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Abstract

This thesis focuses on finding a counter-example to the abc-Conjecture by com-
paring different databases.
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Chapter 1

Introduction

The following will be a quick overview of the development of mathematics and
logic since its beginning. It will show the history of rigorousness and proofs in
mathematics.

1.1 Mathematics and Logic in Ancient Times
Several thousand years ago, during the beginning of modern civilisation, math-
ematics began as the mere concept of counting, its sole purpose being its usage
for trading as well as keeping track of time. One of the earliest artifacts used
for mathematical purposes is the Ishango bone which was found in modern-
day Congo. It dates back at least 20,000 years and was probably used either
as a list of prime numbers or as a six-month lunar calendar.[1] It is believed
that the earliest traces of geometry can be found in old Egyptian artifacts from
around 5,000 BCE or in monuments in Great Britain from around 3,000 BCE.
Nevertheless, these ideas are disputed. It is however undisputed that the old-
est known mathematical documents emerged from Babylonian and Egyptian
sources.

Figure 1.1: Egyptian
numeral system

The Babylonians used a numeral system with base 60,
complete with multiplication and division, and devel-
oped a measure system from as early as 3,000 BCE.
It is most astounding that the Babylonians were even
able to solve quadratic and cubic equations. The
Egyptians probably used a base 10 number system
and had mathematical knowledge in both geometry
and algebra. For instance, they were able to deter-
mine the surface area of three-dimensional objects.
However, both the Egyptians and the Babylonians
only used mathematics as a tool and thus did not
know the concept of proving their results. The idea
of mathematical concepts having to be proven before
being considered to be true only emerged with the independent development of
logic in Europe and Asia.

In Europe, the study of logic began with Greek philosophers distinguishing
between different kinds of sentences, as well as developing techniques for discus-
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sions based on arguments at around 500 BCE.[2] Even though Pythagoras, as
well as Thales, had already established proofs to known statements, the most
famous certainly being Pythagoras’ Theorem: In a right triangle, the square
of the length of the hypotenuse is the same as the sum of the squares of the two
other sides., Greek logic did not yet include the need for proofs. Pythagoras’
proof consists of a simple proof by rearrangement. Around 400 BCE, Plato
introduced the notion of definitions and asked about the connection between
assumptions and conclusions, which one can view as an early idea of the further
notion of a theorem.[3][4]

Figure 1.2: Aristotle

His disciple, Aristotle, was the first to system-
atically study logic. In his Organon, he developed
logic as a tool for the theoretical sciences, revolv-
ing around the notion of deduction. He gives de-
tailed ideas about affirmations, denials and contradic-
tions and divides proofs into two different categories;
those based on "complete" deductions that don’t need
proofs, which can be viewed today as axioms, and
those based on "incomplete" deductions which need
to be proven and follow from the "complete" ones.[5]
This is the first description of the concept of a proof.
Aristotle also proves that counterexamples disprove
a statement. However his school of logic was rivaled
by the school of logic, which was developed by the
Stoic philosophers. Both schools differentiate in that Aristotle’s logic is based
on "terms"; the subjects and predicates of assertions, while Stoic logic is based
on "assertibles"; the equivalent of a proposition.[6]

Figure 1.3: Euclid

However, not many texts on Stoic logic have sur-
vived, as Aristotle’s logic became the dominating
form of logic by the end of antiquity. Around 300
BCE, Euclid wrote one of the most important, if not
the most important book in the history of mathemat-
ics: his Elements. It originally was a collection of 13
books containing definitions, postulates and propo-
sitions including their respective proofs in the areas
of Euclidean geometry, number theory and algebra.
It is universally accepted that Euclid was not the au-
thor of most of the theorems and their proofs, but the
content of the Elements as well as the mathematical
methods used have influenced all of mathematics.[7]
His geometric proofs are based on 5 axioms (as cited
by wikiversity.org)[8]

• A line can be drawn from a point to any other point.

• A finite line can be extended indefinitely.

• A circle can be drawn, given a center and a radius.

• All right angles are ninety degrees.

• If a line intersects two other lines such that the sum of the interior angles
on one side of the intersecting line is less than the sum of two right angles,
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then the lines meet on that side and not on the other side.

These are the five postulates on which Euclidean geometry is based.
In Asia, logic developed independently in two different regions: in India and

in China. Indian philosophy was divided into several major schools, of which
some developed concepts of logic, the most influential being the Nyaya school’s
system of logic which later shaped Indian logic.[9] It is based on epistemol-
ogy, the philosophy treating the theory of knowledge, and is thus not based
on a strict mathematical study of propositions like Western logic. Instead, In-
dian logic tries to provide known scientific arguments with rigor. It does not
admit statements which are known to be false, which leads to proofs by con-
tradiction not being accepted in Indian logic.[10] The most notable Ancient
Indian mathematician was Pingala [11], whose work contains the first known
description of a binary numeral system as well as a version of the Binomial
Theorem which describes the expansion of powers of a binomial.[12] However,
since Indian logic was not as well-developed as Greek logic at that moment, In-
dian mathematicians did not yet put much rigor into proving their arguments.

Figure 1.4: An excerpt
from The Nine Chap-
ters on the Mathemati-
cal Art

In China, the development of logic began with
the founding of the Mohist school by Mozi
around 400 BCE.[4] It was however the intro-
duction of Buddhism and the following introduc-
tion of Indian logic that the development of Bud-
dhist logic appeared in China. As it origi-
nated from Indian logic, it is also based on
epistemology.[13] Ancient Chinese mathematicians
treated the areas of geometry as well as alge-
bra, with magic squares dating back as far as
650 BCE and Gaussian elimination being used
in The Nine Chapters on the Mathematical Art,
an important book in Chinese mathematics fin-
ished around 200 BCE. A detailed commentary
by Chinese mathematician Liu Hui from the
3rd century gave proofs to the problems in the
book.[14]

1.2 Mathematics and Logic in the Middle Ages
Around 600 CE, the rise of Islam brought with it Islamic Philosophy and its
own take on logic which placed significance on standards of arguments, though
this method was quickly overthrown by the Mu’tazili philosophers who favored
old Hellenistic philosophy. Several Persian logicians were however dissatisfied
with Hellenistic philosophy and corrected it or developed their own forms of
logic. Beginning in the 10th century, Islamic scholars began to base their
works on clerical authority, which resulted in a decline of Aristotelian logic
in Islamic science.[15] The most important aspect of Islamic logic is certainly
the development of Avicennian logic which introduced the need for citation as
well as inductive logic, i.e. deducting that a conclusion may be true based
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on some evidence. The period from the 9th to the 15th century is consid-
ered to be the Golden Age of Islamic mathematics and saw several Islamic
mathematicians proving theorems with the use of arithmetic and algebra.[16]

Figure 1.5: Al-
Khwarizmi, the "father
of algebra"

Al-Khwarizmi introduced the Hindu numerical sys-
tem, consisting of the numbers 0-10, which proved
to be a great tool for improving the efficiency of Is-
lamic mathematics. Around 1000 CE, Al-Karaji de-
veloped one of the first known proofs by induction to
prove the previously mentioned Binomial Theorem.
Islamic scholars proved several other theorems during
the following centuries.[17] They furthermore occu-
pied themselves amongst other things with trigonom-
etry as well as solving cubic equations and geometry.

In Europe, following the Dark Ages, Boethius, a
Christian philosopher, was the most important con-
tributor to logic of his time. As he was only fa-
miliar with some of Aristotle’s works and none of
the Stoics’, Aristotelian logic became the predomi-
nant form of logic in medieval Europe. Around 1300,
the theory of consequences emerged, which is an im-
portant aspect of later mathematical proofs. As Eu-
rope started trade relationships with the East, Eastern mathematics started
to spread. In the 12th century, Al-Khwarizmi’s Compendious Book on Calcu-
lation by Completion and Balancing was translated into Latin by Robert of
Chester. With Johannes Gutenberg’s invention of the printing press in 1439,
knowledge became more easily transmittable, which enabled mathematicians
to further extend their areas of expertise.[18] In the 13th century, with the
help of Italian mathematician Fibonacci, the Hindu numerical system was in-
troduced in Europe and quickly became the prevalent numerical system. Math-
ematicians began to become interested in infinite series, with French mathe-
matician Nicole Oresme proving that the series 1 + 1/2 + 1/3 + ... diverges.

Figure 1.6: Pascal’s tri-
angle in the Jade Mir-
ror of the Four Un-
knowns

In China, mathematics experienced their Golden
Age during the 13th century, with over 30 reputable
mathematics schools existing around all of China.[19]
Qin Jiushao introduced a method of solving high or-
der equations, going as far as to solving a 10th order
equation. Li Zhi collected hundreds of formulas and
problems on inscribing circles in triangles in his Sea-
Mirror of the Circle Measurments. Zhu Shijie’s Jade
Mirror of the Four Unknowns contains the formula
12 + 22 + ...+ n2 = n(n+1)(2n+1)

3! , although it is miss-
ing a proof. In the 13th century, trigonometry had
finally become an important area in Chinese mathe-
matics.

It was also in India that mathematics experienced
their Golden Age during the Middle Ages. Around
500 CE, Arybhata gave the formula 1.2 in his Aryab-
hatiya, as well as a table of sines, a section cover-
ing several types of numerical equations and an ap-
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proximation of pi which is accurate to four decimal
places.[20] Brahmagupta gave a solution to the quadratic equation ax2 + bx = c
around 650 CE. His Brahmasphutasiddhanta contains one of the first appear-
ance of the four fundamental numerical operations, as well as rules for calcu-
lations involving zero. He also gave a formula for finding Pythagorean triples
and a formula for the length of the diagonals of any isosceles trapezoid, named
Brahmagupta’s Theorem.[21] In the 12th century, Bhaskara II discovered dif-
ferential and infinitesimal calculus by approximating, more precisely he noticed
that sin y′ − sin y ≈ (y − y′) cos y for y′ close to y, which translates in today’s
notation to d

dx sin y = cos y.[22] He found a proof to Pythagoras’ Theorem as
well as solutions of equations of the type ax2 + b = y2 and he stated an early
version of Rolle’s Theorem which is a special case of the Mean Value Theorem.

1.3 Mathematics and logic in modern times
Due to the Scientific Revolution, huge advancements were made in nearly every
scientific field. Astronomers began discovering new celestial bodies and made
some serious improvements in the study of planetary motion. In the 17th cen-
tury, Gottfried Leibniz and Isaac Newton independently developed differential
and integral calculus, the basis of so many later fields of mathematics as well as of
other sciences, and the beginning of modern physics. John Napier was the first to
introduce logarithms in 1614. Blaise Pascal and Pierre de Fermat founded prob-
ability theory, whose foundations had been set by Gerolamo Cardano in the 16th
century.[23] Fermat wrote his Last Theorem without giving a proof, which might
be the most well-known case of a theorem that was not proven by its author. Its
content, as well as a proof of a special case will be discussed later. In the 18th
century, calculus was in full development with Leonhard Euler introducing the
exponential function and Euler’s formula from which the famous eiπ+1 = 0 is de-
rived.

