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1 Introduction
Let f be a monic irreducible polynomial of degree n with integer coefficients. The aim of this
subject is to compute the Galois Group G of f , using the Chebotarev Density Theorem.

Some precision are needed. First consider the factorization of f modulo a prime p. Let
F be the factorization type of f , i.e. the list of degrees of the irreducible factors.
Moreover G acts transitively on the set of n roots of f . Each element g of G is an automor-
phism which has a cycle type T .

We will state in the following a theorem which links T and F . Futhermore the Chebotarev
Density Theorem claims that the size of the subset of G containing the elements whith cycle
type T over the order of G equals the density of prime numbers p for which f mod p has
factorization type F = T .

Then our goal is to write an algorithm which finds the size of G and shows its structure
in order to identify which subgroup of Sn is isomorphic to G.

First, necessary notions and theory about the objects we work with will be treated. Then set-
tings in which the Chebotarev density theorem should be stated will be explained. Afterwards
our reasoning will be presented step by step. The following section will contain a description
of the algorithm together with some commented examples. To estimate the efficiency of this
algorithm, some runtime tests will be presented.

2



2 Setting
Let us have a general overview of Galois theory.
We first take f ∈ Z[X] an irreducible monic polynomial of degree n and consider the ring
Q[X]. f is irreducible in Z[X], hence it is irreducible in the ring Q[X] which is a Principal
Ideal Domain. Since f is irreducible, (f) is a maximal ideal of Q[X] and K := Q[X]/(f) is a
field called number field as it is a finite extension of Q.

Definition 2.1: Let K/k be a minimal field extension (namely there are no intermedi-
ate extensions of k), and P ∈ k[X]. K is called a break field of P if P has at least one root
in K.

Theorem 2.2: Let k be a field and P an irreducible polynomial with coefficients in k. Then
K := k[X]/(P ) is a field extension of k inside which P has at least one root. It is also a break
field of P over k.

Proof: The fact k[X]/(P ) is a field containing k has been proved upside. Let us prove
the second statement. Denote by x the image of X in K, so we have P (x) = 0 and then x is
a root of P in K as well. �

Definition 2.3: α is algebraic over k if there exists a non-zero polynomial Q in k[X] such
that Q(α) = 0.

Moreover we know that if α is algebraic over Q such that f(α) = 0 with f irreducible (α is a
primitive element of K), then K ' Q[α].
We know that K is a break field of f , and in general not its splitting field.
For instance, let us take P (X) = X3 − 2. 3√2 is the only real root of P . Q[X]/(P ) = Q( 3√2)
is a break field of P , but not its splitting field, since ei

2Π
3 3√2 does not belong to it. That is:

Q( 3√2) 6= Q(ei
2Π
3 3√2)...

Now let us introduce some notions relative to Galois theory, and remain the following defini-
tions.

Let K/k be a field extension.

Definition 2.4: K/k is an algebraic extension if all elements of K are algebraic over k.

Definition 2.5: Let k be a field and α an algebraic element over k. The minimal poly-
nomial of α is the unique monic polynomial of minimal degree annihilating α.

Definition 2.6: α ∈ K is separable over k if its minimal polynomial on k called Xα is
separable over k.

Definition 2.7: Let P ∈ k[X] irreducible. P is separable over k if all its roots in a splitting
field K/k are of multiplicity 1.
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Definition 2.8: Let K/k be an algebraic extension. K is separable over k if all elements of
K are separable over k.

Definition 2.9: K is an algebraic extension of k. K is normal if every irreducible poly-
nomials of k[X] which has a root in K splits into linear factors in K.

Definition 2.10: A k-automorphism of K is a field automorphism K → K which is identity
on k. The group Gal(K/k) is the group of the k-automorphisms of K, it is called the Galois
group of K over k.

Definition 2.11: Let P be a polynomial with coefficents in k and K a splitting field of
P over k. The Galois group of P is Gal(K/k).

Definition 2.12: K/k is a Galois extension if it is algebraic, normal and separable.

The concepts introduced by Galois allow to understand finely the structure of the differ-
ent sub-extensions of K, by meaning of the correspondence theorem:

Galois’s correspondence 2.13: For a group H of automorphisms of a field L, let us define
the fixed field LH := (x ∈ L/∀σ ∈ H,σ(x) = x) = FixL(H).
1. Let L/K be a Galois extension, whose Galois group is Gal(L/K). There is a one to one
correspondence between subgroups H of Gal(L/K) and subfields J of L that contain K given
by J = LH .
2. LH is a Galois extension of K ⇔ H is a normal subgroup of Gal(L/K), and then its
Galois group is the quotient group Gal(L/K)/H.

