which is pi − 1.
Let us now consider the composite group homomorphism ψ = π ◦ f de�ned by

ψ : (Z/nZ)×
f−→ (Z/nZ)×

π−→ (Z/nZ)×/{±1},

a 7−→ a2
sk 7−→ a2

sk mod {±1}

where π represents the natural projection. Then kerψ is the set of all elements a ∈ (Z/nZ)×

such that ψ(a) = π(f(a)) = π(a2
sk) = ±1, which shows that An ⊂ kerψ. So in order to

bound the cardinality of An, it su�ces to �nd a bound for the cardinality of kerψ. This
is done by giving a lower bound of the cardinality of imψ. By the Chinese Remainder

12We brie�y recall Euler's totient function. Let n ∈ N, then ϕ(n) counts the positive integers less or
equal to n that are coprime with n. An important consequence for us is the fact that ϕ(n) counts units in
the group Z/nZ, ie. ϕ(n) = |(Z/nZ)×|.

14

Theorem, we have the factorization Z/nZ ' Z/pα1
1 Z × · · · × Z/pαmm Z, and we can de�ne

the element
wi := (1, . . . , 1, gi, 1, . . . , 1) ∈ (Z/nZ)×,

where gi ∈ (Z/pαii Z)× is a generator for 1 ≤ i ≤ m, since the groups Z/pαii Z are all cyclic.
From this de�nition, it clearly follows that wi and gi have same order. We should now
discuss di�erent possible cases for the value of m.

(i) If m = 1, then n = pα1
1 and thus α1 > 1, otherwise n would be prime. Since n is not

divisible by 2 and 3, we have that p1 ≥ 5. We observe that p1 | ord(g1) = ord(w1).
But p1 - k (since p1 - (n − 1) = pα1

1 − 1), hence p1 | ord(w2sk
1) = ord(ψ(w1)). Thus

ord(ψ(w1)) ≥ p1 ≥ 5 > 4, which gives |imψ| ≥ 4.

(ii) If m = 2, then n = pα1
1 pα2

2 . Again, for i = 1, 2, we see that pi - (n − 1). Let us
�rst assume that there is j ∈ {1, 2} such that αj > 1, then again pj | ord(w2sk

j) =

ord(g2
sk
j), and consequently ord(w2sk

j) ≥ pj ≥ 5 > 4. So we get again that |imψ| ≥ 4.
Assume now that α1 = α2 = 1, so that n = p1p2. For i = 1, 2, we decompose
pi − 1 = 2riki, with ri, ki ∈ N and ki odd. We observe that

n− 1 = p1p2 − 1 = (p1 − 1)(p2 − 1) + (p1 − 1) + (p2 − 1),

and substituting pi = 2riki for i = 1, 2,

n− 1 = 2rk = 2r1k1 · 2r2k2 + 2r1k1 + 2r2k2

= 2r1+r2k1k2 + 2r1k1 + 2r2k2. (6)

Let us suppose that both ki | k, for i = 1, 2. Since k1 | k, we get that k1 | 2rk, and
by (6) that k1 | (2r1+r2k1k2 + 2r1k1 + 2r2k2). It follows that k1 | k2. By symmetry,
since we additionnally assume that k2 | k, we obtain that also k2 | k1, implying that
k1 = k2. Hence (6) can be rewritten as

2rk = 2r1+r2k1
2 + (2r1 + 2r2)k1.

Dividing both sides by k1 ≥ 2, and assuming, without loss of generality, that r1 > r2,
we �nd

2r
k

k1
= 2r1+r2k1 + 2r1 + 2r2 = 2r2(2r1k1 + 2r1−r2 + 1).

Since the number 2r1k1 + 2r1−r2 + 1 is odd, we conclude, from the above, that
r = r2, and consequently we get the estimation k/k1 ≥ 4 + 2 + 1 = 7, whence
ord(w2sk

1) = ord(g2
sk

1) ≥ 7.
We now treat the case where for i = 1, 2, one of the ki - k, say k1. The other case is
analogous. Then we trivially observe that gcd(k1, k) < k1 and since both k and k1 are
odd, gcd (k1, k) = k1/a for some a ≥ 3, so that gcd(k1, k) ≤ k1/3. From the formula

ord(gz) = ord(g)
gcd(ord(g),z)

13, it follows that ord(w2sk
1) = ord(g2

sk
1) =

ord(g2
s

1)

gcd(ord(g2s1),k)
≥ 6,

since 2k1 | ord(g2
sk

1) because it divides the numerator but not the denominator of
ord(g2

sk
1). Therefore ord(g2

sk
1) ≥ 2k1 ≥ 6 since k1 ≥ 3 by the fact that k1 ≥ 2 is odd.

Now since ord(w2sk
2) = ord(g2

sk
2) ≥ 2 (again as before, by construction of wi), the

elements w2sk
1 and w2sk

2 generate a subgroup of order at least 12 = 2 · 6 of (Z/nZ)×,
and since the projection map π in ψ can remove at most a factor of 2, we conclude
that |imψ| ≥ 12/2 = 6.

13This gives the order of an element g raised to the power z. Indeed, denoting a = ord(g) and b = ord(gz),
it su�ces to see that 〈gz〉 ⊂ 〈g〉 and thus by Lagrange's Theorem, b | a, hence there exists α ∈ Z∗ such
that b = a/α and thus α | a = ord(g). But since e = gzb = gza/α (e denotes the neutral element in the
group) and since a = ord(g), a must divide za/α. Therefore, since α divides both a and z, α | gcd(a, z),
and a calculation shows that α = gcd(a, z) is convenient.

15

(iii) If m ≥ 3, then the elements w2sk
i have order at least 2 (as before, by their construc-

tion) for 1 ≤ i ≤ m. These elements generate a subgroup of order at least 2m of
(Z/nZ)×. The projection map π in ψ can at most remove a factor of 2, so that
|imψ| ≥ 2m−1 ≥ 4, since m ≥ 3.

Putting all cases together, we get that |imψ| ≥ 4. By the isomorpism theorem, we obtain
(Z/nZ)×/ kerψ ' imψ, and thus they have the same cardinality, that is

|(Z/nZ)×|
| kerψ|

=
ϕ(n)

| kerψ|
= |imψ| ≥ 4 =⇒ |An| ≤ | kerψ| ≤ ϕ(n)

4
,

what we wanted to show.

Interpretation. Roughly spoken, Proposition 2.15 tells us that each fourth value of a in
(Z/nZ)× could lead to a wrong output. Hence we see that the more values of a we consider,
the more sure we are about the output, and in this way, the probability of an incorrect
output can become extremely small. The probability that n is composite when a satis�es
one of both conditions, is less than 1/4. So, if we repeat the test t times (picking t di�erent
values for a in (Z/nZ)×), we can make this probability less than (1/4)t. Consequently, if
t tends to ϕ(n), and n is large, then this probability tends to 0.

The Generalized Riemann Hypothesis. In 1976, Miller proved that the algorithm
could be turned into a deterministic primality test, under the assumption of the Gen-

eralized Riemann Hypothesis (GRH), that we will not prove14. Four years later (1980),
Rabin reformulated the test in order to avoid the Generalized Riemann Hypothesis. The
next proposition (without proof) gives the analogue to the implication (ii) =⇒ (i) of
Proposition 2.12, under the assumption of GRH.

Proposition 2.16 (assuming GRH). Let n ∈ N odd with the decomposition n − 1 = 2rk
for r, k ∈ N and k odd. If for all integers 1 < a < 2(log2 n)2, one either has

(α) ak ≡ 1 (mod n) or

(β) ∃i ∈ {0, . . . , r − 1} such that a2
ik ≡ −1 (mod n),

then n is a prime number.

We observe the slight di�erence with the criterion seen in Proposition 2.12; instead of
considering random integers a ∈ (Z/nZ)×, we consider a ∈ N satisfying 1 < a < 2(log2 n)2.
Taking hold of this assumption, the Miller-Rabin test will actually prove that n is prime.

Now that we have stated and proved the latter propositions, we can formulate the
following theorem and prove correctness of Algorithm 2.1.

Theorem 2.17. Let n ∈ N with n ≥ 3 odd.

(i) If Miller-Rabin(n, t) returns Composite, then n is composite.

(ii) If Miller-Rabin(n, t) returns Probably Prime, then n is prime with probability at

least 1− (1/4)t.

Proof. (i) This follows from Proposition 2.12. If ak 6≡ 1 (mod n) and a2
ik 6≡ −1 (mod n)

for all i ∈ {1, . . . , r − 1}, then n is a composite number.
(ii) This follows from Proposition 2.15. It tells us that, whenever a satis�es one of both
conditions of Proposition 2.12 (ii), then n is composite with probability at most 1/4, and
in this caseMiller-Rabin(n, t) returns Probably Prime with probability at most (1/4)t.
Therefore, the probability that n is prime and Miller-Rabin(n, t) returns Probably

Prime is at least 1− (1/4)t.

14Note that no formal proof has con�rmed the result so far, but it is most often believed to be true.

16

2.4.2 Running time

The running time of an algorithm is its asymptotic time complexity, that is the time
required by the longest part of the algorithm. It is clear that if one step of the algorithm
takes more time to run, then this time is also the algorithm's running time, since all the
other steps are bounded by this time. Running time is expressed in terms of the big
O notation, that we already encountered in the introduction. Let us shortly recall this
notation.

Let f, g be two functions. We say that f(n) = O(g(n)) as n→ +∞ if and only if there
exist two constants n0 and C > 0 such that for all n ≥ n0 : |f(n)| ≤ C|g(n)|.

In this subsection we will analyze the running time of the Miller-Rabin primality algo-
rithm described in Algorithm 2.1. The result is stated in the following theorem.

Theorem 2.18. Let n, t ∈ N, n ≥ 3. The running time of Miller-Rabin(n, t) is

O(log3(n)).

Proof. By using fast exponentiation, it takes O(log(n)) modular multiplications to com-
pute ak (mod n), where one modular multiplication again takes time O(log2(n)). Once
computed ak (mod n), the remaining terms a2k, a4k, . . . , a2

rk are obtained by r ≤ log(n)
repeated squarings modulo n, each of which requiring again O(log(n)) modular multipli-
cations. All the other steps in the algorithm need less time, so that the running time is
O(log3(n)), by adding these times up.

