Master in Mathematics

University of Luxembourg

Student Project

Factorisation of polynomials over $\mathbb{Z} / p^{n} \mathbb{Z}[x]$

Author : Salima LAMHAR

Contents

1 Introduction 2
1.1 Setting 2
1.2 Unique factorization over $\mathbb{Z} / p \mathbb{Z}[x]$ 3
1.3 An example of the phenomema over $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ 3
2 Definition of the elasticity and non-uniqueness of factorization of some monic polynomials 4
3 Commutative rings with harmless zero-divisors 5
4 Uniqueness of some kinds of factorizations over $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ 8
4.1 Arbitrary polynomials to non-zerodivisors 8
4.2 Non-zerodivisors to monic polynomials 9
4.3 Monic polynomials to primary monic polynomials 9
5 Non-unique factorization over $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ 10
6 Algorithm on sage and some examples 11
6.1 The algorithm 11
6.2 Some examples 13
7 References 18
8 Acknowledgement 18

1 Introduction

1.1 Setting

In this subject based on the article [1], we will study the phenomena of factorization of polynomials into irreducibles over $\mathbb{Z} / p^{n} \mathbb{Z}[x]$. Indeed if the factorisation is unique over $\mathbb{Z} / p \mathbb{Z}$ (p prime), it's far from being the same over $\mathbb{Z} / p^{n} \mathbb{Z}[x]$.

We will show that the elasticity of the multiplicative monoid of monic polynomials in $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ is infinite since it is a direct sum of monoids corresponding to irreducible polynomials in $\mathbb{Z} / p \mathbb{Z}[x]$ and that each of these monoids has infinite elasticity.

By using a few properties concerning uniqueness of some kinds of factorizations of polynomials over $\mathbb{Z} / p^{n} \mathbb{Z}[x]$, we can generalize the non-uniqueness of factorization into irreducibles to arbitrary non-zero polynomials. In fact, we can reduce the question of factoring arbitrary non-zero polynomials into irreducibles to the problem of factoring monic polynomials into monic irreducibles.

Throughout this paper, p is prime and $n \geq 2$ (p denotes also its residue class in $\mathbb{Z} / p^{n} \mathbb{Z}$ or in $\left.\mathbb{Z} / p^{n} \mathbb{Z}[x]\right)$. Π defines the canonical projection from $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ to $\mathbb{Z} / p \mathbb{Z}[x]$.
M is the multiplicative cancellative monoid of non-zerodivisors of $\mathbb{Z} / p^{n} \mathbb{Z}[x]$.

1.2 Unique factorization over $\mathbb{Z} / p \mathbb{Z}[x]$

Let R be a commutative ring and let us define :

$$
T=\{u \in R \mid u \text { is an unit }\} \cup\left\{p_{1} \ldots p_{n} \in R \mid p_{i} \text { is prime and } n \in N\right\}
$$

Theorem 1.1 (Kaplansky) : An integral domain R is a UFD if and only if every non-zero prime ideal in R contains a prime element.
Proof: If R is a field the proof in trivial since the only ideals are (0) and R.
(\Rightarrow) Let P be a non-zero prime ideal, then P is proper and there is non-zero $x \in P$ which is not a unit. Since x is not a unit and $x \in T$, there are prime elements $p_{1}, \ldots, p_{k} \in R$ such that $x=p_{1} \ldots p_{k}$ (R is a UFD if and only if $\left.T=R \backslash\{0\}\right)$. Since P is prime $\exists i$ such that $p_{i} \in P$.
(\Leftarrow) Assume that R is not a UFD. Then there is a non zero $x \in R$ such that $x \notin T$. Consider the ideal (x). We will show, that $(x) \cap T=\emptyset$. Assume that there is $r \in R$ such that $r . x \in T$. Then it follows that $x \in T$ (since if $a, b \in R$ are such that $a . b \in T$, then both $a, b \in T$) which is a contradiction.
Since $(x) \cap T=\emptyset$ and T is a multiplicative subset, there is a prime ideal P in R such that $(x) \subseteq P$ and $P \cap T=\emptyset$. Since we assumed that every non-zero prime ideal contains prime element (and P is nonzero, since $x \in P$), we obtain a contradiction, which completes the proof.
Theorem 1.2 : Every principal ideal domain is a unique factorization domain.
Proof: Recall that, due to Kaplansky Theorem it is enough to show that every non-zero prime ideal in R contains a prime element.
On the other hand, recall that an element $p \in R$ is prime if and only if the ideal (p) generated by p is non-zero and prime.
Thus if P is a nonzero prime ideal in R, then (since R is a PID) there exists $p \in R$ such that $P=(p)$. This completes the proof.
We conclude then, that $\mathbb{Z} / p \mathbb{Z}[x]$ is a unique factorization domain since it is a PID.
Example 1.3: In $\mathbb{Z} / 3 \mathbb{Z}[x], Q=x^{3}+x^{2}+x$ then $Q=x .(x+2)^{2}$ is the unique factorization into irreducibles of Q.

