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1 Introduction

1.1 Setting
In this subject based on the article [1], we will study the phenomena of factorization of polynomials
into irreducibles over Z/pnZ[x]. Indeed if the factorisation is unique over Z/pZ (p prime), it’s far
from being the same over Z/pnZ[x].

We will show that the elasticity of the multiplicative monoid of monic polynomials in Z/pnZ[x]
is infinite since it is a direct sum of monoids corresponding to irreducible polynomials in Z/pZ[x]
and that each of these monoids has infinite elasticity.

By using a few properties concerning uniqueness of some kinds of factorizations of polynomials
over Z/pnZ[x], we can generalize the non-uniqueness of factorization into irreducibles to arbitrary
non-zero polynomials. In fact, we can reduce the question of factoring arbitrary non-zero polyno-
mials into irreducibles to the problem of factoring monic polynomials into monic irreducibles.

Throughout this paper, p is prime and n ≥ 2 (p denotes also its residue class in Z/pnZ or in
Z/pnZ[x]). Π defines the canonical projection from Z/pnZ[x] to Z/pZ[x].
M is the multiplicative cancellative monoid of non-zerodivisors of Z/pnZ[x].
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1.2 Unique factorization over Z/pZ[x]
Let R be a commutative ring and let us define :

T={u ∈ R | u is an unit } ∪ {p1...pn ∈ R | pi is prime and n ∈ N}

Theorem 1.1 (Kaplansky) : An integral domain R is a UFD if and only if every non-zero
prime ideal in R contains a prime element.

Proof: If R is a field the proof in trivial since the only ideals are (0) and R.
(⇒) Let P be a non-zero prime ideal, then P is proper and there is non-zero x ∈ P which is not
a unit. Since x is not a unit and x ∈ T , there are prime elements p1, . . . , pk ∈ R such that
x = p1....pk ( R is a UFD if and only if T = R \ {0} ). Since P is prime ∃i such that pi ∈ P .
(⇐) Assume that R is not a UFD. Then there is a non zero x ∈ R such that x 6∈ T . Consider the
ideal (x). We will show, that (x) ∩ T = ∅. Assume that there is r ∈ R such that r.x ∈ T . Then it
follows that x ∈ T (since if a, b ∈ R are such that a.b ∈ T , then both a, b ∈ T ) which is a
contradiction.
Since (x) ∩ T = ∅ and T is a multiplicative subset, there is a prime ideal P in R such that
(x) ⊆ P and P ∩ T = ∅. Since we assumed that every non-zero prime ideal contains prime
element (and P is nonzero, since x ∈ P ),we obtain a contradiction, which completes the proof. �

Theorem 1.2 : Every principal ideal domain is a unique factorization domain.

Proof: Recall that, due to Kaplansky Theorem it is enough to show that every non-zero prime
ideal in R contains a prime element.
On the other hand, recall that an element p ∈ R is prime if and only if the ideal (p) generated by
p is non-zero and prime.
Thus if P is a nonzero prime ideal in R, then (since R is a PID) there exists p ∈ R such that
P = (p). This completes the proof. �
We conclude then, that Z/pZ[x] is a unique factorization domain since it is a PID.

Example 1.3 : In Z/3Z[x] , Q = x3 + x2 + x then Q = x.(x+ 2)2 is the unique factorization
into irreducibles of Q.

1.3 An example of the phenomema over Z/pnZ[x]
(xm + pn−1)2 = xm(xm + 2.pn−1)

Consider the equality above. Let us assume that the concept of irreducibility in Z/pnZ[x] is
analogous to the concept of irreducibility in integral domains and that Z/pnZ[x] is atomic (every
element has a factorization into irreducible elements).
By using the unique factorization in Z/pZ[x], we can prove that (xm + pn−1) is a product of at
most (n − 1) irreducibles. Indeed, this polynomial represents a power of x in Z/pZ[x], then by
unique factorization each of their factors in Z/pnZ[x] must represent a power of x in Z/pZ[x](apart
from units since (Z/pZ)∗ = (Z/pZ[x])∗ and a polynomial in Z/pnZ[x] is a unit if and only if it
maps to a unit in Z/pZ[x] under the canonical projection Π). Then, the constant coefficient of
every such factor is divisible by p. Since (xm + pn−1) is divisible by no higher power of p than
n− 1, (xm + pn−1)2 is divisible by no higher power of p than 2(n− 1).
Hence, for arbitrary m ∈ N, there exists in Z/pnZ[x] a product of at most 2(n − 1) irreducibles
that is also representable as a product of more than m irreducibles without any condition on m.
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2 Definition of the elasticity and non-uniqueness of factor-
ization of some monic polynomials