3 The AKS primality test

In this section, we will go through the AKS primality test with special focus on complexity.
We are talking of a quite recent algorithm, that surprisingly appeared in 2002, formalized
by three Indian scientists, Manindra Agrawal, Neeraj Kayal and Nitin Saxena (therefore
the abbreviation AKS). The big di�erence with the Miller-Rabin primality test consists in
the fact that this is a deterministic test and hence yields proved results.

Analougously to the previous section, we should �rst start preparing the necessary
ingredients and present the algorithm later on.

3.1 Preliminaries

In this preliminary section, we present (resp. recall) some important basic results.

3.1.1 Roots of unity

We recall the de�nitions of roots of unity and primitive roots of unity and study some of
their properties.

De�nition 3.1. Let n ∈ N. A complex number ζ is called a nth root of unity if ζn = 1.

It is clear that there are exactly n nth roots of unity. These are precisely the complex
numbers

ζk = e
2πi
n
k for k = 1, . . . , n,

which are the roots of the polynomial Xn − 1.
We can extend this de�nition to de�ne the primitive roots of unity.

De�nition 3.2. Let n ∈ N. A complex number ζ is called a primitive nth root of unity if
n is the smallest positive integer such that ζn = 1, i.e. ord(ζ) = n.

Remark 3.3. We note that the complex number e
2πi
n is always a primitive nth root of unity

since (e
2πi
n)

n
= e2πi = 1 and the order of e

2πi
n is n.

17

Lemma 3.4. Let n ∈ N, and ζ a primitive nth root of unity. Then all the nth roots of

unity are the numbers 1, ζ, ζ2, . . . , ζn−1.

Proof. For every 0 ≤ k < n, ζk is an nth root of unity by the fact that (ζk)
n

= (ζn)k =
1k = 1. Therefore, the numbers ζ0 = 1, ζ1 = ζ, ζ2, . . . , ζn−1 are all distinct, hence these
must be all the nth roots of unity, since there are exactly n such roots.

Example 3.5. Let us look at 7th roots of unity. By the above, the 7th roots of unity are

the numbers 1, ζ, . . . , ζ6 for ζ = e
2πi
7 , which is a primitive 7th root of unity, by Remark

3.3.

Lemma 3.6. Let n, d ∈ N and ζ a primitive nth root of unity. Then ζk is a primitive nth
root of unity if and only if gcd (n, k) = 1.

Proof. (=⇒) We show the contrapositive. Assume that gcd (n, k) = g 6= 1. Then (ζk)
n/g

=

(ζn)k/g = 1k/g = 1, but n/g < n, so that ord(ζk) 6= n, and therefore ζk is not a primitive
nth root of unity.
(⇐=) Assume that gcd (n, k) = 1 and call ord(ζk) = a. If ζ is a primitive nth root of
unity, then ord(ζ) = n. We want to see that a = n. Consider G = 〈ζ〉 and H = 〈ζk〉 ⊂ G.
By construction, |G| = n and |H| = a, thus it follows from Lagrange's Theorem that a | n.
Moreover, from ζka = 1, it follows n | ka. But gcd (n, k) = 1 implies n | a. So a = n, and
ζk is a primitive nth root of unity.

Corollary 3.7. There are exactly ϕ(n) primitive nth roots of unity.

Proof. By de�nition of Euler's function, there are precisely ϕ(n) integers k ∈ {0, . . . , n}
that satisfy gcd(k, n) = 1, so there are exactly ϕ(n) primitive nth roots of unity by Lemma
3.6.

3.1.2 Cyclotomic polynomials

There are several possible ways to de�ne cyclotomic polynomials. One way is to de�ne
them by means of primitive roots of unity that we studied above.

De�nition 3.8. Let n ∈ N. The nth cyclotomic polynomial, denoted by Φn(X) is the
polynomial having exactly the primitive nth roots of unity as roots, that is

Φn(X) =
∏

ord(ζ)=n

(X − ζ) =

n∏
k=1

gcd(n,k)=1

(X − ζk).

Let us work out some examples.

Example 3.9. For n = 3, the 3rd roots of unity are the complex numbers 1, ζ, ζ2 for

ζ = e
2πi
3 . That are the numbers 1,−1/2 + i

√
3/2,−1/2− i

√
3/2, among which only ζ and

ζ2 are primitive (gcd(1, 3) = gcd(2, 3) = 1). Thus the 3rd cyclotomic polynomial is given
by

Φ3(X) = (X − ζ)(X − ζ2) = X2 +X + 1.

For n = 4, we have that the 4th roots of unity are 1, ζ, ζ2, ζ3 where ζ = e
2πi
4 = −i. That

are 1,−i,−1 and i. The primitive 4th roots of unity are −i and i (since they have order
4). Therefore the 4th cyclotomic polynomial is

Φ4(X) = (X − i)(X + i) = X2 + 1.

Remark 3.10. All cyclotomic polynomials are monic with integer coe�cients (we will not
prove this latter result). By Corollary 3.7, the nth cyclotomic polynomial has degree ϕ(n).

18

Let us now come to an important result of cyclotomic polynomials.

Proposition 3.11. Let d, n ∈ N. Then

Xn − 1 =
∏
d|n

Φd(X).

Proof. Since the right hand side is a product of cyclotomic polynomials, it is monic, and
hence the polynomials on both sides are monic. Let ζ be an nth root of unity. By de�nition
of the right hand side, we have that ord(ζ) = d for some d | n, and hence ζ is a primitive
dth root of unity. But since d | n, we have that (Xd − 1) | (Xn − 1) and therefore ζd − 1
divides ζn − 1 = 0, which means that ζd = 1, i.e. that ζ is also a root of the polynomial
in the right hand side. From this, it follows that polynomials on both sides are monic and
have the same roots, so they are equal.

We will now see two corollaries that immediately follow from this latter proposition.
The �rst one just proves a well-known formula, and the second one gives an expression for
the pth cyclotomic polynomial, where p is a prime number.

Corollary 3.12. Let n, d ∈ N. Then ∑
d|n

ϕ(d) = n.

Proof. Since the polynomials in Proposition 3.11 are equal, they must have same degree.
The left hand side has degree n, so the degree of the right hand side must equal n, too.
But since the polynomial on the right hand side is a product of cyclotomic polynomials, it
has degree

∑
d|n ϕ(d).

Corollary 3.13. Let p be a prime number. Then

Φp(X) =

p−1∑
i=0

Xi.

Proof. By Proposition 3.11, it results that Xp − 1 = Φ1(X)Φp(X). Substituting Φ1(X) =
X − 1, it comes

Φp(X) =
Xp − 1

X − 1
= Xp−1 +Xp−2 . . .+X + 1 =

p−1∑
i=0

Xi.

Let us see another important fact of cyclotomic polynomials. Let Fp = Z/pZ denote
the �nite �eld with p elements.

Proposition 3.14. Let n, p ∈ N, with p a prime number and gcd(n, p) = 1. Then the

polyomial Φn(X) splits in the �eld Fp[X] into irreducible factors of same degree ordn(p).15

Proof. We show that the irreducible factors all have same degree. Let d denote the degree
of some irreducible factor Q(X) of Φn(X), and call k := ordn(p). We are to show that
d = k.

Consider the �eld K := Fp/(Q(X)). Since Fp is �nite of prime order p and Q is
irreducible of degree d, K is a �nite �eld of cardinality pd. By Lagrange, for all x ∈ K×, it
holds xp

d−1 = 1. Then K contains a root of Q, thus also a root of Φn, which is a primitive
nth root of unity, say ζ. Then ζp

d−1 = 1 and ζn = 1 implies that n | (pd − 1). So write

15The notation ordn(p) stands for the order of p modulo n. For the precise de�nition, have a look at
De�nition 3.31 page 25.

19

pd − 1 = kn for some k ∈ Z to see that pd ≡ 1 (mod n). But since by de�nition of k, k is
the smallest positive integer such that pk ≡ 1 (mod n), we conclude from this that d ≥ k.

To show the other inequality, we �rst observe that ζ is a root of the polynomialXpk−X.
Indeed, since ζn = 1 and n | (ζk − 1), we have that ζp

k
= ζ. Consider the sub�eld of K,

L = {x ∈ K : xp
k

= x} ⊂ K. By the above, ζ ∈ L. Since ζ is a generator of K×, we get
that L = K, and thus |L| = |K| = pd ≤ pk, and hence d ≤ k.

Putting both observations together, we have shown that d = k and since Q was arbi-
trarily chosen, this holds for all irreducible factor of Φn(X).

One could say much more about cyclotomic polynomials, but our task was just to
brie�y study them in order to understand some passages of the coming theory.

3.1.3 Binomial coe�cients

First we remind that, given n, k ∈ N with n, k ≥ 0 and k ≤ n, the binomial coe�cient is
de�ned by (

n

k

)
=

n!

k!(n− k)!
. (7)

From this follows an immediate consequence, namely that(
n

k

)
=

(
n

n− k

)
. (8)

We also recall Pascal's rule16: For 1 ≤ k ≤ n+ 1,(
n

k

)
+

(
n

k − 1

)
=

(
n+ 1

k

)
. (9)

The proof of this formula is straight forward, it su�ces to expand the left hand side of the
identity using (7).

Let us now explore some properties of the binomial coe�cient. The coming lemma
gives the iterated version of Pascal's formula.

Lemma 3.15. Let n, k ∈ N∗ with k ≤ n. Then
n∑
j=k

(
j

k

)
=

(
n+ 1

k + 1

)
.

Proof. This proof goes by induction on n. For n = 1, we have that k = 1, and
(
1
1

)
=
(
2
2

)
= 1.

Assume now that the equality holds for a certain n ∈ N∗ and show that it still holds for
n+ 1. Then using �rstly the induction hypothesis (IH) and then Pascal's formula (9), we
see that

n+1∑
j=k

(
j

k

)
=

n∑
j=k

(
j

k

)
+

(
n+ 1

k

)
=

(IH)

(
n+ 1

k + 1

)
+

(
n+ 1

k

)
=
(9)

(
n+ 2

k + 1

)
,

which terminates the proof.

This lemma is used to prove the following result.

Lemma 3.16. Let n, k ∈ N∗. The number of possibilities to choose n integers such that

their sum is less than or equal to k − 1 is
(
n+k−1
n

)
.

16This has been found by Blaise Pascal (1623−1662), a French mathematician, among other disciplines.