1.3 An example of the phenomema over $\mathbb{Z} / p^{n} \mathbb{Z}[x]$

$$
\left(x^{m}+p^{n-1}\right)^{2}=x^{m}\left(x^{m}+2 \cdot p^{n-1}\right)
$$

Consider the equality above. Let us assume that the concept of irreducibility in $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ is analogous to the concept of irreducibility in integral domains and that $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ is atomic (every element has a factorization into irreducible elements).
By using the unique factorization in $\mathbb{Z} / p \mathbb{Z}[x]$, we can prove that $\left(x^{m}+p^{n-1}\right)$ is a product of at most $(n-1)$ irreducibles. Indeed, this polynomial represents a power of x in $\mathbb{Z} / p \mathbb{Z}[x]$, then by unique factorization each of their factors in $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ must represent a power of x in $\mathbb{Z} / p \mathbb{Z}[x]$ (apart from units since $(\mathbb{Z} / p \mathbb{Z})^{*}=(\mathbb{Z} / p \mathbb{Z}[x])^{*}$ and a polynomial in $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ is a unit if and only if it maps to a unit in $\mathbb{Z} / p \mathbb{Z}[x]$ under the canonical projection Π). Then, the constant coefficient of every such factor is divisible by p. Since $\left(x^{m}+p^{n-1}\right)$ is divisible by no higher power of p than $n-1,\left(x^{m}+p^{n-1}\right)^{2}$ is divisible by no higher power of p than $2(n-1)$.
Hence, for arbitrary $m \in \mathbb{N}$, there exists in $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ a product of at most $2(n-1)$ irreducibles that is also representable as a product of more than m irreducibles without any condition on m.

2 Definition of the elasticity and non-uniqueness of factorization of some monic polynomials

Definition 2.1 : Suppose that S is a set and (.) is some binary operation $S \times S \rightarrow S$, then S with (.) is a monoid if it satisfies the following two axioms:
-Associativity: For all a, b and c in S, the equality ($a . b$). $c=a .(b . c)$ holds.
-Identity element: there exists an element e in S such that for every element a in S, the equations $e . a=a . e=a$ hold.
In other words, a monoid is a semigroup with an identity element.
Definition 2.2: A submonoid of a monoid ($S,$.) is a subset N of S that is closed under the monoid operation and contains the identity element e of S. In other words, N is a submonoid of S if $N \subseteq S$ and $x . y \in N$ whenever $x, y \in N$ and $e \in N$.
Definition 2.3 : Let ($S,$.) be a semigroup together with a partial order \leqslant. We say that his order is compatible with the semigroup operation, if $x \leqslant y \Rightarrow t . x \leqslant t . y$ and $x . t \leqslant y . t$ for all $x, y, t \in S$.
Definition 2.4 : Let S be a semigroup. An element $a \in S$ is left cancellative (respectively right cancellative) if $a . b=a . c$ implies $b=c$ for all b and c in S (respectively if $b a=c a$ implies $b=c$). If every element in S is both left cancellative and right cancellative, then S is called a cancellative semigroup.
Definition 2.5 : Let $(S,$.$) be a cancellative monoid.$
(i) For $k \geq 2$, let $\phi_{k}(S)$ be the supremum of all those $m \in \mathbb{N}$ for which there exists a product of k irreducibles that can also be expressed as a product of m irreducibles.
(ii) The elasticity of S is $\sup _{k \geqslant 2}\left(\frac{\Phi_{k}(M)}{k}\right)$, in other words, the elasticity is the supremum of the values $\frac{m}{k}$ such that there exists an element of M that can be expressed both as a product of k irreducibles and as a product of m irreducibles.