Definition 2.1 : Suppose that S is a set and (.) is some binary operation S × S → S, then S
with (.) is a monoid if it satisfies the following two axioms:
-Associativity: For all a, b and c in S, the equality (a.b).c = a.(b.c) holds.
-Identity element: there exists an element e in S such that for every element a in S, the
equations e.a = a.e = a hold.
In other words, a monoid is a semigroup with an identity element.

Definition 2.2 : A submonoid of a monoid (S, .) is a subset N of S that is closed under the
monoid operation and contains the identity element e of S. In other words, N is a submonoid of
S if N ⊆ S and x.y ∈ N whenever x, y ∈ N and e ∈ N .

Definition 2.3 : Let (S, .) be a semigroup together with a partial order 6. We say that his order
is compatible with the semigroup operation, if x 6 y ⇒ t.x 6 t.y and x.t 6 y.t for all x, y, t ∈ S.

Definition 2.4 : Let S be a semigroup. An element a ∈ S is left cancellative (respectively right
cancellative) if a.b = a.c implies b = c for all b and c in S (respectively if ba = ca implies b = c).
If every element in S is both left cancellative and right cancellative, then S is called a
cancellative semigroup.

Definition 2.5 : Let (S, .) be a cancellative monoid.
(i) For k ≥ 2, let φk(S) be the supremum of all those m ∈ N for which there exists a product of k
irreducibles that can also be expressed as a product of m irreducibles.
(ii) The elasticity of S is sup

k>2
(Φk(M)

k ), in other words, the elasticity is the supremum of the

values m
k such that there exists an element of M that can be expressed both as a product of k

irreducibles and as a product of m irreducibles.

Lemma 2.6 : Let f be a monic polynomial in Z/pnZ[x] which maps to an irreducible
polynomial in Z/pZ[x]. Let d = deg(f). Let n, k ∈ N with 0 < k < n and m ∈ N with
gcd(m, kd) = 1 and c ∈ Z with p - c. Then:

f(x)m + cpk

is an irreducible polynomial in Z/pnZ[x].

Proof: Suppose otherwise. Then ∃ g, h, r ∈ Z[x], with g, h monic and g irreducible in Z/pnZ[x],
such that:

f(x)m + cpk = g(x)h(x) + pnr(x)

and 0 < deg g < dm. By using the unique factorization in Z/pZ[x], g is a power of f modulo p.
Therefore, deg g = ds with 0 < s < m. Let α be a zero of g. Let A be the ring of algebraic
integers in Q[α]. Then by ’Splitting of prime ideals in Galois extensions’ we have that
pA = P e1

1 ...P er
r and [Q[α] : Q] =

∑
i

ei.[A/Pi : Z/pZ] = deg g = ds. Let w∗P1
the normalized

valuation on Q[α] corresponding to P1 (see section 3,3.1). Since f(α)m = pnr(α)− cpk, we have
m.w∗P1

(f(α)) = ke1. As m is relatively prime to k, m divides e1. By the same reasoning, we have
that m divides ei for i ∈ 1, ..., r then m divides deg g = [Q[α] : Q] =

∑
i

ei.[A/Pi : Z/pZ] = ds. As

m is relatively prime to d, m divides s, which is a contradiction since 0 < s < m. �

Theorem 2.7 : Let n ≥ 2. Let f be a monic irreducible polynomial in Z/pZ[x]. Let Mf be the
submonoid of the multiplicative monoid M consisting of those monic polynomials g ∈ Z/pnZ[x]
whose image under Π is a power of f . Then the elasticity of Mf is infinite . Moreover,
Φ2(Mf ) =∞.
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Proof: Let us, by abuse of notation, denote by g a monic polynomial in Z/pnZ[x] which maps
under Π to the irreducible polynomial f in Z/pZ[x].
Let q be a prime with q > max(n− 1, deg(g)). By Lemma 2.6, g(x)q + pn−1 is irreducible in
Z/pnZ[x]. Let us consider the equality:

(g(x)q + pn−1)2 = g(x)q(g(x)q + 2.pn−1)

This is an example of factorization of a polynomial in Mf into (on the left) 2 irreducible factors
and by using the Lemma 2.6, (on the right) q+ 1 irreducible factors (if p 6= 2) and 2q (if p = 2).
As q can be made arbitray large, then φ2(Mf ) =∞ and the elasticity of Mf is infinite. �

Since Mf is fully elastic, we conclude that the factorization of monic polynomials (whose image
under Π is a power of an irreducible) into irreducibles over Z/pnZ[x] is not unique. The aim is
now to generalize the result to all monic polynomials and then to non-zerodivisors and then to
arbitrary polynomials.

3 Commutative rings with harmless zero-divisors
Definition 3.1 : We extend p-adic valuation to Z[x] by v∗(f) = minkv(ak) where v is the usual
p-adic valuation on Z and f =

∑
k akx

k.
v∗ defines a surjective mapping v∗ : Z[x] → N0 ∪ {∞}. Let us denote by (Nn,+,6) the ordered
monoid with elements 0, 1, ..., n−1,∞, resulting from factoring (N0∪{∞},+,6) by the congruence
relation that identifies all values greater or equal than n, including ∞, by abuse of notation, we
will use v∗ for the surjective mapping v∗ : Z/pnZ[x]→ Nn obtained by factoring p-adic valuation
v∗ : Z[x]→ N0 ∪ {∞} by the same congruence relation. Indeed, v∗ : Z/pnZ[x]→ Nn behaves like
a valuation, except that (Nn,+) is not a group and cannot be extended to a group, as it is not
cancellative.

Proposition 3.2: v∗ : Z/pnZ[x]→ Nn satisfies:
(i) v∗(f) =∞⇐⇒ f = 0.
(ii) v∗(f + g) > min(v∗(f), v∗(g)).
(iii) v∗(fg) = v∗(f) + v∗(g).

Proposition 3.3 : For f ∈ Z/pnZ[x], the following are equivalent:
(i) v∗(f) > 0 (all coefficients of f are divisible by p).
(ii) f is nilpotent.
(iii) f is a zero-divisor.

Proof:
(i)⇒ (ii) Let us consider f =

∑
k akx

k. Since v∗(f) > 0 all the coefficients of are divisible by p.
Then, f =

∑
k p.a

′
kx

k such that for each k, ak = p.a′k. Then f = p.(
∑

k a
′
kx

k), and
fn = pn.(

∑
k a
′
kx

k)n = 0. Therefore f is nilpotent.
(ii)⇒ (iii) Let us asume that f is nilpotent. Then ∃k ∈ N such that fk = 0 and fk−1 6= 0. Then
f.fk−1 = 0 and f is a zero-divisor (f 6= 0).
(iii)⇒ (i) Let us consider f ∈ Z/pnZ[x] such that f is a zero-divisor then ∃g ∈ Z/pnZ[x] such
that g 6= 0 and f.g = 0. Then the lift of f.g in Z[x] is a multiple of pn . Then by using properties
of v∗ in Z[x], we have v∗(f.g) = v∗(f.g) = v∗(f).v∗(g) = n. Since g 6= 0, we have v∗(g) < n. So
we conclude that v∗(f) > 0 and v∗(f) > 0. �

Definition 3.4 : Let R be a commutative ring.
(i) Nil(R) denotes the nilradical of R, i.e. the set {r ∈ R,∃n ∈ N, rn = 0}.
(ii) J(R) denotes the Jacobson radical of R, i.e. the intersection of all maximal ideals of R.
(iii) Z(R) denotes the set of zero-divisors of R.
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Proposition 3.5 : Nil(R) = {r ∈ R,∃n ∈ N, rn = 0} = ∩
Pprime

P

Proof:
(⊆) : Let r ∈ Nil(R), then ∃n ∈ N such that rn = 0 ∈ P ( P prime). Since P is prime we have
r ∈ P , and r ∈ ∩

Pprime
P .