Figure 1.7: Leonhard
Euler (1707 - 1783)

He made significant contributions to graph theory by
solving the "Seven Bridges of Königsberg" problem,
to number theory by proving a number of theorems,
as well as to several other areas of mathematics and
physics.[24] During the 19th century, mathematics
started getting more abstract with elliptic and hy-
perbolic geometry being developped, Niels Abel and
Evariste Galois laying the fundaments of group the-
ory, and Carl Friedrich Gauss developing, among oth-
ers, complex analysis. At the end of the century,
Giuseppe Peano and David Hilbert were among the
mathematicians who founded mathematical logic.[25]
At the beginning of the 20th century, Ernst Zermelo
proposed his set theory which, with the help of Abra-
ham Fraenkel, became the Zermelo-Fraenkel Set The-
ory, which is the most accepted foundation of today’s

mathematics. Hilbert founded Hilbert’s Program whose goal it was to construct
a finite and complete set of axioms on which mathematics were to be based.[26]
However, in 1931 Kurt Gödel published his Incompleteness Theorem showing
that this was in fact not possible; in such a set of axioms, statements can be
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constructed which are true but unprovable.[27] Einstein’s General Relativity
Theory caused the rise of differential geometry, and the beginning of computer
science led to advancements in algebra and mathematical logic. In the second
half of the century, several long-standing mathematical problems were finally
proven, among others Fermat’s Last Theorem in 1994 by Andrew Wiles as well
as the Four Color Theorem in 1976 by Wolfgang Haken and Kenneth Appel,
and the Classification Of Finite Simple Groups, one of the largest mathematical
proofs ever written filling several tens of thousands of pages.

Figure 1.8: Ramanujan
(1887 - 1920)

In Asia, mathematical progress started to decline.
Even though there were still remarkable Indian and
Chinese mathematicians after the 16th century, math-
ematics did not flourish as much as they did during
the Middle Ages. With colonization, western mathe-
matics were introduced in Asia even though some the-
orems had already been well-known to the local schol-
ars for a long time. Around the beginning of the 20th
century Indian mathematician Ramanujan, without
previous mathematical training, made several impor-
tant discoveries in many mathematical fields, and es-
tablished theorems and conjectures in those fields. As
of today, the age of Information has connected the
whole world, and several Asian mathematics depart-

ments rank among the best in the world.

Figure 1.9: David
Hilbert (1862 - 1943)

One of the most important events in the 20th and
21st centuries were however the publications of two
lists of unsolved mathematical problems. In 1900,
Hilbert published a list of 23 unsolved mathemati-
cal problems and in 2000, the Clay Mathematics In-
stitute published the Millenium Prize Problems, a
list of seven problems endowed by a million dollars
each.[28][29] Some of the problems on Hilbert’s list
are:
• The Continuum Hypothesis: There is no set
whose cardinality is between that of N and R.
Proven to be unprovable.

• The Riemann Hypothesis. Still open.

• The Goldbach Conjecture: Every even integer
bigger than 2 is the sum of two primes. Still open.

• What is the densest sphere packing? Probably
resolved by Thomas Callister Hales in 1998.

• Is ab transcendental if a 6= (0, 1) is algebraic and
b is algebraic and irrational? In 1934, Aleksandr
Gelfond and Theodor Schneider independently
proved the answer to be "yes".

The Riemann Hypothesis is also one of the Millenium Prize Problems. Of
the seven problems, only the Poincaré conjecture has been proven, in 2003 by
Grigori Perelman. Other problems on the list are:
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• P vs NP, a theoretical computer science problem on algorithm execution
times.

• The Navier-Stokes Existence And Smoothness Problem which asks if cer-
tain solutions to the Navier-Stokes equations exist under asserted condi-
tions.

• The Birch And Swinnerton-Dyer Conjecture which asks for a way to tell
if elliptic curves over the rational numbers have finite or infinite number
of rational solutions.

Beside these problems, there are still several big mathematical problems
that have been open for a long time, such as the Hadamard Matrix Conjecture,
whether the Euler constant is irrational, the Collartz Conjecture, and the ABC-
Conjecture, around which this thesis revolves.[30]

1.4 Motivation
The previous section showed the most important aspect of today’s mathematical
philosophy: A statement is only true if it has been proven. It might have been
acceptable in ancient mathematics to assume the truthfulness of statements,
but today’s mathematics would collapse without this rigor, since anyone could
claim anything to be true. That’s why the task of mathematical researchers
is not only to develop new concepts and formulas, but also to prove them as
well. Without a proof, a formula might still hold to a certain degree in ap-
plied mathematics, but mathematically it would be considered invalid. With
the help of computers, one can often find a huge number of examples validat-
ing a conjecture, but without proof the conjecture is mathematically not valid.
Finally proving the statement is really hard, as the case of Fermat’s Last The-
orem exemplifies. Fermat never gave a proof for his theorem even though he
claimed to have found it. Mathematicians tried to find a counterexample for
centuries with various methods, studying bigger and bigger numbers. In the
end, Andrew Wiles published its proof after over 350 years, going down into
the annals of mathematical history.[31] The abc-Conjecture does seem to hold
for a huge amount of numbers as computations show. However, this doesn’t
mean much in the mathematical point of view, since there could always exist
a counterexample bigger than all the numbers tested so far. The goal of this
thesis is to find a counterexample to the abc-Conjecture. This would have a big
impact on mathematics, since the Conjecture is not only assumed by many to be
true, but there are many conjectures which can be proven with the help of the
abc-Conjecture. Mathematicians would have to find new ways and develop new
ideas to prove those conjectures. For me this subject is particularly interesting
as it not only includes the thrill of an unsolved mathematical problem, but also
a programming aspect which is something I wanted to be a part of my Bachelor
thesis. The subject helps me develop my programming skills, while it also gives
me the opportunity to thoroughly explore the abc-Conjecture.
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Chapter 2

The abc-Conjecture

2.1 The Conjecture
[32]

Definition 1. Let n ∈ N. The radical rad(n) is defined as the product of the
distinct prime factors of n.

Lemma 1. Let a, b, c ∈ N. If a, b and c are coprime, then rad(abc) = rad(a)rad(b)rad(c).

Proof. The proof follows directly from the assumption of coprimality.

Lemma 2. There are infinitely many triples (a, b, c) of coprime positive integers
such that a+ b = c.

Proof. For n ∈ N≥2, we have that 1, n− 1 and n are coprime.

Definition 2. Let a, b, c ∈ N. The quality of a, b, c is defined as q(abc) =
log(c)/log(rad(abc)).

The ABC-Conjecture. [33] For every ε ∈ R>0, there exist only finitely many
triples (a,b,c) satisfying a+ b = c with gcd(a, b) = 1, such that

c > rad(abc)1+ε. (2.1)

or, equivalently:
c < Kεrad(abc)1+εforsomeKε. (2.2)

A triplet of this form will be called an abc-triplet.
This implies :

For all ε ∈ R, there exist only finitely many triples (a,b,c) satisfying a + b = c
with gcd(a, b) = 1, such that

q(a, b, c) > 1 + ε. (2.3)

This follows directly from the definition of the quality in Definition 2.

Remark 1. The statement a + b = c with gcd(a, b) = 0 implies that a, b and c
are coprime. This can easily be checked by assuming that gcd(a, c) 6= 0 which
leads to the contradiction gcd(a, b) 6= 0.
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2.2 History of the ABC Conjecture
During his research in 1983, Richard Mason realised that a special case of Fer-
mat’s Last Theorem had never been explored; First powers with restrictions on
the variables, that is, the equation a + b = c with certain restrictions on a, b
and c. Without restrictions on a, b and c, the equation can easily be solved in
terms of two of the variables. However, Mason started by analysing the case of
a, b and c being polynomials over a field.[30] This led him to the rediscovery of
the Mason–Stothers theorem, published by W.Wilson Stothers in 1981:[34]

Theorem 1. Let F be a field and a(X), b(X), c(X) ∈ F[X] be relatively prime
polynomials with a+ b = c and a′, b′ and c′ being not all zero. Then,

max(deg(a), deg(b), deg(c)) ≤ deg(rad(abc))− 1

where rad(abc) is the product of the distinct prime factors of abc in F[X]. This
is equivalent to the statement:

deg(c) ≤ n0(abc)− 1,

where n0 is the number of distinct zeroes of a polynomial.

The following proof was proposed in "N. Snyder, An Alternate Proof of
Mason’s Theorem, Elemente der Mathematik, Birkhäuser Verlag, Basel, 2000,
Ausgabe 55" .[35] The proof is based off the subsequent lemma which can also
be found in Snyder’s paper:

Lemma 3. Let f(X) 6= 0, f ∈ F[X]. Then

deg(f) ≤ deg(gcd(f, f ′)) + n0(f)

where n0(f) is the number of zeroes of f in F.

Proof. Let f(X) = c
∏n0(f)
i=1 (X − αi)mi . By derivation, we get:

f ′(X) = cm1(X − α1)m1−1
n0(f)∏
i=2

(X − αi)mi + c(X − α1)a1
d

dX

n0(f)∏
i=2

(X − αi)mi

This gives (X−α1)m1−1|gcd(f, f ′). Or similarly, (X−αi)mi−1|gcd(f, f ′), which
leads to

(∏n0(f)
i=1 (X − αi)mi−1

)
|gcd(f, f ′). Or deg(f) = deg(

∏n0(f)
i=1 (X − αi)mi−1)+

n0(f). Thus deg(f)− n0(f) ≤ deg(gcd(f, f ′)), which proves the lemma.

From this follows the proof of the Mason–Stothers theorem:

Proof. We have: a+b = c =⇒ a′+b′ = c′, and by multiplying the left hand side
by a′ and the right hand side by a, we get: aa′ + ba′ = ca′ and a′a+ b′a = c′a.
This leads to a′b − ab′ = a′c − ac′, which shows that gcd(a, a′), gcd(b, b′) and
gcd(c, c′) all divide a′b− ab′. As a, b and c, and thus a′, b′ and c′ are relatively
prime, we get that

gcd(a, a′)gcd(b, b′)gcd(c, c′)|a′b− ab′. (2.4)
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Or a′b − ab′ 6= 0, as this would lead to a|a′b, which gives a|a′ =⇒ a′ = 0 as
a and b are relatively prime. The same arguments lead to b′ = 0 and c′ = 0,
which contradicts the assumptions. The equation 2.4 now gives us

deg(gcd(a, a′)) + deg(gcd(b, b′)) + deg(gcd(c, c′)) ≤ deg(a) + deg(b)− 1 (2.5)

This comes from the fact that deg(a′b − ab′) = max(deg(a′b), deg(ab′)) =
deg(a) + deg(b)− 1. Adding deg(c) to both sides in equation 2.5 leads to

deg(c) ≤ deg(a)−deg(gcd(a, a′))+deg(b)−deg(gcd(b, b′))+deg(c)−deg(gcd(c, c′))−1.