20

Proof. We show this by induction on n. If n = 1, on the one hand, there are precisely k
possibilities to choose one integer such that it is less or equal to k − 1, and on the other
hand,

(
n+k−1
n

)
=
(
k
1

)
= k, which proves the base case.

For the induction step, we assume that the result holds for some n ∈ N∗ and prove that it is
still true for n+1. We have to count possibilties to choose n+1 integers, say a0, a1, . . . , an,
such that

∑n
i=0 ai ≤ k − 1. If we �x the choice of a0, it remains to choose only n integers

a1, . . . , an, and we can thus use our induction hypothesis. For simplicity, call σ(a0) the
number of possibilities to choose n + 1 integers a0, a1, . . . , an with �xed a0 and such that∑n

i=0 ai ≤ k − 1. With this notation we get, by induction hypothesis, that

σ(j) =

(
n+ k − j − 1

n

)
,

for 0 ≤ j ≤ k − 1.17 Then adding together all the possibilities that we get with di�erent
choices for a0, we are left with

k−1∑
j=0

σ(j) =
k−1∑
j=0

(
n+ k − j − 1

n

)
=

n+k−1∑
j=n

(
j

n

)
=

(
n+ k

n+ 1

)
possibilities to choose a0, a1, . . . , an such that

∑n
i=0 ai ≤ k− 1. Note that we obtained the

last equality by Lemma 3.15. This is the wanted result for n+ 1, and therefore the result
is true for all n ∈ N∗.

Lemma 3.17. Let k ∈ N, k ≥ 2. Then(
2k + 1

k

)
> 2k+1.

Proof. We prove this by induction on k. The base case is clear, since for k = 2, we have(
5
2

)
= 10 > 8 = 22+1. We assume that the inequality holds for a certain k ≥ 2 and prove

that it still holds for k + 1:(
2(k + 1) + 1

k + 1

)
=

(
2k + 3

k + 1

)
=

(2k + 3)!

(k + 1)!(k + 2)!

=
(2k + 1)!

k!(k + 1)!
· (2k + 2)(2k + 3)

(k + 1)(k + 2)

= 2

(
2k + 1

k

)
︸ ︷︷ ︸
>2k+1

2k + 3

k + 2︸ ︷︷ ︸
>1

> 2k+2.

So this holds for all k ≥ 2.

Lemma 3.18. Let a, b, c ∈ N, such that a ≥ b. Then(
a+ c

c

)
≥
(
b+ c

c

)
.

Proof. This follows from the de�nition of the binomial coe�cients. We have(
a+ c

c

)
=

(a+ c)!

a!c!
=

(a+ c)(a+ c− 1) · . . . · (a+ 1)

c!

≥ (b+ c)(b+ c− 1) · . . . · (b+ 1)

c!
=

(
b+ c

c

)
.

17For example, if a0 = 1, then σ(1) =
(
n+k−2
n

)
since the remaining integers a1, . . . , an, need only have

sum less than or equal to k − 2. To write it compactly, �x a0 = j with 0 ≤ j ≤ k − 1. Then we have to
choose a1, . . . , an so that their sum is less than or equal to k − 1− j. Therefore by induction hypothesis,
σ(j) =

(
n+k−j−1

n

)
.

21

3.1.4 Introspective numbers

Before giving the de�nition of introspective numbers, we recall the de�nition of the 'double
mod' notation.

De�nition 3.19. Let K be a ring, f(X), g(X), h(X) ∈ K[X] and n ∈ N. Then f(X) ≡
g(X) (mod h(X), n) if there exist u(X), v(X) ∈ K[X] such that

f(X)− g(X) = nu(X) + h(X)v(X).

Example 3.20. As example, we check the congruence

X3 +X2 +X + 1 ≡ −X3 + 6X2 − 14X − 20 (mod X2 + 1, 13).

Calling f(X) = X3 + X2 + X + 1 and g(X) = −X3 + +6X2 − 14X − 20, we compute
f(X)− g(X) and obtain

f(X)− g(X) = 2X3 − 5X2 − 15X + 21,

which we need to reduce modulo h(X) = X2 + 1 and n = 13. A standard polynomial
division gives

f(X)− g(X) = (X2 + 1)(2X − 5) + 13(X + 2),

so that we can choose u(X) = X + 2 and v(X) = 2X − 5 in De�nition 3.19.

Let us now come to the de�nition of introspective numbers.

De�nition 3.21. Let K be a ring, f(X) ∈ K[X]. Then n ∈ N is called introspective for

f(X) if
f(X)n ≡ f(Xn) (mod Xr − 1, p),

for some prime number p and some r ∈ N.

Remark 3.22. Note however that this de�nition is not universal, but was introduced by the
three computer scientists in their original paper [5] in order to simplify their own theory
by giving this property a name. In order to give a more general de�nition, one could de�ne
n to be introspective for f(X) modulo any h(X) ∈ K[X] and k ∈ N if

f(X)n ≡ f(Xn) (mod h(X), k).

Let us view this de�nition on an example.

Example 3.23. Let us see a trivial example, just to make sure how to work with the
de�nition. Let K = Z and consider the polynomial f(X) = X + 1. Then 2 is introspective
for f(X) modulo n = 2 and h(X) = 1Z[X]× (the constant 1 polynomial) because

f(X)2 ≡ (X + 1)2 ≡ X2 + 2X + 1 ≡ X2 + 1 ≡ f(X2) (mod 1Z[X]× , 2).

We will now discuss two important properties of introspective numbers.

Lemma 3.24. Let K be a ring, f(X) ∈ K[X], a ∈ N. If a is introspective for f(X), then
a is introspective for f(Xk) for all k ∈ N∗.

Proof. We want to see that f(Xk)
a ≡ f((Xk)a) (mod Xr − 1, p). Since a is inrospective

for f(X), we have by de�nition that

f(X)a ≡ f(Xa) (mod Xr − 1, p).

Writing this out for Xk, we get

f(Xk)
a ≡ f((Xk)a) (mod Xkr − 1, p),

22

but since (Xr − 1) | (Xkr − 1), we also have that

f(Xk)
a ≡ f((Xk)a) (mod Xr − 1, p),

which is what was claimed18.

Lemma 3.25. Let K be a ring, f(X) ∈ K[X], a, b ∈ N. If a and b are introspective for

f(X), then ab also is.

Proof. To see that ab is introspective for f(X), we check the de�nition, that says f(X)ab ≡
f(Xab) (mod Xr − 1, p). Since a is introspective for f(X), we have

f(X)ab ≡ [f(X)a]b ≡ f(Xa)b (mod Xr − 1, p).

But, by Lemma 3.24, b is introspective for f(Xa), therefore

f(Xa)b ≡ f((Xa)b) ≡ f(Xab) (mod Xr − 1, p).

Lemma 3.26. Let K be a ring, f(X), g(X) ∈ K[X], a ∈ N. If a is introspective for f(X)
and g(X), then a is introspective for the product f(X)g(X).

Proof. We check the de�nition. Since a is introspective for both f(X) and g(X), it results
that

[f(X)g(X)]a ≡ f(X)ag(X)a ≡ f(Xa)g(Xa) (mod Xr − 1, p).

Remark 3.27. A reformulation of the above lemmas could be read as follows.

• Lemma 3.25 shows that the set of all introspective numbers for a �xed polynomial
f(X) is closed under multiplication.

• Lemma 3.26 shows that the set of all polynomials, for which a �xed integer a is
introspective, is closed under multiplication.

3.2 Key points and description of the algorithm

In this section we present the key idea of the AKS algorithm. We state it in the following
lemma.

Lemma 3.28. Let n ∈ N, n ≥ 2. Then n is a prime number if and only if

(X + a)n ≡ Xn + a (mod n), (10)

in Z[X], for all a ∈ Z with gcd(a, n) = 1.

Proof. (=⇒) Assume that n is a prime number. By using the binomial expansion, the left
hand side of (10) is

n∑
k=0

(
n

k

)
Xkan−k = Xn +

(
n−1∑
k=1

(
n

k

)
Xkan−k

)
+ an. (11)

18To see the last step, we can write this out by De�nition 3.19. If f(Xk)
a ≡ f((Xk)a) (mod Xkr−1, p),

there exist u(X), v(X) ∈ K[X] such that

f(Xk)
a − f((Xk)a) = pu(X) + (Xkr − 1)v(X).

Now, since (Xr − 1) | (Xkr − 1), there is α(X) ∈ K[X] so that Xkr − 1 = α(X)(Xr − 1). By substitution,
we thus get

f(Xk)
a − f((Xk)a) = pu(X) + (Xr − 1)w(X),

for w(X) = α(X)v(X) ∈ K[X], showing that f(Xk)
a ≡ f((Xk)a) (mod Xr − 1, p).

23

We claim that since n is prime, n |
(
n
k

)
for all 1 ≤ k ≤ n− 1. Indeed, by the de�nition of

the binomial coe�cient, we have that(
n

k

)
k! =

n!

(n− k)!
=

k−1∏
i=0

(n− i). (12)

Since n clearly divides the right hand side of (12) (since k ≥ 1), n must also divide its
left hand side. But since n is prime and n - k! (because k < n), n must divide

(
n
k

)
for all

1 ≤ k < n. Therefore reducing (11) modulo n, we are left with

(X + a)n ≡ Xn + an (mod n).

To conclude, we use Fermat's Little Theorem (Theorem 2.1), to see that an ≡ a (mod n).
(⇐=) We show the contrapositive of this implication. Therefore assume that n is composite.
Let p be a prime factor of n and assume additionnally that pk is the largest power of p
that divides n. From the expansion of(

n

p

)
=

n!

p!(n− p)!
=
n(n− 1) · . . . · (n− (p− 1))

p(p− 1) · . . . · 1
,

we note that p divides the numerator (because p | n) and the denominator of
(
n
p

)
. Now,

since pk is the largest power of p dividing n, the largest power of p dividing
(
n
p

)
is pk−1.

Therefore n does not divide
(
n
p

)
and hence

(X + a)n 6≡ Xn + a (mod n).

Here is an easy example that will help us visualize this result.

Example 3.29. Take n = 3 and a = 4. We note that we are in conditions of Lemma 3.28,
since 3 is prime and gcd(3, 4) = 1. Then

(X + 4)3 = X3 + 12X2 + 48X + 64 ≡ X3 + 64 ≡ X3 + 1 (mod 3),

but 1 ≡ 4 (mod 3), and we see that (10) holds.