Lemma 2.6 : Let f be a monic polynomial in $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ which maps to an irreducible polynomial in $\mathbb{Z} / p \mathbb{Z}[x]$. Let $d=\operatorname{deg}(f)$. Let $n, k \in N$ with $0<k<n$ and $m \in N$ with $\operatorname{gcd}(m, k d)=1$ and $c \in Z$ with $p \nmid c$. Then:

$$
f(x)^{m}+c p^{k}
$$

is an irreducible polynomial in $\mathbb{Z} / p^{n} \mathbb{Z}[x]$.
Proof: Suppose otherwise. Then $\exists g, h, r \in \mathbb{Z}[x]$, with g, h monic and g irreducible in $\mathbb{Z} / p^{n} \mathbb{Z}[x]$, such that:

$$
f(x)^{m}+c p^{k}=g(x) h(x)+p^{n} r(x)
$$

and $0<\operatorname{deg} g<d m$. By using the unique factorization in $\mathbb{Z} / p \mathbb{Z}[x], g$ is a power of f modulo p . Therefore, $\operatorname{deg} g=d s$ with $0<s<m$. Let α be a zero of g. Let A be the ring of algebraic integers in $Q[\alpha]$. Then by 'Splitting of prime ideals in Galois extensions' we have that $p A=P_{1}^{e_{1}} \ldots P_{r}^{e_{r}}$ and $[Q[\alpha]: Q]=\sum_{i} e_{i} \cdot\left[A / P_{i}: \mathbb{Z} / p \mathbb{Z}\right]=\operatorname{deg} g=d s$. Let $w_{P_{1}}^{*}$ the normalized valuation on $Q[\alpha]$ corresponding to P_{1} (see section 3,3.1). Since $f(\alpha)^{m}=p^{n} r(\alpha)-c p^{k}$, we have $m \cdot w_{P_{1}}^{*}(f(\alpha))=k e_{1}$. As m is relatively prime to k, m divides e_{1}. By the same reasoning, we have that m divides e_{i} for $i \in 1, \ldots, r$ then m divides deg $g=[Q[\alpha]: Q]=\sum_{i} e_{i} \cdot\left[A / P_{i}: \mathbb{Z} / p \mathbb{Z}\right]=d s$. As m is relatively prime to d, m divides s, which is a contradiction since $0<s<m$.
Theorem 2.7 : Let $n \geq 2$. Let f be a monic irreducible polynomial in $\mathbb{Z} / p \mathbb{Z}[x]$. Let M_{f} be the submonoid of the multiplicative monoid M consisting of those monic polynomials $g \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$ whose image under Π is a power of f. Then the elasticity of M_{f} is infinite . Moreover, $\Phi_{2}\left(M_{f}\right)=\infty$.

Proof: Let us, by abuse of notation, denote by g a monic polynomial in $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ which maps under Π to the irreducible polynomial f in $\mathbb{Z} / p \mathbb{Z}[x]$.
Let q be a prime with $q>\max (n-1, \operatorname{deg}(g))$. By Lemma 2.6, $g(x)^{q}+p^{n-1}$ is irreducible in $\mathbb{Z} / p^{n} \mathbb{Z}[x]$. Let us consider the equality:

$$
\left(g(x)^{q}+p^{n-1}\right)^{2}=g(x)^{q}\left(g(x)^{q}+2 \cdot p^{n-1}\right)
$$

This is an example of factorization of a polynomial in M_{f} into (on the left) 2 irreducible factors and by using the Lemma 2.6, (on the right) $q+1$ irreducible factors (if $p \neq 2$) and $2 q$ (if $p=2$). As q can be made arbitray large, then $\phi_{2}\left(M_{f}\right)=\infty$ and the elasticity of M_{f} is infinite.
Since M_{f} is fully elastic, we conclude that the factorization of monic polynomials (whose image under Π is a power of an irreducible) into irreducibles over $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ is not unique. The aim is now to generalize the result to all monic polynomials and then to non-zerodivisors and then to arbitrary polynomials.