By applying the lemma, we get that

deg(c) ≤ n0(a) + n0(b) + n0(c)− 1 = no(abc)− 1

as a, b and c are relatively prime.

Mason realized that the integer analogue of this theorem is the following:
Let a + b = c, where a, b and c are relatively prime, then the number of prime
factors of each of a, b and c is strictly less than that of distinct prime factors of
abc. Unfortunately, this statement is false as for example a = 1, b = 7, c = 8 is a
counterexample. In 1985 however, Masser and Osterlé corrected the statement
and came up with a conjecture that they found no numerical contradiction for.
This conjecture is known as the abc-conjecture and the main subject of this
Bachelor thesis.

2.3 Attempted proofs and Consequences
Throughout the years, there have been several attempted proofs of the abc-
Conjecture. In 2007 for example, during a conference at Columbia University
in New York, French mathematician Lucien Szipro presented a proof attempt
which was shortly thereafter found to be false.[36][37]
The most important proof attempt yet was published in 2012 by Japanese math-
ematician Shinichi Mochizuki in a paper introducing a new theory of mathemat-
ics called Inter-Universal Teichmüller Theory(IUT).[38] Mochizuki claims that
with IUT, he found proofs for various number theoretical conjectures including
Szipro’s Conjecture and Vojta’s Conjecture, as well as the abc-Conjecture. How-
ever, Mochizuki’s proof has not yet been accepted, as several mathematicians
claim that a proof in one of the paper’s corollaries (Cor. 3.12) is fundamentally
flawed with mathematicians Peter Scholze and Jakob Stix describing it as a
"serious, unfixable gap". Since the release of the paper, mathematicians from
all over the world are trying to get a grasp on Mochizuki’s proof, but its size
and difficulty are a major obstacle for most of them. Only a handful of math-
ematicians, which are all in "Mochizuki’s orbit", as Brian Conrad of Stanford
University stated, have accepted the proof so far. Despite several workshops on
Inter-Universal Teichmüller Theory and a personal meeting between Mochizuki,
Scholze and Stix, there has been no outcome as to the correctness of the pa-
per, and many mathematicians consider the abc-Conjecture to still be an open
problem.[39]
Proving the abc-Conjecture would not only prove other conjectures, but it would
also lead to much simpler proofs of several important theorems.
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2.3.1 Simpler Proofs of existing Theorems
Some of the theorems which can be proven with the abc-Conjecture include:

• The Mordell conjecture, proven in 1983 by German mathematician Gerd
Faltings.

• Fermat’s Last Theorem for n ≥ 6, proven in 1994 by English mathemati-
cian Andrew Wiles.

• Roth’s Theorem, proven in 1955 by Harold Davenport and Klaus Roth.

The abc-Conjecture leads to a proof of Fermat’s Last Theorem[40] with n ≥
6:[41]

Theorem 2 (Fermat’s Last Theorem with n ≥ 6). Let n ∈ N, n ≥ 6. Then
there exist no strictly positive integer solutions for the equation an + bn = cn.

Proof. Assume the abc-Conjecture, and let an + bn = cn and, without loss of
generality, a, b (and thus c) be coprime. By the abc-Conjecture, we have that:

cn < rad(anbncn)2 = rad(abc)2 ≤ (abc)2 < (c3)2 = c6

Thus, cn < c6, which implies that for all integer solutions of the equation, n < 6.
This proves Fermat’s Last Theorem for n ≥ 6.

2.3.2 Conjectures based on the abc-Conjecture
The proof of several other conjectures would follow from the abc-Conjecture:

• The weak form of Hall’s Conjecture, proposed by Stark and Trotter around
1980.[42]

• Marius Overhold proved in 1993 that the abc-Conjecture implies that Bro-
card’s Equation has only finitely many solutions.

• The Fermat-Catalan Conjecture, which asks for integer solutions of the
equation am + bn = ck.[43]

• The Erdös-Woods Conjecture.
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Chapter 3

The search for a
counterexample

3.1 Our method
The intent of this paper is to find a counterexample to the abc-Conjecture, i.e.
to construct an infinite sequence of triples with quality higher than 1 + ε for
ε > 0. To reach this goal, we use the databank of the ABC@Home project
which contains all abc-triples where c has less than 19 digits. We then compare
the entries of this databank with the databank of the On-Line Encyclopedia of
Integer Sequences (OEIS), a site containing hundreds of thousands of known
integer sequences. Our goal is to find a sequence which contains many abc-
triplets, and to check if other elements in the sequence yield more abc-triplets. If
there were such a sequence which would give us an infinity of triplets with quality
more than 1 + ε for a fixed ε > 0, the abc-Conjecture would be proven false. In
the following sections, we will take a more in-depth look at the databanks, as
well as the algorithm calculating the abc-triplets for the ABC@Home project.

3.1.1 The ABC@Home project and its Databank
[44] In 2007, following a 2005 number theory seminar, Bart de Smith of the
University of Leiden started a project called "Reken mee met ABC" ("Take
ABC into account") with the intent of promoting sciences.[45] It contained the
ABC@Home network, which was a network computing project whose goal it
was to find all abc-triplets with c having less than 19 digits. This goal was
achieved in 2011, with the project discovering 14482065 valid triplets. In the
following years, the project continued, aiming to find all triplets with c between
1018 and 263. After reaching this goal in 2015, the search for greater triplets
has been dismissed by the ABC@Home project. The project produced a total of
23827716 triplets, which are available for download on the project’s homepage.

3.1.2 The OEIS-Databank
[46] The idea for a databank of all known integer sequences started in 1964 when
Neil Sloane, the creator of the OEIS-project, encountered a certain sequence
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in works which he couldn’t find in any book. While looking through books
in the hopes of finding his sequence, he started writing all of the sequences
he found on cards and arranged them in lexicographic order. In 1973, the
sequences he collected were put in a book. The book was in high demand, as
many mathematicians found it very useful and in 1995, a revised edition was
published with the help of Canadian mathematician Simon Plouffe, containing
more that double the sequences of the initial book. In 1996, Sloane, who worked
for AT&T at the time, launched the On-Line Encyclopedia of Integer Sequences.
During the following years, the database grew heavily, which lead to Sloane not
being able to process all the new submissions he got every day. Thus, in 2009,
he decided to set up the non-profit OEIS Foundation Inc., which allowed him
to maintain the database with the help of a group of editors. As of today,
the database contains over 300.000 sequences, each sequence containing also
information on its apparition, author and code to calculate the sequence in
Maple.[47]

3.1.3 The ABC@Home Algorithm
The following is a short summary of the algorithm used in the ABC@Home net-
work, as described in the 7th chapter of the PhD thesis of Willem Jan Palenstijn
of Leiden University.[48]
He starts by giving an upper bound on the number of abc-triples where c is
less than a certain integer N . He concludes that for every ε > 0, that num-
ber of triples is at most O(N2/3+ε), i.e. the number of triples grows at most
with exponent 2

3 . He proves this using a theorem from one of the earlier
chapters which gives a relation between the number N and the cardinal of
{x < N |rad(x) < Nα} for some 0 < α < 1. Furthermore, he cites a theorem by
Sander Dahmen of the Vrije Universiteit Amsterdam setting exp((log(N))1/2−ε)
as the lower bound of the aforementioned abc-triples.
He then gives an algorithm to enumerate all square-free integers x with a ≤ x ≤ b
with their corresponding prime factors:

• Create two lists, one for the integers x, and one for their corresponding
prime factorization list.

• Run over the primes p2 < b and check if they divide x. If p divides x, and
p2 doesn’t, add p to the list of factors of x.

This is only the basic version of this algorithm which does not contain all the
necessary steps. For a more detailed version, one can consult section 7.7 of the
PhD thesis, which contains this algorithm under the name ’Algorithm 7.7’.[48]

Subsequently, Palenstijn describes the ABC@Home algorithm which, given
integers N , as well as some bounds mx,Mx,my,My on a and b, and square-free
integers t and g with t|g, computes all abc-triples with c < N , rad(a) and rad(b)
bounded by mx,Mx and my,My respectively, and gcd(x, t) = g:

• Compute a list P of all prime numbers p < N ( 1
3 ).

• Compute lists Lx and Ly of square-free integers between the bounds of a
and b.

• Generate sorted lists X and Y of integers less than N with radical in Lx
and Ly respectively.
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• Partition X and Y into subsets.

• Loop over pairs (Xi, Yj) of these subsets:

– Generate a table T (Xi, Yj) which for all (x, y) ∈ (Xi, Yj) sets r = 1,
u = x+ y.

– Loop over P :
– Loop over y ∈ Yj and find all x ∈ Xi such that p|x+ y.

– Divide all factors p from u.
– Multiply r with p.

– Now, loop over all x+ y in T .
– Skip the triple if x and y are not coprime or r > c/rad(xy).
– By dividing by primes in P , filter out all the triples which are
no abc-triples.

This algorithm returns a list of all abc-triples with c < N . The integer t is used
to speed up the process by getting rid of all x and y which are coprime with t.
Setting it to t = 2 ∗ 3 ∗ 5 ∗ 7 = 210 seems, by experimentation, to be a good
value.

Figure 3.1: log10 of the number of triples below 10N

3.2 Our computations
The goal of this thesis is to find a sequence of abc-triples with constant or increas-
ing quality. If we were to find such a sequence, we would have a valid counter-
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example to the conjecture. Our search consists of comparing the ABC@Home-
Databank with the OEIS-Databank and finding sequences which contain a cer-
tain amount of c-entries of the databank. Now, one can match each element of
the sequence to its corresponding triples and try to find a subsequence which
has at least constant quality.
First, one has to get both databanks in an adequate text format. The code was
written in Python 2 with the use of the Canopy-IDE.[49]

3.2.1 Getting the files ready
We first wrote the following program which extracts only the c-entries of the
ABC@Home-Database. It gets rid of duplicates and writes a file with all the c-
entries that are left. This new file, ’c_no_duplicates.txt’, will be used to match
entries with the OEIS-Database file.

def create_only_c():
file1 = open("abc_databank.txt", "r+");
file2 = open("all_c.txt", "w");
file2 = open("c_no_duplicates.txt", "w");
#extracts only the first entry (c)
for line in file1:

list1 = line.split(" ");
file2.write(list1[0] + "\n");

#gets rid of duplicate entries
seen_c = set()
for line in file2:

if line not in seen_c:
file2.write(line);
seen_c.add(line);

Figure 3.2: First lines of c_no_duplicates.txt

We now have to do the same thing with the OEIS-Databank. We wrote the
program create_OEIS(), which first converts the OEIS-Database into a more
easily readable format and then extracts all the duplicates in each line, and sorts
each line by integer values.

def create_OEIS():
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file1 = open("OEIS-Databank.txt", "r+");
file2 = open("Converted_OEIS.txt", "w");
for line in file1:

#replaces the comma from the original file with spaces
sequence = line.replace(",", " ");
list1 = sequence.split(" ");