Towards a primality test. Making use of Lemma 3.28, we could easily formulate a
primality criterion: If we wanted to check whether n is prime, this test would consist in
computing

(X + a)n − (Xn + a) (13)

for any integer a relatively prime to n and then decide whether it is congruent to 0 (if each
coe�cient in the expansion of (13) is a multiple of n) or is not congruent to 0 (if not all
coe�cients are multiples of n) modulo n. Though this is a correct test, this is not advised,
since it is very slow. Indeed, (X + a)n has in its expansion n coe�cients, which means
that this test requires to stock n coe�cients to be reduced modulo n. Since our goal is to
work with large n, this would clearly take too much time.

However, one may still use this concept, and try to reduce the number of evaluations.
This could eventually be done by reducing (X + a)n modulo some polynomial of the form
Xr − 1 for small chosen r and in addition modulo n as well, so that we are to verify the
modular equality

(X + a)n ≡ Xn + a (mod Xr − 1, n), (14)

in the sense of De�nition 3.19. By Lemma 3.28, we see that if n is prime then (14) is
satis�ed for all a and r. But, analogously to what we saw for Fermat's Little Theorem

24

and Carmichael numbers, it could occur that (14) is satis�ed for composite n as well for
several values of a and r. To avoid this problem, we choose r and the number of values
of a appropriately and it will turn out that if (14) is satis�ed, then n must be a prime
power. We will also see that we can bound, the value of r and the number of integers a we
consider, by a polynomial in log(n), which will then show that the test is deterministic.

Before coming to the main theorem of this section, we should recall two de�nitions.

De�nition 3.30. Let n ∈ N. Then n is called a perfect power if there exist a, b ∈ N with
a, b > 1 such that n = ab.

De�nition 3.31. Let r, n ∈ N such that gcd(r, n) = 1. Then the order of n modulo r,
denoted by ordr(n), is the smallest positive integer k such that nk ≡ 1 (mod r).19

The AKS primality test can be summarised in the following theorem, which we will
prove later when studying the correctness of the algorithm.

Theorem 3.32. Let n ∈ N, n ≥ 2, and r ∈ N, with r < n and gcd(r, n) = 1 such that

ordr(n) > log2(n) modulo r. Then n is a prime number if and only if the three conditions
are satis�ed:

(i) n is not a perfect power;

(ii) n has no prime factor p ≤ r;

(iii) (X + a)n ≡ Xn + a (mod Xr − 1, n) for all integers 1 ≤ a ≤
√
ϕ(r) log(n).

3.3 The algorithm

As a matter of simplicity, we present a pseudocode of the algorithm, which will be easier
to read and help have an overwiev over the di�erent steps.

Algorithm 3.1 AKS primality test

Require: n ∈ N, n > 1
Ensure: n is Prime or n is Composite
1: function AKS(n)
2: if ∃ a, b ∈ N, a, b > 1 such that n = ab then
3: return Composite

4: end if

5: Find the smallest r such that ordr(n) > log2(n)
6: if 1 < gcd(a, n) < n for some a ≤ r then
7: return Composite

8: end if

9: if n ≤ r then
10: return Prime

11: end if

12: for a = 1 to b
√
ϕ(r) log(n)c do

13: if (X + a)n 6≡ Xn + a (mod Xr − 1, n) then
14: return Composite

15: end if

16: end for

17: return Prime

18: end function

19Notice the indexed r in the notation, to indicate modulo which integer the order is calculated.

25

Main steps. This algorithm is set up by six main steps that we describe in the following
table.

step lines description

I 2− 4 The algorithm checks, using De�nition 3.30, condition
(i) of Theorem 3.32, that is whether n is a perfect
power. If n is a perfect power, then n is composite.

II 5 The algorithm looks for the smallest value of r that
veri�es ordr(n) > log2(n), according to the assump-
tion of Theorem 3.32.

III 6− 8 The algorithm should check condition (ii) of Theorem
3.32, testing whether n has a prime factor smaller than
r. In order not to be redundant (in the sense, not to use
a primality test inside a primality test), the algorithm
simply checks whether n has any divisor smaller than
r, making no big time change since r is often small.

IV 9− 11 If the value of r computed in line 5 is greater than or
equal to n, then n must be prime.

V 12− 16 The algorithm tests condition (iii) of Theorem 3.32.
It considers all integers a = 1 up to b

√
ϕ(r) log(n)c

(which is the bound in log(n) we described before; note
that it is well de�ned since at this moment, the pro-
gram knows both n and r). If the modular congruence
described in (14) does not hold, then n is composite.

VI 17 The algorithm ends returning Prime when none of the
conditions are satis�ed.

Remark 3.33. Composite numbers are identi�ed as composite either in steps I, III or V.
Not all prime numbers need to go to step VI to be declared as prime. It could occur that
already step IV identi�es them as prime numbers.

3.4 Correctness and complexity

This is undoubtedly the most important part of this section. Firstly, we will prove why
Algorithm 3.1 works. Then, we will discuss its running time and see that it is indeed in
P, i.e. that it runs in polynomial time.

3.4.1 Proof of correctness

The goal of this section is to prove the main theorem, that is:

Theorem 3.34. Let n ∈ N, n > 1. Then AKS(n) returns Prime if and only if n is a

prime number.

The proof of this theorem is quite a bit long, that's why we split it up in two main
lemmas that will follow. One part of the proof is easy. That is the following lemma.

Lemma 3.35. Let n ∈ N, n > 1 a prime number. Then AKS(n) returns Prime .

Proof. Assume that n is a prime number. Then n is neither a perfect power, nor has a
prime factor smaller than r, therefore steps I and III cannot return Composite. Moreover,
by Lemma 3.28, the congruence in step V is not satis�ed and hence this step cannot return
Composite. Therefore AKS(n) will return Prime either in steps IV or VI.

To accomplish the proof of Theorem 3.34, we need to prove the converse of the latter
lemma. It's here where we need to work a little more, and therefore we will soon set up a

26

sequence of claims to simplify. But, nevertheless let us roughly think what happens when
AKS(n) returns Prime. If AKS(n) returns Prime, then this can only happen in steps IV
or VI. Let us �rst assume that it returns Prime in step IV. Then n must indeed be prime
since otherwise either step I or step III would have identi�ed n as a composite number,
and then the program would not have gone to step IV. So we can assume that this is not
the case, assuming that n > r. Then, the remaining case is when AKS(n) returns Prime
in step VI, that we should analyze now. Therefore we suppose from now on that AKS(n)
returns Prime in VI.

We �rst show the existence of the integer r that is to be computed in step II, that is
the smallest value so that ordr(n) > log2(n). But, before doing so, we �rst need to recall
a property of the least common multiple.

Lemma 3.36. Let n ∈ N, n ≥ 7. Then

LCM(n) ≥ 2n,

where LCM(n) := lcm(1, . . . , n) denotes the least common multiple of the �rst n numbers.

The proof of this result is non trivial, and we will skip it, otherwise it would lead us
away from our main object. But we will give an example instead.

Example 3.37. Take n = 15 ≥ 7. Then LCM(15) is the least common multiple of
1, 2, . . . , 15, and results to be 360360, which is indeed greater than 215 = 32768. In order
to see that we need to restrict the result to integers n ≥ 7, we can compute LCM(6) = 60,
but 26 = 64 > 60.

The following lemma now gives an upper bound for the value of r.

Lemma 3.38. Let n ∈ N, n > 1. There exists r ≤ max{3, dlog5(n)e} such that ordr(n) >
log2(n).

Proof. If n = 2, then we have to choose r smallest possible such that ordr(2) > 1, and we see
that r = 3 is convenient. Now assume n ≥ 3. We give a proof by contradiction. Therefore
consider r1, r2, . . . , rt integers such that for all 1 ≤ i ≤ t, ri satis�es ordri(n) ≤ log2(n)
and ri ≤ dlog5(n)e. Then for all i, ri divides the product

(n− 1)(n2 − 1) · . . . · (nblog
2(n)c − 1) =

blog2(n)c∏
i=1

(ni − 1), (15)

since for all i, nordri (n) ≡ 1 (mod ri) and therefore ri divides n
ordri (n) − 1, which is a

factor of the product in (15), since we assumed that 1 ≤ ordri(n) ≤ log2(n), for all i.
The idea now is to bound the product in (15) in two di�erent ways and deduce a

contradiction.
On the one hand, the product is smaller than the biggest power of n in the product,

that is
blog2(n)c∏
i=1

(ni − 1) < n · n2 · . . . · nblog2(n)c

= n1+2+...+blog2(n)c

= n
1
2
blog2(n)c(blog2(n)c+1),

where for the last equality we used the formula for the sum of an arithmetic progression.
Now, we use a reasoning from analysis that says that for x ≥ 1, 1

2x(x + 1) ≤ x2.20 We
apply this to blog2(n)c ≥ 1 (as n ≥ 2), an thus get

n
1
2
blog2(n)c(blog2(n)c+1) < nblog

2(n)c2 = nblog
4(n)c.

20Indeed, 1
2
x(x+ 1) ≤ x2 is equivalent to x2 − x ≥ 0 which is always true for x ≥ 1.

27

Writing n = 2log(n), we obtain nblog
4(n)c = 2blog

5(n)c, and thus

blog2(n)c∏
i=1

(ni − 1) < 2blog
5(n)c. (16)

On the other hand, as n ≥ 3, dlog5(n)e ≥ dlog5(3)e = 11 ≥ 7, hence we can apply

Lemma 3.36 to see that LCM
(
dlog5(n)e

)
≥ 2dlog

5(n)e. For all r ≤ dlog4(n)e such that
ordr(n) ≤ log2(n), r divides the product in (15), by the same argument as above with ri,
and in particular LCM

(
dlog5(n)e

)
divides the product, too. Therefore

2dlog
5(n)e ≤ LCM

(
dlog5(n)e

)
≤
blog2(n)c∏
i=1

(ni − 1), (17)

which contradicts (16). Hence there must exist an r ≤ dlog5(n)e such that ordr(n) >
log2(n). Putting this together with the case, n = 2, we see that r ≤ max{3, dlog5(n)e}, as
wished.

For what comes, let p be a prime factor of n. The goal is to show that n must be equal
to p. We show this stepwise by proving di�erent claims.

Claim 1. p > r.