3 Commutative rings with harmless zero-divisors

Definition 3.1 : We extend p-adic valuation to $\mathbb{Z}[x]$ by $v^{*}(f)=\min _{k} v\left(a_{k}\right)$ where v is the usual p-adic valuation on \mathbb{Z} and $f=\sum_{k} a_{k} x^{k}$.
v^{*} defines a surjective mapping $v^{*}: \mathbb{Z}[x] \rightarrow \mathbb{N}_{0} \cup\{\infty\}$. Let us denote by ($\mathbb{N}_{n},+, \leqslant$) the ordered monoid with elements $0,1, \ldots, n-1, \infty$, resulting from factoring ($\mathbb{N}_{0} \cup\{\infty\},+, \leqslant$) by the congruence relation that identifies all values greater or equal than n, including ∞, by abuse of notation, we will use v^{*} for the surjective mapping $v^{*}: \mathbb{Z} / p^{n} \mathbb{Z}[x] \rightarrow \mathbb{N}_{n}$ obtained by factoring p-adic valuation $v^{*}: Z[x] \rightarrow \mathbb{N}_{0} \cup\{\infty\}$ by the same congruence relation. Indeed, $v^{*}: \mathbb{Z} / p^{n} \mathbb{Z}[x] \rightarrow \mathbb{N}_{n}$ behaves like a valuation, except that $\left(\mathbb{N}_{n},+\right)$ is not a group and cannot be extended to a group, as it is not cancellative.

Proposition 3.2: $v^{*}: \mathbb{Z} / p^{n} \mathbb{Z}[x] \rightarrow \mathbb{N}_{n}$ satisfies:
(i) $v^{*}(f)=\infty \Longleftrightarrow f=0$.
(ii) $v^{*}(f+g) \geqslant \min \left(v^{*}(f), v^{*}(g)\right)$.
(iii) $v^{*}(f g)=v^{*}(f)+v^{*}(g)$.

Proposition 3.3: For $f \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$, the following are equivalent:
(i) $v^{*}(f)>0$ (all coefficients of f are divisible by p).
(ii) f is nilpotent.
(iii) f is a zero-divisor.

Proof:
$(i) \Rightarrow(i i)$ Let us consider $f=\sum_{k} a_{k} x^{k}$. Since $v^{*}(f)>0$ all the coefficients of are divisible by p. Then, $f=\sum_{k} p \cdot a_{k}^{\prime} x^{k}$ such that for each $k, a_{k}=p \cdot a_{k}^{\prime}$. Then $f=p \cdot\left(\sum_{k} a_{k}^{\prime} x^{k}\right)$, and $f^{n}=p^{n} .\left(\sum_{k} a_{k}^{\prime} x^{k}\right)^{n}=0$. Therefore f is nilpotent.
(ii) \Rightarrow (iii) Let us asume that f is nilpotent. Then $\exists k \in \mathbb{N}$ such that $f^{k}=0$ and $f^{k-1} \neq 0$. Then $f . f^{k-1}=0$ and f is a zero-divisor $(f \neq 0)$.
(iii) $\Rightarrow(i)$ Let us consider $f \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$ such that f is a zero-divisor then $\exists g \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$ such that $g \neq 0$ and $f . g=0$. Then the lift of $f . g$ in $\mathbb{Z}[x]$ is a multiple of p^{n}. Then by using properties of v^{*} in $\mathbb{Z}[x]$, we have $v^{*}(\overline{f . g})=v^{*}(\bar{f} \cdot \bar{g})=v^{*}(\bar{f}) \cdot v^{*}(\bar{g})=n$. Since $g \neq 0$, we have $v^{*}(\bar{g})<n$. So we conclude that $v^{*}(\bar{f})>0$ and $v^{*}(f)>0$.
Definition 3.4 : Let R be a commutative ring.
(i) $\operatorname{Nil}(R)$ denotes the nilradical of R, i.e. the set $\left\{r \in R, \exists n \in N, r^{n}=0\right\}$.
(ii) $J(R)$ denotes the Jacobson radical of R, i.e. the intersection of all maximal ideals of R.
(iii) $Z(R)$ denotes the set of zero-divisors of R.