#gets rid of the beginning and the end of the line which are
not numbers

del list1[0];
del list1[0];
list1 = list1[:-1];

#puts the line entries in a dictionary format and sorts them
with duplicate removal

list2 = dict.fromkeys(list1);
list2 = map(int,list2);
list2 = sorted(list2);

#if there are less than 3 entries, we get rid of the line
if len(list2) < 3:

pass;
else:

file2.write(" ".join(map(str, list2)));
file2.write(" "+"\n");

Figure 3.3: First lines of Converted_OEIS.txt

3.2.2 The search algorithm
Now, we will explain the search algorithm. For optimisation purposes, we wrote
the search algorithm so that it can use all cores of the computing system, as
Canopy usually only runs on one core. Therefore, as the computing system we
used has 16 cores, we split the Converted_OEIS.txt file into 16 different files:

#divides the Converted_OEIS.txt file into files the number of cores
def dividefile():

cores = mult.cpu_count()
for i in range(cores):

file1 = open("Converted_OEIS"+str(i)+".txt", "w");
j = 0;
with open("Converted_OEIS.txt", "r+") as file2:

#as the Converted_OEIS.txt has 157448 lines, we split it in
chunks of length 157448/8 = 19681.
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for line in islice(file2, i*19681, (i+1)*19681):
file1.write(line);

Now that all files are in an adequate format to work with, we wrote the
search algorithm which compares the two files with each other. For every (i <
number of cores), the algorithm takes a sequence of the Converted_OEISi.txt
file and, for each element in the sequence, checks if it is contained in the
c_no_duplicates.txt file. If it is, it increases the corresponding count of the
sequence by one. If the total count of the sequence is over 15, the sequence is
then written to the file Validsequencesi.txt with its corresponding place number
in the Converted_OEIS.txt file.

#The search algorithm for the file Converted\_OEISi
def search(i):

file1 = open("Converted_OEIS" + str(i) + ".txt", "r");
sequencenumber = int(i)*19681;
resultlist = [];
for sequence in file1:

sequencenumber += 1;
count = 0;
list1 = sequence.split(" ");
validentries = [];
for value in list1:

if value == "\n":
pass;

elif (int(value) > 10**18): #as the ABC@Home Databank goes up
to 10^18, checking for bigger numbers is pointless

pass;
else:

file2 = open("c\_no\_duplicates.txt", "r");
for line in file2:

if int(line) == int(value):
validentries.append(value);
count+=1;

if int(line) > int(value):
break; #as the file is ordered by size, if we are

already past the sequence entry, we will not
find a corresponding entry in the
c\_no\_duplicates.txt file.

if count > 15:

resultlist.append(validentries);
with open("Validsequences"+ str(i) +".txt", "a") as f:

f.write("sequence number: " + str(sequencenumber) + " /
");

for item in validentries:
f.write(str(item)+ " ");

f.write("\n");

21



#The following distributes the search algorithm on all cores.
if __name__ == ’__main__’:

cores = mult.cpu_count();
__spec__ = "ModuleSpec(name=’builtins’, loader=<class

’_frozen_importlib.BuiltinImporter’>)"
for k in range(cores):

p = mult.Process(target = search, args = (str(k)))
p.start()

Figure 3.4: First lines of Converted_OEIS0.txt

As we now have 16 different files, with each file containing a certain amount
of sequences that have more than 15 entries corresponding with known abc-
triples, we only have to write all of these files into one file. Since we realised
that the number of sequences is still relatively large, we only kept the sequences
with at least 30 entries.

def Collect_sequences():
file1 = open("Validsequences.txt", "w");
for i in range(10):

file2 = open("Validsequences" + str(i) + ".txt", "r");
for line in file2:

list1 = line.split(" ");
if len(list1) >= 34: #the first 4 entries are no members of

the sequence
for j in range(len(list1)):

file1.write(list1[j] + " ");
file1.write("\n");

This finally leaves us with 37 different sequences that have at least 30 en-
tries corresponding to the c-part of known abc-triples. Of course, only having
the c-entries does not yet provide a useful way for extracting a subsequence with
certain characteristics on its abc-quality. That’s why we first need to assign each
entry in the Validsequences.txt all of its known abc-triples with their relative
prime decomposition.
As we did not find a good method for calculating prime decomposition in
Python, we used the PARI/GP program instead. This program allowed us
to quickly compute the prime decomposition of all our abc-triples.
PARI/GP returns the factorization of a number by matrix representation. There
are three forms of returns from PARI/GP for the factorization of a number N :
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• If N = 1, then PARI/GP returns "matrix(0,2)".

• If N = pn for p prime, then PARI/GP returns "Mat([p, n])".

• If N =
∏m
i=1 pi

ni for pi prime, then PARI/GP returns "[p1, n1; ... ;pm,
nm]".

With the goal of making a file that PARI/GP is able to read, the following
algorithm first assigns the entries in Validsequences.txt to their corresponding
abc-triples and then writes the prime decomposition command for PARI/GP
into the PARI-file.txt file. This file will then be read by PARI/GP, which will
then write the prime decomposition to the file abcFactors.txt.

def assigntriple():
file1 = open("Validsequences.txt", "r");
for line in file1:

list1 = line.split(" ");
if len(list1) == 2: #gets rid of empty lines

pass;
else:

del list1[-1];
del list1[3];
del list1[2];
del list1[1];
del list1[0];

#gets rid of the sequence name and number
for value in list1:

file2 = open("c_no_duplicates.txt", "r");
for double in file2:

list2 = double.split(" ");
if int(value) == int(list2[0]):

a = int(list2[1][:-1]);
c = int(list2[0]);
b = c-a;
file3 = open("PARI-file.txt", "a");
file3.write("factor("+str(c)+")"+"\n"+r"\w

C:\Users\username\abcFactors.txt"+"\n"+
"factor("+str(a)+")"+"\n"+r"\w

C:\Users\username\abcFactors.txt"+"\n"+
"factor("+str(b)+")"+"\n"+r"\w

C:\Users\username\abcFactors.txt"+"\n")
elif int(value) < int(list2[0]):

break;

This now gives us the file abcFactors.txt in which the factorisations of all
triples corresponding to the entries in Validsequences.txt are stored. This will
now be modified by algorithm 4.1 to give us a final file abcFinal.txt which will
include the sequences of triples with their corresponding factorization as well as
their quality and their merit.
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Figure 3.5: First lines of PARI-file.txt

Figure 3.6: How to input PARI-file.txt into PARI/GP

3.3 Our results
Our goal was to extract a subsequence with increasing quality and checking
if the quality would increase further. To do so, we wrote the following algo-
rithm qualitysequences(). It builds a sequence with increasing quality out of
the abcFinal.txt-sequences. Out of all the triples with highest c, it takes the
one with the biggest quality and then inductively repeats this step for all the
triples with less high c-entry. This gives a subsequence of the original sequence
which has increasing quality. To make the algorithm easier, it operates on the
file abcFinalreversed.txt, which is the abcFinal.txt file reversed.

def qualitysequences():
file1 = open("abcFactorsreversed.txt", "r");
file2 = open("Qualityincrease.txt", "a");
C = 10**19;
listquality = [100]; #initial quality, should be higher than all the

other qualities in the sequence
listC = [0];
i = 0;
linelist = [("sequence " + str(28-i) + ": \n")]; #it goes from

sequence 28 to sequence 1
for line in file1:

list1 = line.split("=");
c = int(list1[1][1:][:-1]);
quality = float(list1[8][1:][:-7]);

if c > C: #a new sequence starts
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Figure 3.7: An extract of the abcFactors.txt file

Figure 3.8: An extract of the abcFinal.txt file

i += 1;
C = c;
Quality = quality;
plt.figure(i);
plt.plot(listC[1:], listquality[1:], "r--");
plt.title(listC, fontsize = 6);
plt.figure(i).show();
plt.savefig("qualityincrease"+str(i)+".png");
listquality = [100, quality]; #reset
listC = [0, c]; #reset
for value in linelist:

file2.write(str(value));
file2.write("\n");
linelist = [("sequence " + str(28-i) + ": \n"), 0];

if c < C:
if quality < listquality[len(listquality)-1]: #if the quality

is less than that of the previous c
listquality.append(quality);
listC.append(c);
Quality = quality;
C = c;
linelist.append(line);

else:
C = c;
Quality = quality;

if c == C :
if (quality > Quality) and (quality <=

listquality[len(listquality)-2]):
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Quality = quality;
listquality[len(listquality)-1] = quality;
linelist[len(linelist)-1] = line;

else:
pass;

This gives us the file Qualityincrease.txt which contains the subsequences
of abcFinal.txt with maximal increasing quality. Disappointingly, there is no
apparent pattern in the a and b entries of the subsequences, and none of those
are sequences contained in the OEIS-Databank. This essentially concludes the
project, since we were not able to extract a formula for a sequence of increasing
quality.

Figure 3.9: Increasing quality in sequence nr. 26

We were nevertheless not fully satisfied with having no result, which is why
we tried to at least construct a subsequence of increasing merit. These subse-
quences can easily be computed by changing "float(list1[8][1:][:-7])" to "float(list1[9][1:][:-
1])" in the previous algorithm, which instead of the quality now extracts the
merit. This gave us a whole new file of subsequences with increasing merit, of
which disappointingly none could be matched to the OEIS-Databank, just as in
the previous case with the quality. This finally concludes the project.