Let us go back to our topic. In the situation we are considering, K is in general not a
Galois extension.

Definition 2.14: A fieldK is algebraically closed if every non-constant polynomial P ∈ K[X]
has at least one root in K.

Definition 2.15: Let K/k be a field extension. K is an algebraic closure of k if:
1. K is algebraically closed.
2. K is algebraic over k.

Let N be the Galois closure of K over Q. That means that N is the intersection of all
Galois extensions of Q containing K. By Definitions 2.9 and 2.15, since N is an algebraic
closure and a normal extension, f splits into linear factors in N .

Remark: N is a field in which f splits. Let S = {α/f(α) = 0}. We obviously have S ⊂ N .

Now consider G := G(N/Q). For any σ ∈ G, for any α ∈ S, σ(α) is a root of σ(f) = f
since the coefficients of f are in Z, so stay the same.
Hence G will always send an element of S = {α1, ..., αn} to another element of S. It naturally
follows the analyse of how G behaves with the elements of S. Fix a bijection between the
subset S of N and the set {1, ..., n}.
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Now consider the action of G on S seen as a partition of [n]. That is why we will look at G
as a subgroup of Sn, via the previous bijection.

Definition 2.16: Let K be a field and P = Xn +
∑n−1
i=1 aiX

i a monic polynomial of de-
gree n, with coefficients in K. Let L be a field extension of K in which P is separable and
denote by x1, ..., xn its roots. Then

∏
16i,j6n(xi − xj)2 = 4P

Remark: In particular, f is irreducible ⇒ {f has no multiple root ⇔4f 6= 0.}

This statement is clear, by definition of 4f .
Furthermore it implies that G acts transitively on S, as will state the following theorem.

Proposition 2.17: Let L/K be a field extension. Then L/K is finite and normal ⇒ L
is the splitting field of a polynomial with coefficients in K.

Proof: Let L/K be a finite normal field extension. Take a basis (x1, ..., xd) of the K-vector
space L. Let Pi ∈ K[X] be the minimal polynomial of xi. Since L/K is normal, each Pi
splits in L and Q :=

∏d
1 Pi splits too. Then since L is generated over K by all the xi which

are roots of Q, the field L is the splitting field of Q on K[X]. �

Remark: We know that every finite field extension is algebraic. Hence if we assume that L
is in addition separable, then L is a Galois extension and we have the equivalence.

Proposition 2.18: Let F and L be two fields, ϕ : F → L a field isomorphism. Let P ∈ F [X]
be a non-zero polynomial. Consider K a splitting field of P over F and M a splitting field of
ϕ(P ) over L. Then ϕ extends to an isomorphism φ : K →M such that φ |F= ϕ.

Proof: We prove the statement by induction on [K : F ].
-If [K : F ] = 1 then ϕ = φ works.
-If [K : F ] > 1, consider R ∈ F [X] an irreducible factor of P such that deg(R) > 1. This one
must exist, otherwise P would split in F . Let ϕ(R) be the corresponding factor of ϕ(P ). Let
x ∈ K be a root of R and y ∈ M a root of ϕ(R). Since F (x) ' F [X]/(R) ' L[X]/(ϕ(R)) '
L(y), then ϕ extends to an isomorphism ϕ′ : F (x) → L(y) such that ϕ′(x) = y.
Hence, by induction, ϕ′ extends to an isomorphism φ : K →M which restricts to ϕ′ on F (x)
and then to ϕ on F . �

Theorem 2.19: Let P ∈ K[X] be a separable polynomial splitting in L. The action of
Gal(L/K) on the set of roots of P in L is transitive ⇔ P is irreducible in K[X].