Proof. Since by assumption AKS(n) returns Prime, it cannot return Composite in step
III, which implies the claim (otherwise n would have p as prime factor smaller than r).

Claim 2. p, n ∈ (Z/rZ)×.

Proof. For this, we need to show that p and n are both relatively prime to r. It is easy to
see that gcd(p, r) = 1, since p > r and p is a prime number. Let us now understand why
also gcd(n, r) = 1. Indeed, if gcd(n, r) 6= 1, then either step III would return Composite or
step IV would return Prime, and we excluded both cases by assuming that the algorithm
returns Prime in step VI.

Claim 3. Let p be a prime number, r ∈ N with gcd(p, r) = 1. Then the map

φ : Fp[X]/(Xr − 1) −→ Fp[X]/(Xr − 1)
g(X) 7−→ g(X)p

is a ring isomorphism.

Proof. We �rst show that φ is a ring homomorphism. Let g(X), h(X) ∈ Fp[X]/(Xr − 1),
then

φ ((g(X)h(X)) = (g(X)h(X))p = g(X)ph(X)p = φ(g(X))φ(h(X)),

and

φ ((g(X) + h(X)) = (g(X) + h(X))p = g(X)p + h(X)p = φ(g(X)) + φ(h(X)),

where for the second computation, we used the binomial expansion and the fact that
p |
(
p
k

)
for all 1 ≤ k ≤ p − 1, in the same way we observed this in the proof of Lemma

3.28. In addition, φ(1) = 1, if 1 denotes the constant polynomial 1, which shows with the
observations above, that φ is a ring homomorphism.

In order to show that φ is an isomorphism, we show that φ is bijective. Since φ is a
map between two �nite sets of the same cardinality, it su�ces to show that φ is injective.
Let g(X) ∈ kerφ and write g(X) = a0 + a1X + . . .+ ar−1X

r−1 + (Xr− 1) with ai ∈ Fp for
0 ≤ i ≤ r − 1. Then g(X)p ∈ (Xr − 1). Since api = ai for all 0 ≤ i ≤ r − 1, it results that

g(X)p = a0 + a1X
p + . . .+ ar−1X

p(r−1) + (Xr − 1). (18)

28

Claim 1 implies that p - r. Therefore we can write p = kr + s with 0 < s < r. Combining
this with (18) and reducing modulo r, we get

g(X)p = a0 + a1X
s + . . .+ ar−1X

(r−1)s + (Xr − 1).

But since by Claim 2, p is invertible in Z/rZ, it follows that if for some a, b, ap ≡ bp
(mod r), then a ≡ b (mod r). So φ permutes the coe�cients of g(X) and therefore g(X) =
0, which shows that φ is injective.

Claim 4. Both n and n/p are introspective21 for X+a for all 0 ≤ a ≤ b
√
ϕ(r) log(n)c =: `.

Proof. Since we assumed that AKS(n) returns Prime, it is impossible that it returns
Composite in step V. Therefore the condition in step V cannot be satis�ed, and thus for
all 0 ≤ a ≤ `,

(X + a)n ≡ Xn + a (mod Xr − 1, n). (19)

In fact step V considers the values 1 ≤ a ≤ `, but for a = 0, (19) is trivially satis�ed.
Now, since p | n, it follows that for all 0 ≤ a ≤ `,

(X + a)n ≡ Xn + a (mod Xr − 1, p), (20)

which already shows that n is introspective for X + a. Since p is prime, we can apply
Lemma 3.28 to see that for all 0 ≤ a ≤ `, we have

(X + a)p ≡ Xp + a (mod Xr − 1, p), (21)

from which we see that p is introspective for X + a. Then from equalities (20) and (21),

and by Claim 3 (considering the inverse map of φ, that maps g(X) to g(X)1/p), it follows
that

(X + a)n/p ≡ Xn/p + a (mod Xr − 1, p). (22)

This shows that n/p is introspective for X + a, too.

Claim 5. The set of numbers

I = {(n/p)ipj : i, j ≥ 0} (23)

is introspective22 for the set of polynomials

P =

{∏̀
a=0

(X + a)λa : λa ≥ 0

}
. (24)

Proof. By Claim 4, we know that n and n/p are introspective for X + a. By Lemma
3.25, all the products formed by these two numbers, that is the products α := (n/p)ipj

for some i, j ≥ 0, are introspective for X + a. But now Lemma 3.26 implies that all α are
introspective for the products of polynomials,

β(X) := Xλ0(X + 1)λ1(X + 2)λ2 · . . . · (X + `)λ`

for some λ1, λ2, . . . λ` ≥ 0, which precisely give the description of P. So α is introspective
for β(X), i.e. I is introspective for P.

21in the sense of De�nition 3.21 page 22.
22This is a slight abuse of language. Saying that I is introspective for P, means that every element in
I is introspective for polynomials in P.

29

In the following, we will de�ne two groups G and H, based on the sets I and P,
described in Claim 5. Let us de�ne G as

G = {residues of numbers in I modulo r} ⊆ (Z/rZ)×. (25)

Since gcd(n, r) = gcd(p, r) = 1 (by Claim 2), this is clearly a subgroup of (Z/rZ)×. Call
|G| = t. Since r was chosen such that ordr(n) > log2(n), we have that t > log2(n).23

We will now de�ne the second group. To do so, we �rst need an important property
about cyclotomic polynomials. Let Φr(X) be the rth cyclotomic polynomial over Fp[X],
the �nite �eld with p elements. By Proposition 3.14, Φr(X) splits into irreducible factors
of degree ordr(p). Let h(X) be such an irreducible factor of degree ordr(p). Then it is
clear that deg h(X) > 1 because ordr(p) > 1. We now de�ne the second group by

H = {residues of polynomials in P modulo h(X) and p} . (26)

This group is generated by the elements {X + a}0≤a≤` in the �eld K := Fp[X]/(h(X)).
Moreover, it is a subgroup of the multiplicative group K×.

Now that we have de�ned the sets G and H, our goal is to derive a contradiction
somewhere, using both sets. In order to do so, we will �rst �nd a lower and upper bound
for the cardinality of H, that is numbers x, y such that x ≤ |H| ≤ y. We start by giving a
lower bound in the following claim.

Claim 6.

|H| ≥
(
t+ `

t− 1

)
.

Proof. Let α ∈ Fp be a root of h(X). Since h(X) is a factor of Φr(X), which itself is a factor
of Xr − 1 (by Proposition 3.11), we can write Xr − 1 = A(X)Φr(X) = A(X)B(X)h(X)
for some polynomials A(X), B(X) ∈ Fp[X]. Therefore h(α) = 0 implies that αr − 1 = 0,
i.e. that αr = 1, which shows that the roots of h(X) are primitive rth roots of unity in K.
Now we show that to any two distinct polynomials of degree strictly smaller than t in
P correspond two di�erent residues in H. Therefore let f(X), g(X) ∈ P be two distinct
polynomials of degree stictly smaller than t. Assume by contradiction that f(X) = g(X)
in K. Let m ∈ I. Raising to the power m, we obtain that f(X)m = g(X)m in K. Thus, by
Claim 5, using introspection of m for both f(X) and g(X), and the fact that h(X) divides
Xr − 1, we get f(Xm) = g(Xm) in K. This shows that for all m ∈ G (since exponents are
taken modulo r in K), Xm is a root of the polynomial Q(Y) = f(Y)− g(Y) in K[Y]. We
are now close to �nd a contradiction. On the one hand, by construction, Q(Y) has degree
strictly smaller than t (since both f(X) and g(X) have). On the other hand, since G is a
subgroup of (Z/rZ)×, we have that gcd(m, r) = 1. Therefore each αm is a primitive rth
root of unity (by Lemma 3.6), and since |G| = t, there are exactly t distinct roots of Q(Y)
in K[Y]. Putting both observation together, we see that Q(Y) has more roots than its
degree, which is a contradiction. Therefore, f(X) 6= g(X) in K.
We observe that ` < r < p, since ` = b

√
ϕ(r) log(n)c <

√
r log(n) < r,24 and by Claim

1, r < p. This shows that in the �eld Fp, we have i 6= j for 0 ≤ i, j ≤ `, and so the
polynomials {X + a}0≤a≤` are all distinct in Fp. Additionally, they are all non zero in H,
since they all have degree 1 and thus they will not vanish when reduced modulo h(X),
since h(X) has degree greater than 1. From this, it follows that there are at least ` + 1
distinct polynomials of degree 1 in H. To �nd the desired lower bound, we count the
polynomials in H of degree strictly smaller than t. This is the number of polynomials of
the form Xλ0(X + 1)λ1 · . . . · (X + `)λ` that have degree stricly smaller than t, i.e. such
that λ0 +λ1 + . . .+λ` ≤ t−1 < t. In other words, choosing a polynomial of degree strictly

23Indeed, since n ∈ G, then G contains an element of order larger than log2(n), hence t = |G| > log2(n).
24To see that

√
r log(n) < r, we use the assumption that log2(n) ≤ ordr(n) < r and take square roots

on both sides. So log(n) <
√
r and hence

√
r log(n) <

√
r
√
r = r.

30

smaller than t in H, is equivalent to choosing `+1 integers λ0, . . . λ` of sum less than t−1.
Now, by Lemma 3.16, there are at least(

t+ `

`+ 1

)
=

(
t+ `

(t+ `)− (t− 1)

)
=
(8)

(
t+ `

t− 1

)
such integers, and therefore H contains at least

(
t+`
t−1
)
polynomials of degree strictly less

than t.

But under the assumption that n is not a power of p (that is n 6= pk for any k), we can
also �nd an upper bound for the size of H. This is done in the following claim.

Claim 7. If n is not a power of p, then

|H| ≤ n
√
t.

Proof. We �rst consider the subset of I de�ned by

Ĩ = {(n/p)ipj : 0 ≤ i, j ≤ b
√
tc}.

By assumption, since n is not a power of p, the set Ĩ has (b
√
tc + 1)2 distinct elements,

and we note that (b
√
tc + 1)2 > t, so that |Ĩ| > |G|. By the pigeon hole principle25, at

least two elements in Ĩ correspond to one element in G, i.e. they must be equal modulo
r. Call these two elements α, β, with α > β (without loss of generality). Then Xα ≡ Xβ

(mod Xr − 1, p).
Let now f(X) ∈ P. Clearly, since Ĩ is a subset of I, Ĩ is also introspective for P and
therefore

f(X)α ≡ f(Xα) ≡ f(Xβ) ≡ f(X)β (mod Xr − 1, p).