We believe that our method has fully been investigated with no result.
Therefore, further exploration of the method seems futile. This leaves the abc-
Conjecture still standing and future proofs will most likely have to include newly
developed areas of mathematics to get results.
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Chapter 4

Appendix

4.1 The conversion algorithm

The following algorithm converts the abcFactors.txt file, created by PARI/GP,
into the nicely structured abcFinal.txt file.

def convert():
file1 = open("abcFactors.txt", "r+");
file3 = open("abcFinal.txt", "w");
i = 0; #counts to three to always get the corresponding triple

values together
primes = []; #saves all the primes of the current triple
C = 0;
for word in file1:

if word[0] == "M": #is of the kind Mat([a, b])
control = False;
list1 = word.split(",");
list1[0] = list1[0][5:];
list1[1] = list1[1][:-3];
print(list1);

elif word[0] == "m": #is of the kind matrix(a, b)
control = False;
list1 = word.split(",");
list1[0] = list1[0][7:];
list1[1] = list1[1][:-2];
print(list1);

else: #is of the kind [a, b; ... ;c, d]
control = True;
list1 = []
list2 = word.split(";");
l = len(list2);
list2[0] = list2[0][1:];
list2[l-1] = list2[l-1][:-2];
for value in list2:

list3 = value.split(",");
list1.append(list3);
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print(list1);

length = len(list1);
a = 1;
if control == True: #if the line is of the kind [a, b; ... ;c, d]

if i == 0: # c of the abc-triple
for j in range(0, length, +1):

primes.append(int(list1[j][0]));
a = a*(int(list1[j][0])**int(list1[j][1]));

C = a; #saves the value of c for further computation of
the quality

file3.write("c = " + str(a) + " = ")
file3.write(word[:-1] + " ");
i += 1;

elif i == 1: # b of the abc-triple
for j in range(0, length, +1):

primes.append(int(list1[j][0]));
a = a*(int(list1[j][0])**int(list1[j][1]));

file3.write("b = " + str(a) + " = ")
file3.write(word[:-1] + " ");
i += 1;

elif i == 2: # a of the abc-triple
for j in range(0, length, +1):

primes.append(int(list1[j][0]));
a = a*(int(list1[j][0])**int(list1[j][1]));

radical = 1;
for k in range(len(primes)):

radical = radical*primes[k];
quality = (math.log(C))/(math.log(radical));
merit =

((quality-1)**2)*(math.log(radical))*(math.log(math.log(radical)));
file3.write("a = " + str(a) + " = ")
file3.write(word[:-1] + " ");
file3.write(" radical = " +str(radical) + " quality = "

+str(quality) + " merit = " +str(merit));
file3.write("\n");
i = 0;
primes = [];

else:
if i == 0: # c of the abc-triple

if int(list1[0]) == 0:
a = 1;

else:
a = (int(list1[0])**int(list1[1]));
primes.append(int(list1[0]));

C = a;
file3.write("c = " + str(a) + " = ")
file3.write(word[:-1] + " ");
i += 1;

elif i == 1: # b of the abc-triple
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if int(list1[0]) == 0:
a = 1;

else:
a = (int(list1[0])**int(list1[1]));
primes.append(int(list1[0]));

file3.write("b = " + str(a) + " = ")
file3.write(word[:-1] + " ");
i += 1;

elif i == 2: # a of the abc-triple
if int(list1[0]) == 0:

a = 1;
else:

a = (int(list1[0])**int(list1[1]));
primes.append(int(list1[0]));

radical = 1;
for k in range(len(primes)):

radical = radical*primes[k];
quality = (math.log(C))/(math.log(radical));
merit =

((quality-1)**2)*(math.log(radical))*(math.log(math.log(radical)));
file3.write("a = " + str(a) + " = ")
file3.write(word[:-1] + " ");
file3.write(" radical = " +str(radical) + " quality = "

+str(quality) + " merit = " +str(merit));
file3.write("\n");
i = 0;
primes = [];
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4.2 Computed results
The following are the OEIS-Number and -Description of 12 extracted sequences
with significant enough size, their subsequence of increasing quality, as well as
the figures of their increasing quality and merit. The PARI/GP factorization
has been explained in section 3.2.

4.2.1 Sequence 1
A065771 Prime powers n such that both τ(n2) and σ(n2) are composite numbers.

c = 16777216 = Mat([2, 24]) b = 2197 = Mat([13, 3]) a = 16775019 = [3, 6; 23011, 1] radical = 1794858 quality = 1.155210286177332 merit = 0.9252983022149146
c = 13845841 = Mat([61, 4]) b = 133632 = [2, 9; 3, 2; 29, 1] a = 13712209 = [7, 2; 23, 4] radical = 1708854 quality = 1.1457817090087676 merit = 0.8124692544875347
c = 12117361 = Mat([59, 4]) b = 4092529 = [7, 2; 17, 4] a = 8024832 = [2, 8; 3, 6; 43, 1] radical = 1811418 quality = 1.1318930814861106 merit = 0.6687525976855672
c = 7890481 = Mat([53, 4]) b = 9882 = [2, 1; 3, 4; 61, 1] a = 7880599 = Mat([199, 3]) radical = 3860202 quality = 1.0471400987029473 merit = 0.09163875979161587
c = 4879681 = Mat([47, 4]) b = 1024000 = [2, 13; 5, 3] a = 3855681 = [3, 7; 41, 1; 43, 1] radical = 2485830 quality = 1.0458011594962668 merit = 0.08308689730242558
c = 4194304 = Mat([2, 22]) b = 936279 = [3, 5; 3853, 1] a = 3258025 = [5, 2; 19, 4] radical = 2196210 quality = 1.0443078666480792 merit = 0.07686107692129795
c = 1874161 = Mat([37, 4]) b = 9 = Mat([3, 2]) a = 1874152 = [2, 3; 7, 3; 683, 1] radical = 1061382 quality = 1.0409791627953058 merit = 0.06128202432704795
c = 1594323 = Mat([3, 13]) b = 34322 = [2, 1; 131, 2] a = 1560001 = Mat([1249, 2]) radical = 981714 quality = 1.035145503116223 merit = 0.04472651867249758
c = 707281 = Mat([29, 4]) b = 2048 = Mat([2, 11]) a = 705233 = [79, 2; 113, 1] radical = 517766 quality = 1.0237058624176838 merit = 0.019054072691593378
c = 279841 = Mat([23, 4]) b = 289 = Mat([17, 2]) a = 279552 = [2, 10; 3, 1; 7, 1; 13, 1] radical = 213486 quality = 1.0220555069737798 merit = 0.01496669485358114
c = 131072 = Mat([2, 17]) b = 41405 = [5, 1; 7, 2; 13, 2] a = 89667 = [3, 7; 41, 1] radical = 111930 quality = 1.0135797482655287 merit = 0.005259385277340935
c = 130321 = Mat([19, 4]) b = 46800 = [2, 4; 3, 2; 5, 2; 13, 1] a = 83521 = Mat([17, 4]) radical = 125970 quality = 1.0028914709915537 merit = 0.0002418622392246741
c = 83521 = Mat([17, 4]) b = 25921 = [7, 2; 23, 2] a = 57600 = [2, 8; 3, 2; 5, 2] radical = 82110 quality = 1.001505705544449 merit = 6.224332362096628e-05

Figure 4.1: Increasing quality in sequence nr. 3

Figure 4.2: Increasing merit in sequence nr. 3
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4.2.2 Sequence 2
A076469 Perfect powers mk where m is an integer and k > 4. or
A246550 Prime powers pe where p is a prime and e >= 4.

c = 531441 = Mat([3, 12]) b = 49 = Mat([7, 2]) a = 531392 = [2, 6; 19, 2; 23, 1] radical = 18354 quality = 1.342827542997735 merit = 2.635643220813526
c = 524288 = Mat([2, 19]) b = 4913 = Mat([17, 3]) a = 519375 = [3, 1; 5, 4; 277, 1] radical = 141270 quality = 1.1105853299516497 merit = 0.35863535917689343
c = 390625 = Mat([5, 8]) b = 117649 = Mat([7, 6]) a = 272976 = [2, 4; 3, 1; 11, 2; 47, 1] radical = 108570 quality = 1.1104214132202936 merit = 0.346460002140961
c = 371293 = Mat([13, 5]) b = 1539 = [3, 4; 19, 1] a = 369754 = [2, 1; 7, 5; 11, 1] radical = 114114 quality = 1.1013137224794165 merit = 0.2934291819756031
c = 161051 = Mat([11, 5]) b = 12096 = [2, 6; 3, 3; 7, 1] a = 148955 = [5, 1; 31, 3] radical = 71610 quality = 1.0725008570014634 merit = 0.14185106903747513
c = 131072 = Mat([2, 17]) b = 6413 = [11, 2; 53, 1] a = 124659 = [3, 8; 19, 1] radical = 66462 quality = 1.0611574973269269 merit = 0.09998420588198229
c = 117649 = Mat([7, 6]) b = 12500 = [2, 2; 5, 5] a = 105149 = [11, 3; 79, 1] radical = 60830 quality = 1.059879466729859 merit = 0.0947685263276362
c = 65536 = Mat([2, 16]) b = 6487 = [13, 1; 499, 1] a = 59049 = Mat([3, 10]) radical = 38922 quality = 1.049297420915307 merit = 0.060566258521041194
c = 59049 = Mat([3, 10]) b = 15625 = Mat([5, 6]) a = 43424 = [2, 5; 23, 1; 59, 1] radical = 40710 quality = 1.0350372922734312 merit = 0.030779769126492332
c = 32768 = Mat([2, 15]) b = 8379 = [3, 2; 7, 2; 19, 1] a = 24389 = Mat([29, 3]) radical = 23142 quality = 1.0346093426206775 merit = 0.027776098986953608
c = 8192 = Mat([2, 13]) b = 11 = Mat([11, 1]) a = 8181 = [3, 4; 101, 1] radical = 6666 quality = 1.0234120783723573 merit = 0.010498233280691932
c = 2187 = Mat([3, 7]) b = 512 = Mat([2, 9]) a = 1675 = [5, 2; 67, 1] radical = 2010 quality = 1.011096139914193 merit = 0.0019000255575361094
c = 729 = Mat([3, 6]) b = 200 = [2, 3; 5, 2] a = 529 = Mat([23, 2]) radical = 690 quality = 1.0084113092374762 merit = 0.0008682588486994485

Figure 4.3: Increasing quality in sequence nr. 9

Figure 4.4: Increasing merit in sequence nr. 9
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4.2.3 Sequence 3
A076470 Perfect powers mk where m is an integer and k > 5.

c = 1771561 = Mat([11, 6]) b = 91 = [7, 1; 13, 1] a = 1771470 = [2, 1; 3, 11; 5, 1] radical = 30030 quality = 1.3954838404823704 merit = 3.7622641764419975
c = 1594323 = Mat([3, 13]) b = 7424 = [2, 8; 29, 1] a = 1586899 = [17, 4; 19, 1] radical = 56202 quality = 1.305873782653318 merit = 2.4476817174888095
c = 1048576 = Mat([2, 20]) b = 50575 = [5, 2; 7, 1; 17, 2] a = 998001 = [3, 6; 37, 2] radical = 132090 quality = 1.1756986573787018 merit = 0.8981073965362553
c = 823543 = Mat([7, 7]) b = 3072 = [2, 10; 3, 1] a = 820471 = [17, 3; 167, 1] radical = 119238 quality = 1.1653276277840765 merit = 0.7855216932161503
c = 531441 = Mat([3, 12]) b = 191 = Mat([191, 1]) a = 531250 = [2, 1; 5, 6; 17, 1] radical = 97410 quality = 1.1477069698739997 merit = 0.6117837913212401
c = 524288 = Mat([2, 19]) b = 4913 = Mat([17, 3]) a = 519375 = [3, 1; 5, 4; 277, 1] radical = 141270 quality = 1.1105853299516497 merit = 0.35863535917689343
c = 390625 = Mat([5, 8]) b = 117649 = Mat([7, 6]) a = 272976 = [2, 4; 3, 1; 11, 2; 47, 1] radical = 108570 quality = 1.1104214132202936 merit = 0.346460002140961
c = 177147 = Mat([3, 11]) b = 46075 = [5, 2; 19, 1; 97, 1] a = 131072 = Mat([2, 17]) radical = 55290 quality = 1.1066255312066344 merit = 0.2968047377434422
c = 131072 = Mat([2, 17]) b = 95 = [5, 1; 19, 1] a = 130977 = [3, 5; 7, 2; 11, 1] radical = 43890 quality = 1.102349618350441 merit = 0.2653014130816672
c = 117649 = Mat([7, 6]) b = 324 = [2, 2; 3, 4] a = 117325 = [5, 2; 13, 1; 19, 2] radical = 51870 quality = 1.07543548461615 merit = 0.1473283668442908
c = 65536 = Mat([2, 16]) b = 7 = Mat([7, 1]) a = 65529 = [3, 4; 809, 1] radical = 33978 quality = 1.0629595375106713 merit = 0.0969835532642618
c = 59049 = Mat([3, 10]) b = 485 = [5, 1; 97, 1] a = 58564 = [2, 2; 11, 4] radical = 32010 quality = 1.0590255296303734 merit = 0.08454748856131326
c = 32768 = Mat([2, 15]) b = 8379 = [3, 2; 7, 2; 19, 1] a = 24389 = Mat([29, 3]) radical = 23142 quality = 1.0346093426206775 merit = 0.027776098986953608
c = 8192 = Mat([2, 13]) b = 11 = Mat([11, 1]) a = 8181 = [3, 4; 101, 1] radical = 6666 quality = 1.0234120783723573 merit = 0.010498233280691932
c = 2187 = Mat([3, 7]) b = 512 = Mat([2, 9]) a = 1675 = [5, 2; 67, 1] radical = 2010 quality = 1.011096139914193 merit = 0.0019000255575361094
c = 729 = Mat([3, 6]) b = 200 = [2, 3; 5, 2] a = 529 = Mat([23, 2]) radical = 690 quality = 1.0084113092374762 merit = 0.0008682588486994485