Proof:
(⇒) Let us suppose that P is not irreducible. Then we can write P = Q.R with Q, R ∈ K[X],
both non-constant. Since P is separable, neither Q nor R have common roots. Each element
of Gal(L/K) (= AutK(L)) sends each root of Q (inside L) on a root of Q. Hence the roots
of R are not in the Gal(L/K)-orbits of the roots of Q and then, the action on the roots of P
is not transitive.
(⇐) Assume now that P is irreducible. Let x and y be two roots of P in L. By Definition
2.1, K(x) and K(y) are subfield of L and in particular are break fields of P . Since P is
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irreducible, K(x) ' K[X]/(P ) ' K(y). In other words they are K-isomorphic: there exists a
K-isomorphism σ : K → K which is identity on K and such that σ(x) = y. Now consider L
as a splitting field of P over both K(x) and K(y) (we see P respectively as a polynomial with
coefficients in K(x) and in K(y)). By Proposition 2.18, we obtain an extension of σ to all
of L, i.e. an automorphism that fixes K and maps x to y. Hence Gal(L/K) acts transitively
on the set of roots of P in L. �

To finish this section, we will take an example of theoretical computation. Consider the
following polynomial: P (X) = X2 − 2X − 1. It has two real roots, namely x1 = 1 +

√
2 and

x2 = 1 −
√

2. Now let L be the set of the polynomials in two variables for which (x1, x2)
is a root. We can see that P1(X,Y ) = X2 − 2X − 1 and P2(X,Y ) = X + Y − 2 are some
polynomials of L which verify this property.
Remark that for each polynomial of L, (x2, x1) is also a root. Then id : (x1, x2) 7→ (x1, x2)
and σ : (x1, x2) 7→ (x2, x1) fix L, they are the two automorphisms of the Galois group of P
which is isomorphic to S2.

3 Reasoning
We will state the reasoning and some results representing the theoretical side of the computing.

3.1 Dedekind’s theorem

Definition 3.1: Let K be a field of characteristic a prime p (that means the order for the
addition law of the unit for the multiplication law). The field morphism:
Fr : K → K
x 7→ xp

is called the Frobenius morphism Fr.

Theorem 3.2: Let H be a finite group of which elements are automorphisms of a field L,
Let LH = FixL(H) the corresponding fixed field (as seen above in Galois’s Correspondence).
Then L/LH is a Galois extension the Galois group of which is H

Corollary 3.3: A finite extension L/K is a Galois extension ⇔ K = LGal(L/K).

Lemma 3.4: Let p be a prime, q = pm with m ∈ N. Then Fq/Fp is a Galois extension
and Gal(Fq/Fp) is cyclic, generated by Fr: Gal(Fq/Fp) = 〈Fr〉.

Proof: For a finite field, Fr is an automorphism: Fr ∈ Gal(Fq/Fp). We will show that
the order of Fr is m = [Fq/Fp] =| Gal(Fq/Fp) |. This implies that Fq/Fp is a Galois Ex-
tension (Corollary 3.3) and since the order of a finite group equals the order of one of its
generators, that Fr generates the Galois group.
The multiplicative group F∗q is cyclic, its order is q − 1. Let ω be a generator. Since q = pm,
for all α ∈]0;m[, Fr

α(ω)
ω = ωp

α−1, hence Frm = Id and Frα 6= Id. �

Even if f is irreducible over Q, it does not mean that the reduction of f modulo a prime
p is irreducible.
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However it can be factored into a product (called k in the algorithm) of irreducible polynomi-
als over the finite field Fp. Let us name the degrees of the irreducible factors the factorisation
type of f over Fp.
We should find a link between the cycle types that occur in G and the factorization types of
f (for some different primes p) in order to match f to its Galois group, and then we use the
following Dedekind’s theorem.

Now let us define the notion of a transitive subgroup.

Definition 3.5: Let H be a subgroup of Sn. H is called transitive if it action over [n]
is transitive, i.e. : if ∀i, j ∈ {1, ..., n}, ∃σ ∈ H/σ(i) = j.

Proposition 3.6: Let p be a prime, f ∈ Z[X] monic. For x ∈ Z, denote by xi the sim-
ple roots of f on its splitting field. Assume that Q ⊂ E ' Q(x1, x2...) a splitting field of f and
Fp ⊂ L a splitting field of f , the factorization of f modulo p. Suppose f is separable. There
exists an injective group morphism

Ψ : Gal(L/Fp)→ Gal(E/Q)
σ 7→ Ψ(σ)

such that ρ(Ψ(σ)) = σ(ρ) for all ρ ∈ Hom(Z[x1, x2...], L)

Dedekind’s theorem: Let f in Z[X] be a monic irreducible polynomial of degree n, and let
Gf be its Galois group. Put f(x) the factorization of f(x) modulo a prime p which does not
divide 4f , such that f(x) is a product of irreducible polynomials in Fp[X] of degrees n1, n2...nr
with

∑
ni = n. Then Gf contains a permutation which has the cycle type (n1, n2, ..., nr).