So f(X)α ≡ f(X)β in the �eld K, and f(X) is a root of the polynomial g(Y) = Y α − Y β

in K[Y]. Then, since f(X) is a root of g(Y) and since f(X) was chosen arbitrarily in H,
we see that g(Y) admits at least |H| distinct roots in K. But, using the degree of g(Y),
we observe that

deg g(Y) = α ≤ max(Ĩ) =

(
n

p
· p
)b√tc

≤ n
√
t.

Now we use the fact that a polynomial of degree d can have at most d roots. Applying
this to the polynomial g(Y), we obtain by the above observations, that |H| ≤ n

√
t, what

was claimed.

To summarize Claims 6 and 7 in one result, we can write the estimate(
t+ `

t− 1

)
≤ |H| ≤ n

√
t.

After this sequence of claims, we are now in a position to prove the converse of Lemma
3.35, that is the following.

Lemma 3.39. If AKS(n) returns Prime, then n is a prime number.

Proof. Assume that AKS(n) returns Prime. Then by Claim 6 and Lemma 3.18,

|H| ≥
(
t+ `

t− 1

)
≥
(
b
√
t log(n)c+ 1 + `

b
√
t log(n)c

)
,

25A possible formulation of this principle reads as follows: If n objects are placed among m places, with
n > m, then one place recieves at least two objects. For instance, among a group of 366 people, at least
two people must have the same birthday (if February, 29 is not counted).

31

since t > log2(n) implies that t >
√
t log(n).26 Since G is a subgroup of (Z/rZ)×, as

observed in (25), we have by Lagrange theorem, that t = |G| divides ϕ(r) = |(Z/rZ)×|.
Thus ϕ(r) ≥ t, and moreover ` = b

√
ϕ(r) log(n)c ≥ b

√
t log(n)c. Therefore, again by

Lemma 3.18 we have (
b
√
t log(n)c+ 1 + `

b
√
t log(n)c

)
≥
(

2b
√
t log(n)c+ 1

b
√
t log(n)c

)
.

Now, since b
√
t log(n)c ≥ 2 we can use the estimate of Lemma 3.17, with k = b

√
t log(n)c,

to see that (
2b
√
t log(n)c+ 1

b
√
t log(n)c

)
> 2b

√
t log(n)c+1,

and
2b
√
t log(n)c+1 ≥ 2b

√
t log(n)c = 2blog(n

√
t)c = n

√
t.

So we have shown the estimate |H| > n
√
t. But, if n is not a power of p, we have by

Claim 6, that |H| ≤ n
√
t. Thus, n must be a power of p, say n = pk for some k ≥ 1. If

k > 1, then n is a perfect power and step I would return Composite, which is impossible
by assumption. Therefore k = 1, and hence n = p, which proves that n is prime.

The proofs of Lemma 3.35 together with Lemma 3.39 show Theorem 3.34.

3.4.2 Running time

After having studied the theoretical part of the AKS primality test, we will embark the
study of its complexity. Before getting started, we introduce a variation of the big O no-
tation, namely the soft O notation, denoted by Õ. Let f and g be two functions, then we
write that f(n) = Õ(g(n)) if f(n) = O(g(n) logk(g(n))) for some k ∈ N. We will make
much use of this notation in the following.

Let us now move to the time complexity result for the AKS test. Before stating and
proving the result, we shortly summarize without proof some results, that are already
known, in the following remark, for which we follow principally [5].

Remark 3.40. We gather the running times of some standard computations.

• Addition, multiplication and division of two integers a, b with |a|, |b| ≤ n require time
Õ(n).

• Addition, multiplication and division of two polynomials f(X), g(X) of degree d
with coe�cients with absolute value less than or equal to n, can be performed in
time Õ(dn).

• Let n ≥ 2 be an integer. Then it can be checked if there exist integers a, b > 1 such
that n = ab (i.e. n is a perfect power) in time Õ(log3(n)).

• Let a, b be positive integers. Then gcd(a, n) can be computed in time O(log(n)).
This can for instance be done by the Euclidean Algorithm.

The result then follows in the coming theorem, from which we see that the algorithm
runs in polynomial time.

Theorem 3.41. Let n ∈ N, n ≥ 2. The running time of AKS(n) is Õ(log21/2(n)).

26Indeed, if t > log2(n), then
√
t > log(n). Then t =

√
t
√
t >
√
t log(n).

32

Proof. In the �rst step, we need to check whether n is a perfect power, and this can be
done in Õ(log3(n)) time, by Remark 3.40.

In step II, we have to �nd r such that ordr(n) > log2(n). In order to do this, we try
out successive values for r until we �nd one such that nk 6≡ 1 (mod r) for all k ≤ log2(n).
For a particular r, this step involves at most O(log2(n)) multiplications modulo r, and
each product will have factors less than r after reduction modulo r. Therefore, each
such multiplication takes time Õ(log(r)), and thus the computations on each r involve
running time Õ(log(r)) log2(n) = Õ(log(r) log2(n)). But in Lemma 3.38, we saw that
r ≤ max{3, dlog5(n)e}, and thus only O(log5(n)) di�erent values of r need to be tested,
and therefore the time complexity of step II is reduced to Õ(log7(n)).

Step III computes the greatest common divisor of r numbers, since we compute
gcd (a, n) for a ≤ r, where r is the integer found in step II. By Remark 3.40, each compu-
tation takes time O(log(n)), and since we have r such computations, the time complexity
of this step is O(r log(n)) = O(log6(n)), by our bound on r in Lemma 3.38.

The fourth step of the algorithm consists in a comparison of n and r, which could be
done by comparing the number of digits of n and r, therefore the time is proportional to
the number of binary digits. So this step runs in time O(log(n)).

Step V is the main step, in which we need to check ` = b
√
ϕ(r) log(n)c polynomial

congruences. Such an equation ivolves O(log(n)) multiplications of polynomials of degree
smaller than or equal to r (since each product is taken modulo Xr − 1 and n) and with
coe�cients less than or equal to n, so that each equation among the ` equations can be
veri�ed in Õ(r log2(n)) steps. Since there are ` equations to be veri�ed like this, the
running time of step V is given by

Õ(r log2(n)
√
ϕ(r) log(n)) = Õ(r

√
ϕ(r) log3(n)) = Õ(r3/2 log3(n)),

and by the bound on r given in Lemma 3.38, this is time Õ(log21/2(n)).
The latter time clearly dominates all the other times, and is thus the asymptotic time

complexity of the algorithm.

Let us now discuss how one could improve this time complexity, in the following section.

3.4.3 Improvements of the running time

The time complexity obtained in Theorem 3.41 can be improved by modifying the estimate
for r given in Lemma 3.38. The best case would be when r = O(log2(n)), which would
reduce the running time of the algorithm to Õ(log6(n)). There is among others, one par-
ticular conjecture that would justify the existence of such an r, namely Sophie Germain27's
conjecture, that we write below. Another improved running time is obtained by a result
due to Fouvry28, managing to reduce the time complexity to Õ(log15/2(n)).

A �rst improvement. We look more precisely at the improvement that yields Sophie
Germain's conjecture. Before giving the conjecture, we write down a preliminary de�nition
that relies on it.

De�nition 3.42. Let p be a prime number. Then p is called a Sophie Germain prime if
2p+ 1 is a prime number. In this case the number 2p+ 1 is called a safe prime.

Example 3.43. Let us see an example to understand the de�nition. Take p = 131, then
2p+1 = 263, which is also prime, so 131 is a Sophie Germain prime and 263 is its associated
safe prime. The Sophie Germain primes less than 100 are 2, 3, 5, 11, 23, 29, 41, 53, 83, 89.
Computing 2p+ 1 for each of these numbers, we obtain the �rst safe primes.

27Marie-Sophie Germain (1776− 1831) was a French mathematician, physicist and philosopher.
28Etienne Fouvry, a French mathematician who is still alive

33

It is conjectured that there are in�nitely many Sophie Germain primes (which is quite
clear by intuition, since there are in�nitely many prime numbers), but this has not yet
been proven. Sophie Germain formulated a conjecture about the density of such primes,
that is the number of such primes up to a given bound.

Conjecture 3.44 (Sophie Germain's Prime Density Conjecture). Let n ∈ N, n ≥ 2. The
number of Sophie Germain primes less than n is asymptotically

2C
n

ln2(n)
,

where C is the twin prime29 constant de�ned, for prime p, by

C =
∏
p≥3

p(p− 2)

(p− 1)2
≈ 0.66.

Example 3.45. For n = 100, Sophie Germain's conjecture predicts approximatively 7 Sophie
Germain primes less than 100, which has 30% error compared to the exact value of 10,
seen in Example 3.43. For larger n, this error decreases, but is also harder to compute,
since we need to know how many Sophie Germain primes less than n there are indeed. For
instance, if n = 107, it can be veri�ed that the prediction by Conjecture 3.44 is still 10%
o� the real number.

Even though this conjecture has not yet been shown, we can say that if it held, then it
would be possible to conclude that r = Õ(log2(n)), managing to reduce the running time
of the AKS algorithm to time Õ(log6(n)).

Indeed, assuming that Conjecture 3.44 holds, we could �nd some constant c such that
there are at least log2(n) Sophie Germain primes between 8 log2(n) and c log2(n) log2(log(n)).
Then for any such Sophie Germain prime p, denote by q its associated safe prime, that is
q = 2p + 1. We look at the order of n modulo q. Since F×q has order q − 1 = 2p, either
ordq(n) ≤ 2 or ordq(n) ≥ (q − 1)/2. If ordq(n) ≤ 2, then q must divide n2 − 1 (since if
ordq(n) = 1, then q | (n−1) and if ordq(n) = 2, then q | (n2−1), so in any case q | (n2−1))
and thus the number of such q is bounded by O(log2(n)), by Conjecture 3.44. Therefore
there must exist a prime number r = Õ(log2(n)) so that ordr(n) > log2(n), as required
in the second step of the AKS test, and such a value for r will make the test run in time
Õ(log6(n)).