Figure 4.5: Increasing quality in sequence nr. 10

Figure 4.6: Increasing merit in sequence nr. 10
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4.2.4 Sequence 4
A095887 Triangle read by rows: T (n, k) = (n− k + 1)n, n >= 1, 1 <= k <= n.

c = 387420489 = Mat([3, 18]) b = 1515625 = [5, 6; 97, 1] a = 385904864 = [2, 5; 31, 1; 73, 3] radical = 6585330 quality = 1.259527009976646 merit = 2.9119813790027185
c = 134217728 = Mat([2, 27]) b = 926757 = [3, 2; 13, 1; 89, 2] a = 133290971 = [11, 1; 59, 4] radical = 4505358 quality = 1.2215420118507678 merit = 2.052248524891323
c = 40353607 = Mat([7, 9]) b = 42823 = [11, 1; 17, 1; 229, 1] a = 40310784 = [2, 11; 3, 9] radical = 1798566 quality = 1.215982714893403 merit = 1.7921086084880353
c = 16777216 = Mat([2, 24]) b = 2197 = Mat([13, 3]) a = 16775019 = [3, 6; 23011, 1] radical = 1794858 quality = 1.155210286177332 merit = 0.9252983022149146
c = 10077696 = [2, 9; 3, 9] b = 14125 = [5, 3; 113, 1] a = 10063571 = [7, 2; 59, 3] radical = 1400070 quality = 1.1394713012993065 merit = 0.7294762868997512
c = 5764801 = Mat([7, 8]) b = 648 = [2, 3; 3, 4] a = 5764153 = [73, 1; 281, 2] radical = 861546 quality = 1.1390846029894408 merit = 0.6913177200951904
c = 823543 = Mat([7, 7]) b = 371293 = Mat([13, 5]) a = 452250 = [2, 1; 3, 3; 5, 3; 67, 1] radical = 182910 quality = 1.124176994405736 merit = 0.46608741591057645
c = 390625 = Mat([5, 8]) b = 117649 = Mat([7, 6]) a = 272976 = [2, 4; 3, 1; 11, 2; 47, 1] radical = 108570 quality = 1.1104214132202936 merit = 0.346460002140961
c = 65536 = Mat([2, 16]) b = 709 = Mat([709, 1]) a = 64827 = [3, 3; 7, 4] radical = 29778 quality = 1.0765740735526552 merit = 0.140879546089314
c = 46656 = [2, 6; 3, 6] b = 4913 = Mat([17, 3]) a = 41743 = [13, 3; 19, 1] radical = 25194 quality = 1.0608026156104984 merit = 0.08676941245716602
c = 2187 = Mat([3, 7]) b = 512 = Mat([2, 9]) a = 1675 = [5, 2; 67, 1] radical = 2010 quality = 1.011096139914193 merit = 0.0019000255575361094
c = 729 = Mat([3, 6]) b = 200 = [2, 3; 5, 2] a = 529 = Mat([23, 2]) radical = 690 quality = 1.0084113092374762 merit = 0.0008682588486994485

Figure 4.7: Increasing quality in sequence nr. 13

Figure 4.8: Increasing merit in sequence nr. 13
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4.2.5 Sequence 5
A098293 Powers of 2 alternating with powers of 3.

c = 387420489 = Mat([3, 18]) b = 1515625 = [5, 6; 97, 1] a = 385904864 = [2, 5; 31, 1; 73, 3] radical = 6585330 quality = 1.259527009976646 merit = 2.9119813790027185
c = 129140163 = Mat([3, 17]) b = 8000000 = [2, 9; 5, 6] a = 121140163 = [29, 3; 4967, 1] radical = 4321290 quality = 1.2223529048295212 merit = 2.0596112874736856
c = 43046721 = Mat([3, 16]) b = 1 = matrix(0,2) a = 43046720 = [2, 6; 5, 1; 17, 1; 41, 1; 193, 1] radical = 4035630 quality = 1.1556225447925967 merit = 1.0027234075306528
c = 14348907 = Mat([3, 15]) b = 619115 = [5, 1; 7, 3; 19, 2] a = 13729792 = [2, 15; 419, 1] radical = 1671810 quality = 1.150024724364855 merit = 0.8586448729415037
c = 4782969 = Mat([3, 14]) b = 2725 = [5, 2; 109, 1] a = 4780244 = [2, 2; 7, 2; 29, 3] radical = 663810 quality = 1.1473114607778128 merit = 0.7551200767869274
c = 1594323 = Mat([3, 13]) b = 90508 = [2, 2; 11, 3; 17, 1] a = 1503815 = [5, 1; 67, 3] radical = 375870 quality = 1.112562225625076 merit = 0.4151317221515415
c = 531441 = Mat([3, 12]) b = 240625 = [5, 5; 7, 1; 11, 1] a = 290816 = [2, 12; 71, 1] radical = 164010 quality = 1.0979093814132679 merit = 0.28610782629987797
c = 524288 = Mat([2, 19]) b = 161051 = Mat([11, 5]) a = 363237 = [3, 1; 7, 3; 353, 1] radical = 163086 quality = 1.0972971402163212 merit = 0.2823544581129462
c = 131072 = Mat([2, 17]) b = 32657 = [17, 2; 113, 1] a = 98415 = [3, 9; 5, 1] radical = 57630 quality = 1.074960648269333 merit = 0.1474851032648427
c = 65536 = Mat([2, 16]) b = 7 = Mat([7, 1]) a = 65529 = [3, 4; 809, 1] radical = 33978 quality = 1.0629595375106713 merit = 0.0969835532642618
c = 59049 = Mat([3, 10]) b = 485 = [5, 1; 97, 1] a = 58564 = [2, 2; 11, 4] radical = 32010 quality = 1.0590255296303734 merit = 0.08454748856131326
c = 32768 = Mat([2, 15]) b = 8379 = [3, 2; 7, 2; 19, 1] a = 24389 = Mat([29, 3]) radical = 23142 quality = 1.0346093426206775 merit = 0.027776098986953608
c = 8192 = Mat([2, 13]) b = 11 = Mat([11, 1]) a = 8181 = [3, 4; 101, 1] radical = 6666 quality = 1.0234120783723573 merit = 0.010498233280691932
c = 2187 = Mat([3, 7]) b = 512 = Mat([2, 9]) a = 1675 = [5, 2; 67, 1] radical = 2010 quality = 1.011096139914193 merit = 0.0019000255575361094
c = 729 = Mat([3, 6]) b = 200 = [2, 3; 5, 2] a = 529 = Mat([23, 2]) radical = 690 quality = 1.0084113092374762 merit = 0.0008682588486994485

Figure 4.9: Increasing quality in sequence nr. 14

Figure 4.10: Increasing merit in sequence nr. 14
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4.2.6 Sequence 6
A075363 Triangle read by rows, in which the n-th row gives n smallest powers
of n. or
A099615 Triangle read by rows, 2 <= k <= n: T (n, k) = denominator of
(1 + 1/n)k − (1 + k/n) and of (1− 1/n)k − (1− k/n). or
A095896 Triangle read by rows: T (n, k) = n(n− k + 1), n >= 1, 1 <= k <= n.

c = 387420489 = Mat([3, 18]) b = 1515625 = [5, 6; 97, 1] a = 385904864 = [2, 5; 31, 1; 73, 3] radical = 6585330 quality = 1.259527009976646 merit = 2.9119813790027185
c = 43046721 = Mat([3, 16]) b = 1 = matrix(0,2) a = 43046720 = [2, 6; 5, 1; 17, 1; 41, 1; 193, 1] radical = 4035630 quality = 1.1556225447925967 merit = 1.0027234075306528
c = 16777216 = Mat([2, 24]) b = 2197 = Mat([13, 3]) a = 16775019 = [3, 6; 23011, 1] radical = 1794858 quality = 1.155210286177332 merit = 0.9252983022149146
c = 4782969 = Mat([3, 14]) b = 2725 = [5, 2; 109, 1] a = 4780244 = [2, 2; 7, 2; 29, 3] radical = 663810 quality = 1.1473114607778128 merit = 0.7551200767869274
c = 2097152 = Mat([2, 21]) b = 144027 = [3, 2; 13, 1; 1231, 1] a = 1953125 = Mat([5, 9]) radical = 480090 quality = 1.1127039049372605 merit = 0.42724965386318153
c = 531441 = Mat([3, 12]) b = 240625 = [5, 5; 7, 1; 11, 1] a = 290816 = [2, 12; 71, 1] radical = 164010 quality = 1.0979093814132679 merit = 0.28610782629987797
c = 117649 = Mat([7, 6]) b = 324 = [2, 2; 3, 4] a = 117325 = [5, 2; 13, 1; 19, 2] radical = 51870 quality = 1.07543548461615 merit = 0.1473283668442908
c = 59049 = Mat([3, 10]) b = 10000 = [2, 4; 5, 4] a = 49049 = [7, 3; 11, 1; 13, 1] radical = 30030 quality = 1.065584273830386 merit = 0.10346446825949088
c = 46656 = [2, 6; 3, 6] b = 4913 = Mat([17, 3]) a = 41743 = [13, 3; 19, 1] radical = 25194 quality = 1.0608026156104984 merit = 0.08676941245716602
c = 32768 = Mat([2, 15]) b = 8379 = [3, 2; 7, 2; 19, 1] a = 24389 = Mat([29, 3]) radical = 23142 quality = 1.0346093426206775 merit = 0.027776098986953608
c = 729 = Mat([3, 6]) b = 200 = [2, 3; 5, 2] a = 529 = Mat([23, 2]) radical = 690 quality = 1.0084113092374762 merit = 0.0008682588486994485