(⊇): Let r ∈ ∩
Pprime

P , and let us suppose that r /∈ Nil(R). Let E be the set of ideals which

contain no power of r. E is non-empty, because E contains (0). By using Zorn’s lemma, E has a
maximal ideal, let us denote it by P . Then P contains no power of r and P ( R. Let us now
show that P is prime. Consider x, y /∈ P such that xy ∈ P .
x /∈ P ⇒ P ( P +R.x. But P is maximal in E, then P +R.x /∈ E and contains a power of r.
Hence ∃k > 0, q ∈ P and s ∈ R such that rk = q + s.x. By the same reasoning, ∃l > 0, q′ ∈ P
and t ∈ R such that: rl = q′ + ty. By using these equalities, we have:

rk+l = qq′ + q(ty) + q′(sx) + (st)xy

We remark that rk+l /∈ P but qq′ + q(ty) + q′(sx) + (st)xy ∈ P which is a contradiction. Then
x ∈ P or y ∈ P and P is prime. This completes the proof and r ∈ Nil(R). �

Proposition 3.6 : Let Q be a maximal ideal of Z[x], then Q is of the form:

Q = (p, f(x))

Where f ∈ Z[x] such that f represents an irreducible polynomial in Z/pZ[x].

Proof: Let us consider Q an arbitrary maximal ideal of Z[x], and denote by K the quotient ring
Z[x]/Q which is a field. Consider θ : Z→ K the composition of the two natural maps :

α : Z ↪→ Z[x]
and

α′ : Z[x]→ K

θ is not injective. Suppose θ is injective, then, since K is a field, θ extends to an injection
θ′ : Q ↪→ K and then α′ to a homomorphism β′ : Q[x]→ K

The map β′ is clearly surjective, since α′ already is. Now, if β′ is injective, we will have an
isomorphism Q[x] ' K, but Q[x] is not a field. Therefore, Ker(β′) = (g(x)) for a non-zero
polynomial g, which must be then irreducible. By replacing g with a non-zero constant multiple,
we can assume that g is primitive polynomial in Z[x]. We thus have an isomorphism
Q[x]/(g) ' K. But this will imply that the natural map Z[x] ↪→ Q[x] induces a surjection
Z[x]→ Q[x]/(g) which will induce an isomorphism Z[x]/(g) ' Q[x]/(g), let us show that is a
contradiction. If we consider g(x) = anx

n + an−1x
n−1 + ....+ a1x+ a0 (with an 6= 0), then we

have in Q[x]/(g):

anxn + an−1xn−1 + .....+ a0 = 0

So we can write,

xn = (−an−1

an
)xn−1 + ....+ (−a1

an
)x+ (−a0

an
)
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Then xn can be written as linear combination of lower powers with coefficients in Z[ 1
an

]. Using
this and an easy induction, we deduce that any polynomial in Q[x]/(g) can be written as linear
combination of elements in the set B = {1, x, x2, ..., xn−1}. It is clear that

∑
i∈{0..n−1}

cix
i = 0

implies that
∑

i∈{0..n−1}
cix

i ∈ (g(x)) (B is linearly independent in Q[x]/(g)). By examining

degrees, we must have ci = 0 for all i. Now, take p prime that does not divide an. Then 1
p

cannot be spanned by B with coefficients in Z[ 1
an

]. We know now that θ is not injective and then
Ker(θ) = (n) for some n non-zero. However, since the image of θ is an integral domain, n must
be a prime p. Therefore, we must have p ∈ Q for some prime p. We know that the maximal
ideals in Z[x] that contain p are in bijection with the maximal ideals in Z[x]/(p) ' Z/pZ[x]. So
Q/(p) = (f0(x)) for an irreducible polynomial f0 ∈ Z/pZ[x]. But then Q = (p, f(x)) for any lift f
of f0, as was to be shown. �

Proposition 3.7 : Nil(Z/pnZ[x]) = J(Z/pnZ[x]) = (p) = Z(Z/pnZ[x])