A second improvement. In this part, we will study the optimized running time due to
a result proved by Etienne Fouvry. Let us �rst �x some notations. Let n ∈ N. We denote
by P (n) the greatest prime divisor of n (i.e. P (n) = max{p prime : p | n}) and de�ne the
set of prime numbers

A =
{
p prime : p ≤ x, P (p− 1) > p2/3

}
, (27)

for some positive real valued x. The result that we are to discuss is based on the following
lemma, of which we will skip the proof, since we are rather interested in its consequence.

Let us see an example to understand the description of the set that we just de�ned.

Example 3.46. Take x = 50. Then A is the set of all prime numbers p up to 50 such that
p− 1 have greatest prime divisor greater than p2/3. For this, we exclude the prime 2, since
P (1) is not de�ned. Table 3.1 gathers these information, allowing to descreibe explicitely
the set A.

To write the set A explcitely, we compare the two last columns for each line, and look
whether P (p− 1) > p2/3. If this is the case, then p belongs to A, otherwise not. Doing so,
it comes that for x = 50, A is the set A = {11, 23, 47}.

29We recall the de�nition of a twin prime: A prime number p is called a twin prime if either p − 2 or
p+ 2 is a prime number. Often the name twin prime is used to refer to a pair of twin primes (p, p+ 2).

34

p p− 1 P (p− 1) p2/3

3 2 2 2.08
5 4 2 2.924
7 6 3 3.659
11 10 5 4.642
13 12 3 5.529
17 16 2 6.611
19 18 3 7.12

p p− 1 P (p− 1) p2/3

23 22 11 8.086
29 28 7 9.439
31 30 5 9.868
37 36 3 11.104
41 40 5 11.89
43 42 7 12.279
47 46 23 13.024

Table 3.1: Construction of the set A for x = 50

Fouvry proved the following lemma, giving a bound for the cardinality of the set A.

Lemma 3.47. Let p be a prime number and x ∈ R+. There exist constants c ∈ R∗+ and

n0 ∈ N such that for all x ≥ n0,
|A| ≥ c x

ln(x)
,

where A is the set de�ned in (27).

Remark 3.48. The prime number Theorem states that the number of primes p smaller than
or equal to x is asymptotically x/ ln(x). Lemma 3.47, with constant c = 1/N for some
N ∈ N, means that in average all Nth prime number lies in A.

With this lemma, it is possible to obtain a better running time than in Theorem 3.41,
namely the one described in the following theorem.

Theorem 3.49. Let n ∈ N, n ≥ 2. The running time of AKS(n) is Õ(log15/2(n)).

Proof. By Lemma 3.47, a high density of primes p such that P (p− 1) > p2/3 implies that
an r such that ordr(n) > log2(n) (as required in step II of the AKS test) can be found with
r = O(log3(n)). Indeed, if r ∈ A, then P (r− 1) > r2/3, and we can identify (Z/rZ)× with
C ×R, where C is a cyclic group of order at least 2/3 and R is the remaining component.
Then n ∈ (Z/rZ)× (Claim 2) can be viewed as the couple (n1, n2) ∈ C × R. If n1 6= 1,
then ordr(n) ≥ r2/3, and we observe that choosing r = O(log3(n)) is convenient, since
then ordr(n) ≥ r2/3 > log2(n). In other words, by testing the primes greater than log3(n)
one after the other, we �nd one lying in A and such that n1 6= 1. By Lemma 3.47, this is
instantanous and the condition n1 6= 1 will be satis�ed with probability greater than 1/2.
This then reduces the running time to

Õ(r3/2 log3(n)) = Õ((log3(n))3/2 log3(n)) = Õ(log15/2(n)),

as was claimed.

Many other attempts. Although we saw in more details essentially two results of
improved running times for the AKS test, we should note that there were many other
attempts for �nding better running times. For instance one of its authors himself, Agrawal,
presented a conjecture that would invole the running time of the algorithm go down to
Õ(log3(n)), but his non-proven conjecture seems to be false, according to Hendrik Lenstra30

and Carl Pomerance31, who presented a counter argument to it.

30Hendrik Lenstra (born in 1949) is a Dutch mathematician specialized in number theory.
31Carl Pomerance (born in 1944) is an American number theorist.

35

4 Implementations

We chose SAGE for implementing the Miller-Rabin and AKS primality tests. In this section
we provide a possible implementation and give some explanations to several steps. We split
up this section into two distinct parts, one treating the programmation of the Miller-Rabin
primality test, and a second part dealing with the implementation of the AKS test.

4.1 Implementation of the Miller-Rabin primality test

In order to implement the test according to Algorithm 2.1 page 12, we have created two
auxiliary functions, namely:

(1) decompose(n), that returns integers r and k of the decomposition of n as 2rk with
integers r and odd k.

(2) random_a(n), that generates a random a in (Z/nZ)×.

Clearly, one could directly implement the lines of code of these functions in the main
algorithm, but by doing it in this way, the Miller-Rabin algorithm will be easier to read
and more compact.

Here are the codes of corresponding to the above enounced functions.

1 def decompose(n):

2 r=0, k=n

3 while (k % 2==0):

4 k=k/2

5 r=r+1

6 return (r,k)

1 def random_a(n):

2 a=int(random()*n)

3 while gcd(a,n)<>1:

4 a=int(random()*n)

5 return a

Then the implementation of the Miller-Rabin test can look as follows.

1 def Miller_Rabin(n,t):

2 if (n%2==0) or (n%3==0) or (n%5==0):

3 return "composite"

4 (r,k)=decompose(n-1)

5 for i in [1..t]:

6 a=random_a(n)

7 b=Mod(a,n)^k

8 if (b!=1):

9 j=0

10 while (j<=r-1) and (b!=n-1):

11 b=b^2%n

12 j=j+1

13 if (b!=n-1):

14 return "composite"

15 return "probably prime"

Remark 4.1. We list some general observations and remarks.

• The parameter t is, as we de�ned it in the theory, the number of times we want the
test to run. Remember that the larger we choose it, the more probable it will be
that n is prime when Miller-Rabin(n, t) returns Probably Prime (see Theorem
2.17 page 16). The for loop in line 5 makes that the main condition of the test is
veri�ed t times.

36

• As we saw in step II of algorithm 2.1, we need to decmpose n − 1 as 2rk with
integers r and odd k. Therefore we evaluate the previaously de�ned auxiliary function
decompose at n− 1. This is done in line 4.

• As wished, we want to choose a ∈ (Z/nZ)× at random. This is done by the previously
de�ned function random_a(n). Since this computation sits in the for loop in line 5,
t such values for a will be generated to verify the main condition of the test.

• Step III of Algorithm 2.1 requires to compute ak mod n and we already understood
that this is most e�ciently done by fast exponentiation. However, SAGE already has
the own implemented command Mod(a,n)^k to perform this calculation rapidly, i.e.
by fast exponentiation. This is why it su�ces to de�ne b as we did in line 7.

• In line 8 we test whether b de�ned above equals 1. Note that if this is the case, then
lines 9 up to 14 are ignored by the program, and thus the test returns Probably

Prime in line 15.

• If b is not equal to 1, then we set up the sequence of squares of the number ak, and
reduce each term modulo n (line 11). This is performed by the while loop in line 10,
where j is the exponent that increases to come from one term of the sequence to the
next and runs through the integers 0, 2, . . . , r − 1, as seen in Proposition 2.12 page
13. This loop runs as long as a term of the created sequence is not congruent to −1
(note that n− 1 = −1 modulo n). If none of the terms of the sequence is congruent
to −1 modulo n, then n must be composite (lines 13, 14).

Let us now see some results of this implementation. The following table gathers the
results obtained for certain values of n for decompose(n). The second column shows the
pair (r, k) in the decomposition of n as 2rk.

n decompose(n) Interpretation

198656 (11, 97) 198656 = 211 · 97
587400 (3, 73425) 587400 = 23 · 73425
1441792 (17, 11) 1441792 = 217 · 11

240518168576 (35, 7) 240518168576 = 235 · 7
113715890591105024 (50, 101) 113715890591105024 = 250 · 101

Table 4.1: Some compilations for the function decompose(n)

Table 4.2 shows some results of the Miller-Rabin test, with entrance (n, t), where n is
the integer to be checked for primality and t is the bound of number of times we want to
go through the test.

n t Miller_Rabin(n, t)

95 1 Composite
97 5 Probably prime
97 10 Probably prime
101 25 Probably prime
769 50 Probably prime
9787 100 Probably prime

100271 20 Probably prime
17017 20 Composite

Table 4.2: Some compilations for the function Miller_Rabin(n, t)

37

There are some interesting remarks to make on these examples. The test Miller-
Rabin(95, 1) did not need to run long, since 95 was immediately detected as multiple
of 5 right away in the �rst step. Therefore, our choice of t was not important, and this
result would have been returned for any t. As we also see in Table 4.2, we ran twice the
Miller-Rabin test to check the primality of 97, that is �rstlyMiller-Rabin(97, 5), and sec-
ondly Miller-Rabin(97, 10). Since in these conditions, the algorithm returned Probably

Prime, Theorem 2.17 page 16 gives for t = 5, a probability of correctness at least equal to
1−(1/4)5 ≈ 0.999023, and then for t = 10, a probability more than 1−(1/4)10 ≈ 0.999999,
which makes us quite sure that 97 is a prime number, which indeed is. Analogously, the
test Miller-Rabin(101, 25) shows that 101 is a prime number with probability at least
1 − (1/4)25 ≈ 1. It results that even more probably, 769 is a prime number, due to the
test Miller-Rabin(769, 50), with 50 repetions, giving a correct result with probability
at least 1 − (1/4)50. Finally, note that the test also works for larger numbers, as we see
on the tests Miller-Rabin(9787, 100) and Miller-Rabin(100271, 20), both returning
Probably Prime. It turns out that this is indeed a prime number, and since t = 100 for
the �rst, we are get really close to a correct output. Also the algorithm correctly identi�ed
17017 as composite, which eqauls 7 · 11 · 13 · 17, thus with no multiple of 2, 3 or 5, meaning
that the output does not follow from the �rst step, but from line 14. It could be the case
that the test returned Probably Prime for this test, since it is probabilistic.

4.2 Implementation of the AKS primality test

We come right now to the implementation of the AKS test described in Algorithm 3.1 on
page 25. Analogously to the previous implementation, we created some auxiliary functions
to make the main code easier readable. We de�ned the following auxiliary functions:

(1) Perfect_power(n), that checks whether the given integer n is a perfect power, ac-
cordingly to De�nition 3.30 given on page 25.