Figure 4.11: Increasing quality in sequence nr. 15

Figure 4.12: Increasing merit in sequence nr. 15
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4.2.7 Sequence 7
A246549 Prime powers pe where p is a prime and e >= 3 (prime powers without
1, the primes, or the squares of primes). or
A100391 Prime powers which are local minima of A006530.

c = 130321 = Mat([19, 4]) b = 12672 = [2, 7; 3, 2; 11, 1] a = 117649 = Mat([7, 6]) radical = 8778 quality = 1.2971091295739554 merit = 1.7682278466791408
c = 117649 = Mat([7, 6]) b = 28561 = Mat([13, 4]) a = 89088 = [2, 10; 3, 1; 29, 1] radical = 15834 quality = 1.2074005954439029 merit = 0.9438019575269713
c = 103823 = Mat([47, 3]) b = 5408 = [2, 5; 13, 2] a = 98415 = [3, 9; 5, 1] radical = 18330 quality = 1.176660194171514 merit = 0.6997282156086191
c = 83521 = Mat([17, 4]) b = 1152 = [2, 7; 3, 2] a = 82369 = [7, 2; 41, 2] radical = 29274 quality = 1.1019400973819453 merit = 0.2490837312668208
c = 79507 = Mat([43, 3]) b = 4096 = Mat([2, 12]) a = 75411 = [3, 4; 7, 2; 19, 1] radical = 34314 quality = 1.0804622037917706 merit = 0.1586144815276661
c = 68921 = Mat([41, 3]) b = 800 = [2, 5; 5, 2] a = 68121 = [3, 4; 29, 2] radical = 35670 quality = 1.0628359874003266 merit = 0.09724557089118555
c = 65536 = Mat([2, 16]) b = 6487 = [13, 1; 499, 1] a = 59049 = Mat([3, 10]) radical = 38922 quality = 1.049297420915307 merit = 0.060566258521041194
c = 59049 = Mat([3, 10]) b = 15625 = Mat([5, 6]) a = 43424 = [2, 5; 23, 1; 59, 1] radical = 40710 quality = 1.0350372922734312 merit = 0.030779769126492332
c = 32768 = Mat([2, 15]) b = 8379 = [3, 2; 7, 2; 19, 1] a = 24389 = Mat([29, 3]) radical = 23142 quality = 1.0346093426206775 merit = 0.027776098986953608
c = 8192 = Mat([2, 13]) b = 11 = Mat([11, 1]) a = 8181 = [3, 4; 101, 1] radical = 6666 quality = 1.0234120783723573 merit = 0.010498233280691932
c = 2187 = Mat([3, 7]) b = 512 = Mat([2, 9]) a = 1675 = [5, 2; 67, 1] radical = 2010 quality = 1.011096139914193 merit = 0.0019000255575361094
c = 729 = Mat([3, 6]) b = 200 = [2, 3; 5, 2] a = 529 = Mat([23, 2]) radical = 690 quality = 1.0084113092374762 merit = 0.0008682588486994485

Figure 4.13: Increasing quality in sequence nr. 16

Figure 4.14: Increasing merit in sequence nr. 16
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4.2.8 Sequence 8
A111261 Numbers of the form (m/n)(m− n) with m >= n.

c = 43046721 = Mat([3, 16]) b = 83521 = Mat([17, 4]) a = 42963200 = [2, 8; 5, 2; 7, 2; 137, 1] radical = 489090 quality = 1.3417856234336722 merit = 3.9370152947185657
c = 33554432 = Mat([2, 25]) b = 9156027 = [3, 1; 1747, 2] a = 24398405 = [5, 1; 47, 4] radical = 2463270 quality = 1.1774600236737605 merit = 1.2462687499946097
c = 16777216 = Mat([2, 24]) b = 2197 = Mat([13, 3]) a = 16775019 = [3, 6; 23011, 1] radical = 1794858 quality = 1.155210286177332 merit = 0.9252983022149146
c = 8388608 = Mat([2, 23]) b = 30375 = [3, 5; 5, 3] a = 8358233 = [13, 2; 19, 2; 137, 1] radical = 1015170 quality = 1.152692117618954 merit = 0.8470589366203329
c = 4782969 = Mat([3, 14]) b = 2725 = [5, 2; 109, 1] a = 4780244 = [2, 2; 7, 2; 29, 3] radical = 663810 quality = 1.1473114607778128 merit = 0.7551200767869274
c = 4194304 = Mat([2, 22]) b = 34929 = [3, 2; 3881, 1] a = 4159375 = [5, 5; 11, 3] radical = 1280730 quality = 1.0843562669114515 merit = 0.2645435856557991
c = 2097152 = Mat([2, 21]) b = 83349 = [3, 5; 7, 3] a = 2013803 = [11, 3; 17, 1; 89, 1] radical = 699006 quality = 1.0816409554990716 merit = 0.23316999425645868
c = 531441 = Mat([3, 12]) b = 1 = matrix(0,2) a = 531440 = [2, 4; 5, 1; 7, 1; 13, 1; 73, 1] radical = 199290 quality = 1.080379415869545 merit = 0.19722605195982415
c = 390625 = Mat([5, 8]) b = 2209 = Mat([47, 2]) a = 388416 = [2, 6; 3, 1; 7, 1; 17, 2] radical = 167790 quality = 1.0702412233273266 merit = 0.14764533113282224
c = 131072 = Mat([2, 17]) b = 6413 = [11, 2; 53, 1] a = 124659 = [3, 8; 19, 1] radical = 66462 quality = 1.0611574973269269 merit = 0.09998420588198229
c = 117649 = Mat([7, 6]) b = 12500 = [2, 2; 5, 5] a = 105149 = [11, 3; 79, 1] radical = 60830 quality = 1.059879466729859 merit = 0.0947685263276362
c = 65536 = Mat([2, 16]) b = 6487 = [13, 1; 499, 1] a = 59049 = Mat([3, 10]) radical = 38922 quality = 1.049297420915307 merit = 0.060566258521041194
c = 59049 = Mat([3, 10]) b = 15625 = Mat([5, 6]) a = 43424 = [2, 5; 23, 1; 59, 1] radical = 40710 quality = 1.0350372922734312 merit = 0.030779769126492332
c = 32768 = Mat([2, 15]) b = 8379 = [3, 2; 7, 2; 19, 1] a = 24389 = Mat([29, 3]) radical = 23142 quality = 1.0346093426206775 merit = 0.027776098986953608
c = 8192 = Mat([2, 13]) b = 11 = Mat([11, 1]) a = 8181 = [3, 4; 101, 1] radical = 6666 quality = 1.0234120783723573 merit = 0.010498233280691932
c = 729 = Mat([3, 6]) b = 200 = [2, 3; 5, 2] a = 529 = Mat([23, 2]) radical = 690 quality = 1.0084113092374762 merit = 0.0008682588486994485

Figure 4.15: Increasing quality in sequence nr. 18

Figure 4.16: Increasing merit in sequence nr. 18
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4.2.9 Sequence 9
A120458 Triangle read by rows: row 0 is 1; for n > 0, row n gives 1n, prime(1)n,
prime(2)n, ..., prime(n)n. or
A319075 Square array T (n, k) read by antidiagonal upwards in which row n lists
the n-th powers of primes, hence column k lists the powers of the k-th prime,
n >= 0, k >= 1.

c = 815730721 = Mat([13, 8]) b = 25 = Mat([5, 2]) a = 815730696 = [2, 3; 3, 3; 11, 2; 23, 2; 59, 1] radical = 5821530 quality = 1.3172945889635699 merit = 4.306060599870464
c = 410338673 = Mat([17, 7]) b = 566048 = [2, 5; 7, 2; 19, 2] a = 409772625 = [3, 1; 5, 3; 103, 3] radical = 6986490 quality = 1.258447758491067 merit = 2.902646548075581
c = 214358881 = Mat([11, 8]) b = 2307361 = [7, 4; 31, 2] a = 212051520 = [2, 6; 3, 8; 5, 1; 101, 1] radical = 7232610 quality = 1.2145769242411055 merit = 2.006842003370743
c = 62748517 = Mat([13, 7]) b = 6276 = [2, 2; 3, 1; 523, 1] a = 62742241 = Mat([89, 4]) radical = 3630666 quality = 1.1886615477054088 merit = 1.4596831454843133
c = 19487171 = Mat([11, 7]) b = 5815296 = [2, 10; 3, 2; 631, 1] a = 13671875 = [5, 9; 7, 1] radical = 1457610 quality = 1.1827016523205258 merit = 1.2566842267207559
c = 5764801 = Mat([7, 8]) b = 648 = [2, 3; 3, 4] a = 5764153 = [73, 1; 281, 2] radical = 861546 quality = 1.1390846029894408 merit = 0.6913177200951904
c = 4826809 = Mat([13, 6]) b = 75449 = [11, 1; 19, 3] a = 4751360 = [2, 15; 5, 1; 29, 1] radical = 787930 quality = 1.133498537786449 merit = 0.6311527941829186
c = 1771561 = Mat([11, 6]) b = 65536 = Mat([2, 16]) a = 1706025 = [3, 1; 5, 2; 23, 2; 43, 1] radical = 326370 quality = 1.133239841890956 merit = 0.5727679244037188
c = 823543 = Mat([7, 7]) b = 371293 = Mat([13, 5]) a = 452250 = [2, 1; 3, 3; 5, 3; 67, 1] radical = 182910 quality = 1.124176994405736 merit = 0.46608741591057645
c = 390625 = Mat([5, 8]) b = 117649 = Mat([7, 6]) a = 272976 = [2, 4; 3, 1; 11, 2; 47, 1] radical = 108570 quality = 1.1104214132202936 merit = 0.346460002140961
c = 161051 = Mat([11, 5]) b = 12096 = [2, 6; 3, 3; 7, 1] a = 148955 = [5, 1; 31, 3] radical = 71610 quality = 1.0725008570014634 merit = 0.14185106903747513
c = 117649 = Mat([7, 6]) b = 34128 = [2, 4; 3, 3; 79, 1] a = 83521 = Mat([17, 4]) radical = 56406 quality = 1.0671945018820044 merit = 0.1181794318841646
c = 15625 = Mat([5, 6]) b = 6877 = [13, 1; 23, 2] a = 8748 = [2, 2; 3, 7] radical = 8970 quality = 1.060976534043969 merit = 0.07473665724001168
c = 2187 = Mat([3, 7]) b = 512 = Mat([2, 9]) a = 1675 = [5, 2; 67, 1] radical = 2010 quality = 1.011096139914193 merit = 0.0019000255575361094
c = 729 = Mat([3, 6]) b = 200 = [2, 3; 5, 2] a = 529 = Mat([23, 2]) radical = 690 quality = 1.0084113092374762 merit = 0.0008682588486994485