Proof: By Proposition3.3 we have (p) = Nil(Z/pnZ[x]) = Z(Z/pnZ[x]). Let us now prove that
J(Z/pnZ[x]) = (p). We know by Proposition 3.6 that the ideals (p, f) with f representing an
irreducible polynomial in Z/pZ[x] are precisely the maximal ideals of Z[x]. Let us denote by λ
the canonical projection from Z[x] into Z/pnZ[x]. Consider J a maximal ideal of Z/pnZ[x], then
λ−1((J)) is a maximal ideal of Z[x]. Then λ−1((J)) = (p, f) with f irreducible modulo p. Then
J = λ(λ−1(J)) = λ((p, f)) = (p, f). Then J(Z/pnZ[x]) = ∩

i
(p, fi) = (p) such that fi represents

an irreducible polynomial in Z/pZ[x]. �

Definition 3.8 : Let R be a commutative ring. Let a, b ∈ R, c ∈ R a non-zero non-unit. We say
that:
(i) c is weakly irreducible if: c = ab =⇒ c | a or c | b.
(ii) a and b weakly associated if a | b and b | a (or equivalently (a) = (b)).
(iii) R is atomic (respectively weakly atomic) if every non-zero non-unit is a product of
irreducibles (respectively weakly irreducibles) elements.

Definition 3.9 : Let R be a commutative ring. We say that R is a ring with harmless
zero-divisors if Z(R) ⊆ 1− U(R) = {1− u | u an unit of R}.

Lemma 3.10 : R be a ring with harmless zero-divisors and a, b, c, u, v ∈ R. Then:
(i) if a 6= 0, a = bu and b = av then u, v are units.
(ii) a, b are weakly associated if and only if they are associated.
(iii) c is weakly irreducible if and only if c is irreducible.
(iv) if c is prime, then c is irreducible.

Proof: (i) Let us consider a = bu and b = av with a 6= 0. Then a(1− vu) = 0 then (1− vu) is a
zero-divisor, then ∃w a unit such that 1− vu = 1− w then vu = w and u, v are units.
(ii) we have a | b and b | a⇐⇒ ∃u, v such that a = bu and b = av then by (i) u and v are units
then a and b are associated.
(iii) Suppose that c = ab since c is weakly irreducible then c | a or c | b, ∃u, v such that a = cu or
b = cv then by (i) u, b are units or v,a are units.
(iv) Let c = ab then c | ab. Since c is prime c | a or c | b then c is weakly irreducible and then
irreducible. �

Corollary 3.11 : If a commutative ring R satisfies Z(R) ⊆ J(R) then the statements of the
Lemma 3.10 hold.

Proof: Let us first prove that for any commutative ring R, J(R) ⊆ 1− U(R). Let us consider
x ∈ J(R) such that 1− x is a non-unit, then ∃S a maximal ideal such that 1− x ∈ S. Since J(R)
is the intersection of all maximal ideals, x ∈ S and then 1 = (1− x) + x ∈ S. This is a
contradiction. By using this result, we have that Z(R) ⊂ J(R) ⊂ 1− U(R) and then every
commutative ring such that Z(R) ⊂ J(R) is a ing with harmless zero-divisors. �
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Proposition 3.12 : Z/pnZ[x] is a ring with harmless zero-divisors.

Proof: Directly from the Proposition 3.7 and Corollary 3.11. �

Definition 3.13 : We say that a commutative ring R satisfies the ascending chain condition for
principal ideals (ACCP) if there is no infinite strictly ascending chain of principal ideals.

Theorem 3.14 : If R is a commutative ring which satisfies ACCP then R is weakly atomic.

Proof: Let us suppose that there exists r ∈ R such that r non-zero non-unit that cannot be
expressed as a product of weakly irreducible elements. Then r is not weakly irreducible and ∃a, b
such that at least one of them is non-zero non-unit (since r is non-zero non unit) with r = ab.
Suppose that a is non-zero non unit, a | r and r - a then (r) $ (a). By iteration on (a) we obtain
(c) (with c non-unit non-zero) such that (r) $ (a) $ (c) and so on... We get then an infinite
ascending chain of principal ideals which is a contradiction. �

Lemma 3.15 : Every commutative ring with harmeless zero-divisors satisfying ACCP is atomic.

Proof: By using the Theorem 3.14 we have that every commutative ring with ACCP is weakly
atomic, every non-zero non-unit is a product of weakly irreducible elements. By Lemma 3.9
every such factor is irreducible then we obtain a product of irreducible elements. �

Corollary 3.16 : Z/pnZ[x] is atomic.