(2) Find_smallest_r(n), that returns the smallest integer r such that ordr(n) > log2(n).

(3) Check_l_equations(n), that checks ` = b
√
ϕ(r) log(n)c equations, that are precisely

the congruences

(X + a)n 6≡ Xn + a (mod Xr − 1, n) , a = 1, . . . , `. (28)

We de�ne the function to return True when (28) holds, and False, otherwise.

Note that the �rst function could be of general use, whereas two other functions are
rather related to the AKS primality test. Let us now come to the line codes of these three
functions.

(1) To test whether a known integer n is a perfect power, we test whether n can be
written as ab for some integers a, b > 1. If so, then n is a perfect power, namely a's
bth power. Otherwise, it is not.
The idea of the algorithm is that if n = ab for some a, b > 1, then b ≤ blog(n)c. So,
we need to test whether n = ab for some integers a > 1 and 1 < b ≤ blog(n)c. We

de�ne y = log(n)/b and a = 2y. Then, indeed ab = (2y)log(n)/y = n. Here comes the
algorithm that �ts this description.

1 def Perfect_power(n):

2 for b in range(2,ceil(log(n,2))+1):

3 y=(log(n,2)/b).n()

4 c=(pow(2,y)).n()

5 if (pow(floor(c),b)==n) :

6 return True

7 return False

38

Note that the extension n.() in lines 3 and 4 is used to obtain approximative values.
SAGE's function pow(a,b) performs ab and we thus used pow(2,y) to compute
a = 2y.

Let us see some examples obtained by this implementation.

n Perfect_power(n) Decomposition

16 True 16 = 24

243 True 243 = 35

4096 True 4096 = 84

2357947691 True 2357947691 = 119

8835468 False

Table 4.3: Some compilations for the function Perfect_power(n)

Note that it also works for larger numbers (that we did not put in the table for estetic
reasons) such as the number

n = 3733456322341571760420937867518819428980350494384765625,

which is also identi�ed as perfect power by the proposed algorithm, and indeed
n = 10527.

It is important to remark that the test that we implemented does not yield the
decomposition of n as ab, but only claims whether n is or not a perfect power.

(2) As required in step II of Algorithm 3.1, we look for the smallest integer r so that n
has order greater than log2(n) modulo r. In Lemma 3.38 page 27 we gave a bound
to the values of r, by saying that such an existing r satis�es r ≤ max{3, dlog5(n)e}.
Therefore, it is convenient to test all integers 2 ≤ r ≤ dlog5(n)e to see if there exists
1 ≤ k ≤ log2(n) such that nk ≡ 1 (mod r), that is ordr(n) = k. If no such k can be
found, then we are done, by taking that particular r, since then ordr(n) > log2(n),
as we required. Note that the idea of this implementation served us in the proof of
Theorem 3.41 page 32, to show the standard running time of step II of the test. The
algorithm could look as follows.

1 def Find_smallest_r(n):

2 m=max(3,floor(log(n,2)^5))

3 r=2

4 while(r<=floor(m)):

5 c=0

6 b=floor(log(n,2))^2

7 for k in [1..b]:

8 if ((n^k)%r==1):

9 c=c+1

10 if(c==0):

11 break

12 r=r+1

13 return r

In line 5, we de�ne a counter c, that counts each time that nk ≡ 1 (mod r). If for
particular r, nk ≡ 1 (mod r) then c increases by 1, as we see in lines 8, 9. Otherwise,
c does not evolve and the program stops and returns that particular r (see lines
10, 11).

39

Let us also give here some examples of such values of r found for given n, in Table
4.4. The second column contains approximative values for log2(n) for each n. So, the
condition to be ful�lled is that the order of n mudulo r is strictly greater than the
value in the second column, and the third column gives the smallest possible such r,
found by the function Find_smallest_r(n).

n log2(n) Find_smallest_r(n)

5 5.391 5
15 15.264 15
500 80.385 2
1235 105.479 5

9854531 539.742 197
36952741 631.978 7

700745415221 1548.430 1531

Table 4.4: Some compilations for the function Find_smallest_r(n)

From these examples, we observe that there is no order on the values of r found by
the function Find_smallest_r(n) in the third column. For example for n = 500, the
computed r is smaller than that for n = 15, although 500 is greater than 15.

(3) This is the main and �nal part of the AKS test. Having found r by the algorithm
above, we de�ne ` = b

√
ϕ(r) log(n)c, and we check the conditions described in (28).

This is equivalent to check whether Xn + a = (X + a)n in the polynomial ring
(Z/nZ)[X]/(Xr − 1). After having de�ned the polynomial ring, for which SAGE
does a lot of work itself, the algorithm goes straight forward.

1 def Check_l_equations(n):

2 r=Find_smallest_r(n)

3 l=floor(sqrt(euler_phi(r))*log(n,2))

4 R.<x>=PolynomialRing(Integers(n))

5 S=R.quotient((x^r)-1)

6 for a in [1..l]:

7 f=S((x+a)^n)

8 e=Mod(n,r)

9 g=(x^e)+a

10 if (f!=g):

11 return True

12 else:

13 return False

We see that Euler's totient function is already known by SAGE, through the com-
mand euler_phi(). Note now the simplicity to implement the above described
polynomial ring. The instruction R.<X> = PolynomialRing(Integers(n)) in line
4 de�nes R = Z/nZ[X], which then is reduced modulo Xr − 1 by the instruction
R.quotient((X^r)-1) in line 5. Finally, S contains the ring (Z/nZ)[X]/(Xr − 1).
In line 6, a runs from 1 to ` in order to check the ` equations f = g in the ring S,
with f = (X+a)n and g = Xn+a. To conclude, we say that if f 6= g, then we return
True, and if f = g, we return False. Remark that the result could be interchanged
as well, since the aim is only to see whether the congruence holds or not.

Having implemented these three auxiliary functions as above, the work for implement-
ing AKS test reduces notably and is much easier to read. One could write it as follows.

40

1 def AKS(n):

2 if Perfect_power(n):

3 return "composite"

4 r=Find_smallest_r(n)

5 for a in [1..r]:

6 if (1<gcd(a,n)<n):

7 return "composite"

8 if (n<=r):

9 return "prime"

10 if Check_l_equations(n):

11 return "composite"

12 return "prime"

Remark 4.2. Let us also here write down some general observations.

• Step I is simply checked by calling the Perfect_power(n) function previously de�ned.
If then n turns out to be a perfect power, then it is composite (see lines 2, 3).

• To �nd in step II the smallest r that veri�es ordr(n) > log2(n), we call the second
auxiliary function Find_smallest_r(n) that we de�ned previously (see line 4).

• The next step is to check whether n has a prime factor smaller than r. Since we do
not have any direct possibility to go through the prime numbers, other than using
SAGE's is_prime function, which is of course not really the sense of the job since
we would use a primality test to create another primality test. But nevertheless, it
does not take much more time to run through all the integers up to r, since values
of r are often small compared to n (see Table 4.4). These are the instructions in the
for loop in line 5, which considers all integers smaller than r. Moreover, if n is itself
smaller than r, then n is composite.

• Finally, we apply the last auxiliary function Check_l_equations(n) to test whether
the ` equations described in (28) hold. Line 10 asks whether f 6= g, for f and g de�ned
as before. By the choice we made (to decide that in this case Check_l_equations(n)
returns True), the algorithm must then return Composite.

The following table shows some examples obtained by this implementation.

n AKS(n)

13 Prime
27 Composite
121 Composite
881 Prime
6917 Prime
28657 Prime

16785407 Prime
50054784687 Composite

Table 4.5: Some compilations for the function AKS(n)

We see that our AKS implementation also works on larger numbers, however needs
more time to compile. The timeit(' ',seconds=True) command returns the time in
seconds that the test needs to give an output. For instance,

timeit('AKS(16785407)',seconds=True)

returned 30.4267636299, meaning that this test needed about 30 seconds to return Prime

as we see in Table 4.5.

41

References

[1] Andrew Granville, It is easy to determine whether a given integre is prime
Bulletin of the American mathematical society, Vol. 42, Num. 1, Pages 3− 38

[2] Gabor Wiese, Théorie des nombres et applications à la cryptographie
Notes de cours, version du 13 juin 2014, Université du Luxembourg

[3] Julien Élie, L'algorithme AKS ou Les nombres premiers sont de classe P
http://www.trigofacile.com/maths/curiosite/primarite/aks/pdf/

algorithme-aks.pdf

[4] Korselt's Criterion for Carmichael numbers, Math 4150, Spring 2011
http://people.math.gatech.edu/~mbaker/pdf/korselt.pdf

[5] Manindra Agrawal, Neeraj Kayal, Nitin Saxena, PRIMES is in P
Annals of Mathematics, Vol. 160, Pages 781− 793, 2004

[6] SAGE tutorials and documentation
http://sagemath.org/doc/

[7] Underwood Dudley, A guide to Elementary Number Theory
Dolciani Mathematical Expositions, Chapter 29, Pages 103-104

[8] Vijay Menon, Deterministic Primality Testing
http://arxiv.org/pdf/1311.3785.pdf

[9] Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/

[10] Yimin Ge, Elementary Properties of Cyclotomic Polynomials
http://www.yimin-ge.com/doc/cyclotomic_polynomials.pdf

42

http://www.trigofacile.com/maths/curiosite/primarite/aks/pdf/algorithme-aks.pdf
http://www.trigofacile.com/maths/curiosite/primarite/aks/pdf/algorithme-aks.pdf
http://people.math.gatech.edu/~mbaker/pdf/korselt.pdf
http://sagemath.org/doc/
http://arxiv.org/pdf/1311.3785.pdf
https://en.wikipedia.org/wiki/
http://www.yimin-ge.com/doc/cyclotomic_polynomials.pdf

	Introduction
	The Miller-Rabin primality test
	Preliminaries
	Fermat's Little Theorem
	Carmichael numbers

	Key points and description of the algorithm
	The algorithm
	Correctness and complexity
	Correctness of the algorithm
	Running time

	The AKS primality test
	Preliminaries
	Roots of unity
	Cyclotomic polynomials
	Binomial coefficients
	Introspective numbers

	Key points and description of the algorithm
	The algorithm
	Correctness and complexity
	Proof of correctness
	Running time
	Improvements of the running time

	Implementations
	Implementation of the Miller-Rabin primality test
	Implementation of the AKS primality test