Figure 4.17: Increasing quality in sequence nr. 22

Figure 4.18: Increasing merit in sequence nr. 22

38



4.2.10 Sequence 10
A076470 Perfect powers mk where m is an integer and k > 5. or
A122494 Set of numbers of the form ab with 2 <= a <= b, sorted.

c = 1594323 = Mat([3, 13]) b = 7424 = [2, 8; 29, 1] a = 1586899 = [17, 4; 19, 1] radical = 56202 quality = 1.305873782653318 merit = 2.4476817174888095
c = 1048576 = Mat([2, 20]) b = 50575 = [5, 2; 7, 1; 17, 2] a = 998001 = [3, 6; 37, 2] radical = 132090 quality = 1.1756986573787018 merit = 0.8981073965362553
c = 823543 = Mat([7, 7]) b = 3072 = [2, 10; 3, 1] a = 820471 = [17, 3; 167, 1] radical = 119238 quality = 1.1653276277840765 merit = 0.7855216932161503
c = 531441 = Mat([3, 12]) b = 191 = Mat([191, 1]) a = 531250 = [2, 1; 5, 6; 17, 1] radical = 97410 quality = 1.1477069698739997 merit = 0.6117837913212401
c = 524288 = Mat([2, 19]) b = 4913 = Mat([17, 3]) a = 519375 = [3, 1; 5, 4; 277, 1] radical = 141270 quality = 1.1105853299516497 merit = 0.35863535917689343
c = 390625 = Mat([5, 8]) b = 117649 = Mat([7, 6]) a = 272976 = [2, 4; 3, 1; 11, 2; 47, 1] radical = 108570 quality = 1.1104214132202936 merit = 0.346460002140961
c = 177147 = Mat([3, 11]) b = 46075 = [5, 2; 19, 1; 97, 1] a = 131072 = Mat([2, 17]) radical = 55290 quality = 1.1066255312066344 merit = 0.2968047377434422
c = 131072 = Mat([2, 17]) b = 95 = [5, 1; 19, 1] a = 130977 = [3, 5; 7, 2; 11, 1] radical = 43890 quality = 1.102349618350441 merit = 0.2653014130816672
c = 65536 = Mat([2, 16]) b = 709 = Mat([709, 1]) a = 64827 = [3, 3; 7, 4] radical = 29778 quality = 1.0765740735526552 merit = 0.140879546089314
c = 59049 = Mat([3, 10]) b = 10000 = [2, 4; 5, 4] a = 49049 = [7, 3; 11, 1; 13, 1] radical = 30030 quality = 1.065584273830386 merit = 0.10346446825949088
c = 46656 = [2, 6; 3, 6] b = 4913 = Mat([17, 3]) a = 41743 = [13, 3; 19, 1] radical = 25194 quality = 1.0608026156104984 merit = 0.08676941245716602
c = 32768 = Mat([2, 15]) b = 8379 = [3, 2; 7, 2; 19, 1] a = 24389 = Mat([29, 3]) radical = 23142 quality = 1.0346093426206775 merit = 0.027776098986953608
c = 8192 = Mat([2, 13]) b = 11 = Mat([11, 1]) a = 8181 = [3, 4; 101, 1] radical = 6666 quality = 1.0234120783723573 merit = 0.010498233280691932
c = 2187 = Mat([3, 7]) b = 512 = Mat([2, 9]) a = 1675 = [5, 2; 67, 1] radical = 2010 quality = 1.011096139914193 merit = 0.0019000255575361094
c = 729 = Mat([3, 6]) b = 200 = [2, 3; 5, 2] a = 529 = Mat([23, 2]) radical = 690 quality = 1.0084113092374762 merit = 0.0008682588486994485

Figure 4.19: Increasing quality in sequence nr. 24

Figure 4.20: Increasing merit in sequence nr. 24
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4.2.11 Sequence 11
A128686 Least number of the form semiprime - 1 which is the product of exactly
n primes.

c = 24189255811072 = [2, 41; 11, 1] b = 196367346709 = [19, 3; 31, 5] a = 23992888464363 = [3, 1; 7, 8; 13, 2; 8209, 1] radical = 29039616606 quality = 1.2791392693573205 merit = 5.973058523906151
c = 20890720927744 = [2, 40; 19, 1] b = 291355693369 = [13, 1; 59, 2; 6438373, 1] a = 20599365234375 = [3, 3; 5, 17] radical = 2814792291870 quality = 1.0699233564092074 merit = 0.4703211412429409
c = 1099511627776 = Mat([2, 40]) b = 239256535903 = [7, 11; 11, 2] a = 860255091873 = [3, 7; 251, 1; 311, 1; 5039, 1] radical = 181727413098 quality = 1.0694333590257687 merit = 0.4068654104394979
c = 927712935936 = [2, 35; 3, 3] b = 268091351 = [11, 4; 18311, 1] a = 927444844585 = [5, 1; 7, 1; 23, 6; 179, 1] radical = 174142553970 quality = 1.0646308022996973 merit = 0.35177026101038533
c = 343597383680 = [2, 36; 5, 1] b = 1744821 = [3, 4; 13, 1; 1657, 1] a = 343595638859 = [11, 3; 16067, 2] radical = 114212751510 quality = 1.0432580575191963 merit = 0.15423373046642333
c = 171798691840 = [2, 35; 5, 1] b = 3388476321 = [3, 5; 19, 4; 107, 1] a = 168410215519 = [7, 1; 13, 3; 29, 3; 449, 1] radical = 72267721890 quality = 1.0346327852291926 merit = 0.09653882761119742
c = 115964116992 = [2, 32; 3, 3] b = 36879991031 = [13, 4; 1291271, 1] a = 79084125961 = [19, 6; 41, 2] radical = 78460208502 quality = 1.015574082320194 merit = 0.019606515824163756
c = 1207959552 = [2, 27; 3, 2] b = 471756427 = [23, 1; 29, 5] a = 736203125 = [5, 6; 7, 1; 53, 1; 127, 1] radical = 942811170 quality = 1.0119927100095067 merit = 0.009000607582225685
c = 8388608 = Mat([2, 23]) b = 59049 = Mat([3, 10]) a = 8329559 = [7, 2; 169991, 1] radical = 7139622 quality = 1.0102156403574023 merit = 0.004543529672387648
c = 3145728 = [2, 20; 3, 1] b = 55451 = [11, 1; 71, 2] a = 3090277 = [17, 4; 37, 1] radical = 2947494 quality = 1.0043694943916004 merit = 0.0007682280132241918
c = 131072 = Mat([2, 17]) b = 65219 = [7, 2; 11, 3] a = 65853 = [3, 5; 271, 1] radical = 125202 quality = 1.0039035263414824 merit = 0.00044048038050787064

Figure 4.21: Increasing quality in sequence nr. 26

Figure 4.22: Increasing merit in sequence nr. 26

40



4.2.12 Sequence 12
A132722 Numbers with k decimal digits that are also k-th powers.

c = 2541865828329 = Mat([3, 26]) b = 1012703329 = [11, 4; 263, 2] a = 2540853125000 = [2, 3; 5, 8; 23, 2; 29, 1; 53, 1] radical = 3068113290 quality = 1.307612605913739 merit = 6.374601882382574
c = 282429536481 = Mat([3, 24]) b = 47136567731 = [11, 5; 541, 2] a = 235292968750 = [2, 1; 5, 10; 7, 1; 1721, 1] radical = 2150750910 quality = 1.2269809315279852 merit = 3.3961555696523513
c = 31381059609 = Mat([3, 22]) b = 25 = Mat([5, 2]) a = 31381059584 = [2, 11; 7, 1; 173, 1; 12653, 1] radical = 459683490 quality = 1.2117422683160224 merit = 2.6765984556511415
c = 3486784401 = Mat([3, 20]) b = 4332433 = [7, 3; 17, 1; 743, 1] a = 3482451968 = [2, 17; 163, 2] radical = 86471826 quality = 1.202290012040235 merit = 2.172915033924577
c = 1073741824 = Mat([2, 30]) b = 1369 = Mat([37, 2]) a = 1073740455 = [3, 8; 5, 1; 71, 1; 461, 1] radical = 36331410 quality = 1.194518877448107 merit = 1.8818217103144523
c = 387420489 = Mat([3, 18]) b = 16540489 = [7, 4; 83, 2] a = 370880000 = [2, 9; 5, 4; 19, 1; 61, 1] radical = 20201370 quality = 1.1755968364891651 merit = 1.4640232465616403
c = 134217728 = Mat([2, 27]) b = 173889 = [3, 2; 139, 2] a = 134043839 = [23, 4; 479, 1] radical = 9188178 quality = 1.1672471802876274 merit = 1.2443892424992897
c = 43046721 = Mat([3, 16]) b = 1 = matrix(0,2) a = 43046720 = [2, 6; 5, 1; 17, 1; 41, 1; 193, 1] radical = 4035630 quality = 1.1556225447925967 merit = 1.0027234075306528
c = 16777216 = Mat([2, 24]) b = 2197 = Mat([13, 3]) a = 16775019 = [3, 6; 23011, 1] radical = 1794858 quality = 1.155210286177332 merit = 0.9252983022149146
c = 4782969 = Mat([3, 14]) b = 2725 = [5, 2; 109, 1] a = 4780244 = [2, 2; 7, 2; 29, 3] radical = 663810 quality = 1.1473114607778128 merit = 0.7551200767869274
c = 2097152 = Mat([2, 21]) b = 144027 = [3, 2; 13, 1; 1231, 1] a = 1953125 = Mat([5, 9]) radical = 480090 quality = 1.1127039049372605 merit = 0.42724965386318153
c = 531441 = Mat([3, 12]) b = 240625 = [5, 5; 7, 1; 11, 1] a = 290816 = [2, 12; 71, 1] radical = 164010 quality = 1.0979093814132679 merit = 0.28610782629987797
c = 117649 = Mat([7, 6]) b = 324 = [2, 2; 3, 4] a = 117325 = [5, 2; 13, 1; 19, 2] radical = 51870 quality = 1.07543548461615 merit = 0.1473283668442908
c = 59049 = Mat([3, 10]) b = 10000 = [2, 4; 5, 4] a = 49049 = [7, 3; 11, 1; 13, 1] radical = 30030 quality = 1.065584273830386 merit = 0.10346446825949088
c = 32768 = Mat([2, 15]) b = 8379 = [3, 2; 7, 2; 19, 1] a = 24389 = Mat([29, 3]) radical = 23142 quality = 1.0346093426206775 merit = 0.027776098986953608
c = 729 = Mat([3, 6]) b = 200 = [2, 3; 5, 2] a = 529 = Mat([23, 2]) radical = 690 quality = 1.0084113092374762 merit = 0.0008682588486994485

Figure 4.23: Increasing quality in sequence nr. 28

Figure 4.24: Increasing merit in sequence nr. 28
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