In this section, we proved that in commutative rings the concept of harmless zero-divisors
permits to avoid the problems with defining the concepts of irreducibility and primality which
appear as soon as zero-divisors are engaged. Then we establish a relationship between ’weaker’
concepts (weakly irreductible, weakly associative) and ’stronger’ ones, especially for Z/pnZ[x].
Therefore, we will be interested particulary in the non-zerodivisors, then in monic polynomials
and finally in the monic primary polynomials.

4 Uniqueness of some kinds of factorizations over Z/pnZ[x]

4.1 Arbitrary polynomials to non-zerodivisors
Lemma 4.1 : Let f ∈ Z/pnZ[x]. Then the following are equivalent:
(i) f = pu for some u ∈ U(Z/pnZ[x])
(ii) f is prime
(iii) f is irreducible and a zero-divisor

Proof:
(i)⇒ (ii) p is prime in Z/pnZ[x] (since v∗(p) = 1), f is asociated to p, then f is prime as well.
(ii) ⇒ (iii) by Lemma 3.9 f is prime then f is irreducible. Moreover the ideal (f) is prime and
by Propositon 3.6 (p) = Nil(Z/pnZ[x]) ⊆ (f) then f | p and p and f are associated. Since p is
a zero-divisor, f is a zero-divisor as well.
(iii) ⇒ (i) f is a zero-divisor, then (f) ⊆ Z(Z/pnZ[x]) = (p), then ∃u ∈ Z/pnZ[x] such that
f = pu. Moreover, f is irreducible then u must be a unit. �

Proposition 4.2 :
(i) Let f ∈ Z/pnZ[x] a non-zero polynomial,there exists a non-zerodivisor g and 0 6 k 6 n, such
that f = pkg. Furthermore, k is uniquely determined by k = v∗(f), and g is unique modulo pn−k.
(ii) In every factorisation of f into irreducibles, we have exactly v∗(f) factors associated to p.
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Proof:
(i) We have by Proposition 3.3 if f is a zero-divisor, k = v∗(f) > 0, if not k = v∗(f) = 0.
Moreover, ∃g ∈ Z/pnZ[x] such that f = pkg. Uniqueness of g: let us assume that it exists g′
which satisfies the same condition, and g 6= g′ we have in Z[x] : f = pkg = pkg′ ⇒ pk(g − g′) = 0
then by using the properties of the p-adic valuation we have:
v∗(pk(g − g′)) = v∗(pk) + v∗(g − g′) = k + v∗(g − g′) = n then v∗(g − g′) = n− k but we have
v∗(g − g′) 6 min(v∗(g), v∗(g′)) = 0 then n = k and f = 0 (in Z/pnZ[x]). Contradiction.
(ii) It follows directly from (i) since we have v∗(f) = k and p prime in Z/pnZ[x] then irreducible
in Z/pnZ. �

4.2 Non-zerodivisors to monic polynomials
Proposition 4.3 : Let R be a commutative ring. The units of R[x] are precisely the polynomials
a0 + a1x+ ....+ anx

n with a0 a unit of R and al nilpotent for all l > 0.

Proof: Let us consider f = a0 + a1x+ ....+ anx
n and P prime ideal, then its image under

projection to (R/P )[x] is an unit. Since P is prime (R/P ) is an integral domain, and
U((R/P )[x]) = U(R/P ), therefore a0 is not in any P and hence an unit, and for l > 0, al is in
every P and therefore nilpotent. Conversely, if f = a0 + h with a0 an unit of R and all
coeficients of h nilpotent (in the intersection of all prime ideals of R) then h is in every prime
ideal of R[x] and hence f = a0 + h is in no prime ideal of R[x] and then an unit of R[x]. �

Corollary 4.4 : The units of Z/pnZ[x] are precisely the polynomials f = a0 + a1x+ ...+ anx
n

such that (in Z/pnZ) p - a0 and p | al for all l > 0. Then a polynomial in Z[x] is a unit in
Z/pnZ[x] for some n > 1 if and only if is a unit in Z/pnZ[x] for all n.

Proof: By Proposition 3.7 and Proposition 4.3. a0 is an unit in Z/pnZ[x] then not a
zero-divisor and v∗(a0) = 0 and p - a0. For l > 0 al is nilpotent then v∗(al) > 0 and p | al �

Theorem 4.5 : If f is a non-zerodivisor, then f is uniquely representable as f = uh with
u ∈ Z/pnZ[x] an unit and h monic with deg(h) = deg(f) where f is the image of f under the
canonical projection Π.