Proof of Dedekind’s theorem: Consider the factorisation of f into irreducible polynomials
f i of Fp[X]. Since p - 4(f), f has simple roots x1, ...xn and then each of the factors only
appears once. Let xi be the residue class of xi modulo p. Let us denote f = f1f2...f r the
factorization.
Fp[x1, x2...] is a splitting field of f and G = Gal(Fp[x1, x2...]/Fp) is cyclic (Lemma 3.4).
Consider σ a generator of G. σ can be written as a product of cycles, as follows: σ =
(12...l)(l + 1...)...
Since the irreducible factors f i of f are in bijection with the subgroups of G which act tran-
sitively on the set of roots of f i, the numbers occuring in the cycles (12...l)(l + 1...)... must
exactly represent each roots of f1f2...f r
Then if we know the degrees of each f i, the length of each cycles of which σ consists is known,
i.e. we have the cycle type of σ.
In conclusion, since G ⊆ Gf (Proposition 3.6), σ ∈ Gf . �

3.2 Chebotarev density theorem

Natural density is used in the Chebotarev density theorem. Let us define this notion.

Definition 3.7: Let Γ ⊂ Z be the set of prime numbers. Let µ ⊂ Γ be a subset and
suppose that the limit d(µ) := lim

y→∞
]{p∈µ:p6y}
]{p∈Γ:p6y} exists. Then d(µ) is called the natural density

of µ.
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Chebotarev density theorem: Let f ∈ Z[X] be a monic irreducible polynomial. As-
sume that 4f does not vanish. Let T be a cycle type of some elements of the Galois group G
of f . Then the set {p prime, p - 4f | f has factorisation type F = T} has a density, and this
density equals n(T )

|G| where n(T ) = ]{σ ∈ G | σ has cycle type T}.

Thus we have all the steps we need to build our reasoning.
First of all, we know how to characterize N , and that f which is irreducible, totally splits in
N . In addition, since G acts transitively on the roots of f , we know with the results above,
that G is isomorphic to a transitive subgroup of Sn which we will describe forward.
Dedekind’s theorem allows us to link in a bijective way the element of G to the factorization
types of the factorizations f mod pi with (pi)i a family of primes such that pi do not divide
4f . Then, knowing all the factorization types of f (infinitely many since density implies the
use of infinitely many pi), we get all kinds of factorization type (finitely many) that exist, and
then we have the different kinds of cycle type that G contains, with their relative proportions.
The problem is that to know all these factorization types we have to compute f mod pi for
infinitely many primes pi, since we deal with density. Moreover, even if we know what are
the different kinds of cycle type of the Galois group, for a considered cycle type T , we don’t
know the number of elements in G which have cycle type T .
This number is given by the Chebotarev theorem, which allows us to match precisely and in
a formalised way G to a transitive subgroup of Sn.

4 Computing Galois group
The following will describe how to apply on a computer all the previous reasoning and notions.

4.1 Algorithm construction

SAGE is the software on which we will work to write the algorithm, presented in the Ap-
pendix. It has be choosen because it is free and really adapted to theoretical reasoning.

The input of the algorithm is a monic irreducible polynomial f of degree n with integer
coefficients, and an integer bound y for the number of primes considered.
The output is the order of G if y is choosen large enough and the frequencies of all kinds of
cycle type that occur in G. They will allow us to match G with a transitive subgroup of Sn
to which G is isomorphic.

The algorithm proceeds as follows:
First it calculates 4f . Then it determines the set S of all primes p less than or equal to y
which do not divide 4f .
For every p ∈ S, it computes the factorization of f mod p, and then its factorization type
F . In fact we obtain an array of factorization types. We saw that for every such prime p
there exists σ of G with cycle type F . Then we can compute how many times each cycle
type occurs in G. Moreover, since identity (with cycle type (1, 1, 1, ...)) occurs only once in a
group, we can calculate the size of G (still providing that y is large enough).
To identify G, we will make use of a list of transitive subgroups of Sn.
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4.2 Matching with group of permutations Sd
In this section will appear the concrete results of this subject. At first time we recall some
basis about the symetric group, then we will have the necessary tools to compute Gal(N/Q).

4.2.1 The symetric group

Let n be a natural number. We define Sn as the set of all the bijections from [n] to [n].
Together with the composition law ◦, Sn is a group of order n!.