Proposition 3.5 : $\operatorname{Nil}(R)=\left\{r \in R, \exists n \in N, r^{n}=0\right\}=\underset{\text { Pprime }}{\cap} P$
Proof:
(\subseteq) : Let $r \in \operatorname{Nil}(R)$, then $\exists n \in N$ such that $r^{n}=0 \in P$ (P prime). Since P is prime we have $r \in P$, and $r \in \bigcap_{\text {Pprime }}^{\cap} P$.
$(\supseteq):$ Let $r \in \underset{\text { Pprime }}{\cap} P$, and let us suppose that $r \notin \operatorname{Nil}(R)$. Let E be the set of ideals which contain no power of r. E is non-empty, because E contains (0). By using Zorn's lemma, E has a maximal ideal, let us denote it by P. Then P contains no power of r and $P \subsetneq R$. Let us now show that P is prime. Consider $x, y \notin P$ such that $x y \in P$.
$x \notin P \Rightarrow P \subsetneq P+R . x$. But P is maximal in E, then $P+R . x \notin E$ and contains a power of r. Hence $\exists k>0, q \in P$ and $s \in R$ such that $r^{k}=q+s$.x. By the same reasoning, $\exists l>0, q^{\prime} \in P$ and $t \in R$ such that: $r^{l}=q^{\prime}+t y$. By using these equalities, we have:

$$
r^{k+l}=q q^{\prime}+q(t y)+q^{\prime}(s x)+(s t) x y
$$

We remark that $r^{k+l} \notin P$ but $q q^{\prime}+q(t y)+q^{\prime}(s x)+(s t) x y \in P$ which is a contradiction. Then $x \in P$ or $y \in P$ and P is prime. This completes the proof and $r \in \operatorname{Nil}(R)$.

Proposition 3.6 : Let Q be a maximal ideal of $\mathbb{Z}[x]$, then Q is of the form:

$$
Q=(p, f(x))
$$

Where $f \in \mathbb{Z}[x]$ such that f represents an irreducible polynomial in $\mathbb{Z} / p \mathbb{Z}[x]$.
Proof: Let us consider Q an arbitrary maximal ideal of $\mathbb{Z}[x]$, and denote by K the quotient ring $\mathbb{Z}[x] / Q$ which is a field. Consider $\theta: \mathbb{Z} \rightarrow K$ the composition of the two natural maps :

$$
\begin{aligned}
& \alpha: \mathbb{Z} \hookrightarrow \mathbb{Z}[x] \\
& \quad \text { and } \\
& \alpha^{\prime}: \mathbb{Z}[x] \rightarrow K
\end{aligned}
$$

θ is not injective. Suppose θ is injective, then, since K is a field, θ extends to an injection $\theta^{\prime}: \mathbb{Q} \hookrightarrow K$ and then α^{\prime} to a homomorphism $\beta^{\prime}: \mathbb{Q}[x] \rightarrow K$

The map β^{\prime} is clearly surjective, since α^{\prime} already is. Now, if β^{\prime} is injective, we will have an isomorphism $\mathbb{Q}[x] \simeq K$, but $\mathbb{Q}[x]$ is not a field. Therefore, $\operatorname{Ker}\left(\beta^{\prime}\right)=(g(x))$ for a non-zero polynomial g, which must be then irreducible. By replacing g with a non-zero constant multiple, we can assume that g is primitive polynomial in $\mathbb{Z}[x]$. We thus have an isomorphism $\mathbb{Q}[x] /(g) \simeq K$. But this will imply that the natural map $\mathbb{Z}[x] \hookrightarrow \mathbb{Q}[x]$ induces a surjection $\mathbb{Z}[x] \rightarrow \mathbb{Q}[x] /(g)$ which will induce an isomorphism $\mathbb{Z}[x] /(g) \simeq \mathbb{Q}[x] /(g)$, let us show that is a contradiction. If we consider $g(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots .+a_{1} x+a_{0}\left(\right.$ with $\left.a_{n} \neq 0\right)$, then we have in $\mathbb{Q}[x] /(g)$:

$$
a_{n} \bar{x}_{n}+a_{n-1} \bar{x}_{n-1}+\ldots . .+a_{0}=0
$$

So we can write,

$$
\bar{x}^{n}=\left(\frac{-a_{n-1}}{a_{n}}\right) \bar{x}^{n-1}+\ldots .+\left(\frac{-a_{1}}{a_{n}}\right) \bar{x}+\left(\frac{-a_{0}}{a_{n}}\right)
$$