Proof: (Uniqueness only) Suppose that f = uh = vg with u, v ∈ Z/pnZ[x] units and h, g monic.
Then v−1uh = g. As h, g are monic, so is v−1u. Knowing that the only monic unit in Z/pnZ[x]
is 1, we obtain that u = v and g = h. �

Proposition 4.6 : Let f ∈ Z/pnZ[x], not a zero-divisor. For every factorisation of f f = c1...ck
into irreducibles, there exists uniquely determined monic irreducible d1, ...., dk ∈ Z/pnZ[x] and
units v1, ..., vk ∈ Z/pnZ[x] with ci = vidi.

Proof: Since f is a non-zerodivisor, ci is a non-zerodivisor ∀i ∈ {1....k}. Then by the Theorem
4.5, we have unique unit and monic polynomial vi and di such that ci = vidi, then
f = c1....ck = v1d1...vkdk = (v1...vk).d1...dk ( with v1...vk a unit) �

Remark 4.7 : By the Theorem 4.5 and Corollary 4.4 we conclude that (u, h) is uniquely
determined by h = d1....dk and u = c1....ck.
Every non-zero divisor has then only finetely many factorisations into irreducibles (up to
associates).

4.3 Monic polynomials to primary monic polynomials
Definition 4.8 : Let R be a commutative ring, and I an ideal of R. We define the radical of I,
the ideal such that an element x is in the racidal if some power of x is in I. We denote it by
Rac(I)
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Definiton 4.9 : Let I be a proper ideal of Z/pnZ[x], I is said to be primary if whenever xy ∈ I
then x ∈ I or for some a natural number t > 0 yt ∈ I.

Definition 4.10 : We call a non-zerodivisor of Z/pnZ[x] primary if its image under projection
to Z/pZ[x] is associated to a power of an irreducible polynomial.

Proposition 4.11: An ideal of Z/pnZ[x] that does not consist only of zero-divisors is primary if
and only if its radical is a maximal ideal.

Proof: ⇒ Let us take I a primary ideal of Z/pnZ[x]. Let us consider f1f2 ∈ Rac(I) then ∃t ∈ N
such that (f1f2)t = f t1f

t
2 ∈ I since I is primary f t1 ∈ I or f tk2 ∈ I then f1 ∈ Rac(I) or

f2 ∈ Rac(I) then Rac(I) is prime.
⇐ Let us consider an ideal I such that Rac(I) is maximal. We have I ⊆ Rac(I), since Rac(I) is
maximal, Rac(I) prime then I is prime (in particular primary) and (p) = Z(Z/pnZ[x]) ( I, then
I is primary and does not consist only of zero-divisors. �

Lemma 4.12 : Let f ∈ Z/pnZ[x], not a zero-divisor. Then (f) is a primary ideal of Z/pnZ[x] if
and only if the image of f under the canonical projection Π is associated to a power of an
irreducible polynomial in Z/pZ[x].

Proof: In the PID Z/pZ[x], the non-trivial primary ideals are precisely the principal ideals
generated by powers of irreducible elements. We note that the projection Π induces a bijection
between primary ideals of Z/pZ[x] and primary ideals of Z/pnZ[x] containing (p), then if the
image f of f under Π is associated to a power of an irreducible polynomial in Z/pZ[x], the image
f belongs to a primary ideal I, then (f) is also primary and then (f) which contains (p) is
primary in Z/pnZ[x]. Conversely, we know by Proposition 4.11 that the radical of (f) is
maximal (in particular prime), by using the fact that every prime ideal of Z/pnZ[x] contains (p).
We have (p) ⊆ Rac((f)) hence Rac((f)) = Rac((f) + (p)). But (f) + (p) = Π−1(Π((f)))
therefore, for a non-zerodivisor f , (f) is primary if and only if Rac(f) is maximal which is
equivalent to (f) + (p) being primary which is equivalent to Π(f) being a primary element of
Z/pZ[x]. �

Theorem 4.13 : (Hensel’s Lemma) Every monic f ∈ Z/pnZ[x] is a product of primary
polynomials. Furthermore, the monic primary factors of a monic polynomial in Z/pnZ[x] are
uniquely determined.