Let us describe the transitive subgroups of Sn for n 6 4. Actually we should know these
subgroups for all n. We can find them on softwares as GAP or Magma.

S1 = {id}

S2 = {id, (12)}
Transitive subgroups:
−S1
−S2

S3 = {id, (12), (13), (23), (123), (132)}
Transitive subgroups:
−S1
−A3 =< (123) >= {id, (123), (132)}
−S3

S4 = {id, (12), (13), (14), (23), (24), (34), (123), (132), (124), (142), (134), (143), (234), (243), (12)(34),
(13)(24), (14)(23), (1234), (1324), (1243), (1342), (1432), (1423)}

Transitive subgroups:
−S1
−V4 = {id, (12)(34), (13)(24), (14)(23)}
−C4 = {id, (31)(24), (1234), (1432)} (3 such subgroups)
−D4 = {id, (12), (34), (12)(34), (13)(42), (14)(32), (1324), (1423)} (3 such subgroups)
−A4 = {id, (123), (132), (124), (142), (134), (143), (234), (243), (12)(34), (13)(24), (14)(23)}
−S4

Here we present some results which characterize transitive subgroups of Sn.

Lemma 4.1: Let H be a transitive subgroup of Sn. Suppose H contains a 2-cycle and a
(n− 1)-cycle. Then H = Sn.

Proof: After a suitable reordering, let (1 2...n − 1) be the (n − 1)-cycle and consider the
2-cycle (i j) with i, j ∈ [n]. By transitivity of H there exists σ ∈ H such that σ(i j)σ−1 =
(k n) with k ∈ {1, ..., n − 1}. If k ≤ n − 2, (1 2...n − 1)(k n)(1 2...n − 1)−1 = (k + 1 n). If
k = n− 1, then the conjugation by the (n− 1)-cycle gives (1 n). Hence we obtain all cycles
(1 n), (2 n),... (n− 1 n) which generate Sn. �
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Lemma 4.2: Let p be a prime and H a subgroup of Sp. If H contains a 2-cycle and a
p-cycle, then H = Sn.

Proof: Let τ be a transposition of H. Without loose of generality, assume τ = (1 2). Then a
suitable power of a p-cycle in H has the form σ = (1 2...). After relabelling the objects other
than 1, 2.., we can assume that σ = (1 2 3...p). But then ∀i ∈ {0, 1, ...p− 2}, σiτσ−i = (i+ 1
i+ 2) ∈ H, and these elements generate Sp. �

Remark: The two last results are part of another reasoning which aims at computing G
without making use of Chebotarev density theorem. Actually they allow to reconstruct the
wanted transitive subgroup (if this one is for example Sn, as soon as we get (by Dedekind’s
theorem) a 2-cycle and a (n− 1)-cycle).

4.2.2 Matching Galois groups

Here we concretely compute the Galois group G of a polynomial f by using the previously
described algorithm. Denote by n(T ) the number of cycle type T appearance. Some examples
of matching will then illustrate our reasoning:

• f(x) = x2 − 2x− 1, y = 104

| G |= 2
n((2)) = 1
⇒ G ≈ S2, as we saw in the end of section 2.

• f(x) = x2 + 47x− 10, y = 104

| G |= 2
n((2)) = 1
⇒ G ≈ S2
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• f(x) = x3 + 19, y = 104

| G |= 6
n((2)) = 3, n((3)) = 2
⇒ G ≈ S3

• f(x) = x3 − 3x2 + 1, y = 104

| G |= 3
n((3)) = 2
⇒ G ≈ A3

• f(x) = x3 + 24x2 − 31x+ 2, y = 105

| G |= 6
n((2)) = 3, n((3)) = 2
⇒ G ≈ S3
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• f(x) = x4 + 5x3 + x2 − 2, y = 105

| G |= 24
n((2)) = 6, n((3)) = 8, n((4)) = 6, n((2, 2)) = 3
⇒ G ≈ S4

• f(x) = x4 + 3x2 − 1, y = 104

| G |= 8
n((2)) = 2, n((2, 2)) = 3, n((4)) = 2
⇒ G ≈ D4

• f(x) = x4 + 3x2 + 1, y = 104

| G |= 4
n((2, 2)) = 3
⇒ G ≈ V4
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• f(x) = x5 + 10x3 − 10x2 + 35x− 18, y = 106

As shown by computing:
| G |= 64, n((3)) = 21, n((5)) = 24, n((2, 2)) = 15
Considering that A5 is the transitive subgroup of S5 of degree 60 we might conclude
that⇒ G ≈ A5

• f(x) = x5 − 3x− 1, y = 106

| G |= 120
n((2)) = 9, n((3)) = 19, n((4)) = 29, n((5)) = 23, n((2, 2)) = 14, n((2, 3)) = 19
⇒ G ≈ S5

We can also note that if we compute G choosing y = 105, our output starts to be
unreliable:
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• f(x) = x7 − 3x3 + 3, y = 106

Knowing that | S7 |= 5040, we may match G with S7.