Theorem 4.14 : Let f ∈ Z/pnZ[x] monic, then there exist monic polynomials
f1, ...., fr ∈ Z/pnZ[x] such that f = f1....fr and the residue class of fi in Z/pZ[x] is a power of a
monic irreducible polynomial gi ∈ Z/pZ[x] with g1....gr distinct. The polynomials
f1....fr ∈ Z/pnZ[x] are primary and uniquely determined (up to ordering).

(Proof omitted)

5 Non-unique factorization over Z/pnZ[x]
Proposition 5.1 : Every non-zero polynomial f ∈ Z/pnZ[x] is representable as :

f = pkuf1.....fr

with 0 6 k < n, u a unit of Z/pnZ[x], r > 0, and f1, ..., fr ∈ Z/pnZ[x] monic polynomials such
that the residue class of fi in Z/pZ[x] is a power of a monic irreducible polynomial gi ∈ Z/pZ[x]
and g1, ...., gr are distinct. Moreover, k ∈ N is unique, u is unique modulo pn−kZ/pnZ[x] and
also fi are unique (up to ordering) modulo pn−kZ/pnZ[x].

Proof: Follows directly from: 4.2, 4.6, 4.14. �
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Theorem 5.2 : Let M ′ be the submonoid of M consisting of all monic polynomials of Z/pnZ[x]
and U its group of units. Then:

M ' U
⊕
M ′

Furthermore: M ′ '
∑

f Mf where f ranges through all monic irreducible polynomials of Z/pZ[x].

Proof: Follows directly from previous statements of uniqueness of factorization into unit and
monic primary polynomials. �

Corollary 5.3 : The elasticity of M ′ is infinite and Φ2(M ′) =∞. Therefore the elasticity of M
is infinite as well.

Proof: We proved in the Theorem 2.7 that the elasticity of each Mf is infinite, then M ′ as an
infinite direct sum of monoids Mf has an infinite elasticity and satisfies Φ2(M ′) =∞. Moreover
M is full elastic also. �

6 Algorithm on sage and some examples

6.1 The algorithm
We aim at computing the factorizations of a monic polynomial P in Z/pnZ[X].
As we expect, the inputs should be the polynomial P , a prime p and a positive integer n. The
algorithm starts by computing the factorization of P modulo p, which is unique since Z/pZ[x] is
a UFD.
Then we need to define a function (called "factor") to compute the factorizations of upper
degrees. The algortihm proceeds as follows:
After computing the factorization of P into irreducible factors in the field Z/pZ[x], we use the
function factor(., .) n-1 consecutive times.
This function gets a list and returns an other list. The function considers each element of the
input list (namely a factorization), builds m = deg(P ) variables (called t0, t1..., tm−1 ∈ Z/pZ)
and constructs a list L with all the coefficients ai > 0 of each factor of the considered
factorization (except for the higher degree). For instance, if we work on factorizations in Z/prZ
with 0 < r 6 n, we change all the coefficients ai of L into ai + ti ∗ pr and reconstruct the factors
with these new coefficients, according to the corresponding degrees. Then we expand the
product of the new factors, we subtract P and get a polynomial function l of which each
coefficient is divisible by pr. This constitute a system of modular equations that we solve by
using ”solve−mod”.
We can divide l by pr, then each of its coefficients has to equal 0 modulo p, this allows easier
calculations.
Afterwards we reconstruct all the new factorizations by replacing all the ti by their
corresponding solution given by solve−mod, and get the factorizations of P in Z/pr+1Z.
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The algorithm is this:
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6.2 Some examples
Some examples will here illustrate the previous reasoning. Remark that the algorithm returns
only the new factorizations, in moving from Z/prZ to Z/pr+1Z.

• P = x3 + 2x2 + x, p = 2, n = 10
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• P = x3 + 2x2 + x, p = 7, n = 5

• P = x7 − 15x4 + 2x3 − 8x2 − 16x, p = 2, n = 4
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• P = x2 + 2x+ 1, p = 5, n = 4

(We cannot display the whole output)
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• P = x2 + 2x+ 1, p = 13, n = 4
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• P = x6 + x5 − x4 + 2x3 + 11x2 − 12x, p = 3, n = 8

• P = x6 + x5 − x4 + 2x3 + 11x2 − 12x, p = 2, n = 8
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