Moreover it can appear that y is not large enough to fall on the identity cycle type, and
then computing the size of G is not possible in this way. Therefore only the occurence
frequency of all kinds of cycle type allows us to identify G, through a probabilistic
analyze. Here we illustrate this phenomena:

• f(x) = x8 + x7 + 123x6 − 23x4 + 82x− 1, y = 104
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The question of the compromise between precision and runtime appears, notably with
higher degree polynomials as those which follow.

• f(x) = x7 + 2x5 − 7x+ 1 y = 106

deg(f) = 7 then | G | should not be greater than 7! = 5040. We cannot conclude in this
way.

• f(x) = x9 − x8 − x7 − 2x5 + 4x4 − 5x2 + 1, y = 106

By [4], the Galois group of f is A9, which order is 9!
2 = 181440. Here is another example

of unreliability, in spite of the choice y = 106.

Remark that the choice y = 107 will output a more precise computation, but will
make the runtime explode.
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4.3 Runtime study

As stated by Chebotarev density theorem, all data about G are available via the density
previously mentionned, which cannot be exactly obtained with a computer. That is why we
should look at a way to compute this result efficiently, finding compromise between runtime
and reliability.

The greater y will be chosen, the higher the reliability of the output (i.e. the size and structure
of G) will be.
Indeed, if y is large enough, the number of prime p which do not divide 4(f) will be large
enough to find and compute all kinds of cycle type in G and then well describe this group.
Concerning any group H, we know that identity represents 1

|H| of all the elements of H.
Then, after getting the frequency of the identity cycle type, we can immediatly find | G |. The
only problem is that this frequency has to be reliable (in case it is found! See the example
above with f(x) = x8 + x7 + 123x6 − 23x4 + 82x− 1).
Hence, for high degree polynomials, y should be taken very large. And our computer has
to run very fast... Obviously there must exist some optimized algorithms which allow in an
efficient way to work with big polynomials. However we will limit ourselves to an estimation
of the runtime of the presented algorithm.

The calculation of 4f does not depend on y, and since the coefficients of f (of degree
d) are bounded, we can assume that this task is done in O(d). Then we ask to find all
primes p less than y which take O(y) operations, using a prime number sieve. To test
if p divide 4f requires O(1). For each such prime, we do a factorization of f modulo
p which takes O(log(p)d2) operations. Hence the number of operations is here equal to
O(d) +O(y) + p ∗O(1) +O(log(p)d2) = O(d+ y + p+ log(p)d2) = O(y) for y large enough.
Finally to manipulate these data between lists and sequences in order to create all factoriza-
tion types and gather them requires the utilisation of two for loops of size O(y), that means
in average O(y2).
Hence we have a runtime corresponding to the computation of O(y2) operations.

Furthermore as shown in the following, y = 106 begins to slow the machine and takes around
5′′, however it allows reliability on polynomial until degree 7, provided that it is a "simple
polynomial", with less than 5 non-zero coefficients. To evaluate runtime with SAGE, we dis-
pose of the following command: "0/0time".

For instance: take f(x) = x3 + 3x2 − 1, put y = 103. We get | G |= 3, the correct fac-
torization types and how many times they occur, with a runtime t equal to 5s. Now take
y = 105, the output is also exact, but t = 1′′41s. Such a y is here not needed. On the other
hand take f(x) = x7−3x3+3, put y = 103. Even if t = 6s is "small", the output is not reliable,
since the number of p for which we get a factorization was too small to find the identity type
( however we know that if y is infinitely large, we are sure to find all factorization types).
Now put y = 106, we get | G |' 5040 which allows a correct matching in t = 1′′55s.

In conclusion, it seems to be an efficient algorithm if d 6 7, i.e. as long as y = 106 al-
lows reliability. For higher y, on the standard laptop we work with, computing is very time
consuming.
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5 Appendix
The SAGE code of our algorithm is the following:
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