Then \bar{x}^{n} can be written as linear combination of lower powers with coefficients in $\mathbb{Z}\left[\frac{1}{a_{n}}\right]$. Using this and an easy induction, we deduce that any polynomial in $\mathbb{Q}[x] /(g)$ can be written as linear combination of elements in the set $B=\left\{1, \bar{x}, \bar{x}^{2}, \ldots, \bar{x}^{n-1}\right\}$. It is clear that $\sum c_{i} \bar{x}^{i}=0$ implies that $\sum_{i \in\{0 . . n-1\}} c_{i} x^{i} \in(g(x))(B$ is linearly independent in $\mathbb{Q}[x] /(g))$. By examining degrees, we must have $c_{i}=0$ for all i. Now, take p prime that does not divide a_{n}. Then $\frac{1}{p}$ cannot be spanned by B with coefficients in $\mathbb{Z}\left[\frac{1}{a_{n}}\right]$. We know now that θ is not injective and then $\operatorname{Ker}(\theta)=(n)$ for some n non-zero. However, since the image of θ is an integral domain, n must be a prime p. Therefore, we must have $p \in Q$ for some prime p. We know that the maximal ideals in $\mathbb{Z}[x]$ that contain p are in bijection with the maximal ideals in $\mathbb{Z}[x] /(p) \simeq \mathbb{Z} / p \mathbb{Z}[x]$. So $Q /(p)=\left(f_{0}(x)\right)$ for an irreducible polynomial $f_{0} \in \mathbb{Z} / p \mathbb{Z}[x]$. But then $Q=(p, f(x))$ for any lift f of f_{0}, as was to be shown.
Proposition 3.7 : $\operatorname{Nil}\left(\mathbb{Z} / p^{n} \mathbb{Z}[x]\right)=J\left(\mathbb{Z} / p^{n} \mathbb{Z}[x]\right)=(p)=Z\left(\mathbb{Z} / p^{n} \mathbb{Z}[x]\right)$
Proof: By Proposition3.3 we have $(p)=\operatorname{Nil}\left(\mathbb{Z} / p^{n} \mathbb{Z}[x]\right)=Z\left(\mathbb{Z} / p^{n} \mathbb{Z}[x]\right)$. Let us now prove that $J\left(\mathbb{Z} / p^{n} \mathbb{Z}[x]\right)=(p)$. We know by Proposition 3.6 that the ideals (p, f) with f representing an irreducible polynomial in $\mathbb{Z} / p \mathbb{Z}[x]$ are precisely the maximal ideals of $\mathbb{Z}[x]$. Let us denote by λ the canonical projection from $\mathbb{Z}[x]$ into $\mathbb{Z} / p^{n} \mathbb{Z}[x]$. Consider J a maximal ideal of $\mathbb{Z} / p^{n} \mathbb{Z}[x]$, then $\lambda^{-1}((J))$ is a maximal ideal of $\mathbb{Z}[x]$. Then $\lambda^{-1}((J))=(p, f)$ with f irreducible modulo p. Then $J=\lambda\left(\lambda^{-1}(J)\right)=\lambda((p, f))=(p, f)$. Then $J\left(\mathbb{Z} / p^{n} \mathbb{Z}[x]\right)=\cap_{i}\left(p, f_{i}\right)=(p)$ such that f_{i} represents an irreducible polynomial in $\mathbb{Z} / p \mathbb{Z}[x]$.
Definition 3.8 : Let R be a commutative ring. Let $a, b \in R, c \in R$ a non-zero non-unit. We say that:
(i) c is weakly irreducible if: $c=a b \Longrightarrow c \mid a$ or $c \mid b$.
(ii) a and b weakly associated if $a \mid b$ and $b \mid a$ (or equivalently $(a)=(b)$).
(iii) R is atomic (respectively weakly atomic) if every non-zero non-unit is a product of irreducibles (respectively weakly irreducibles) elements.
Definition 3.9 : Let R be a commutative ring. We say that R is a ring with harmless zero-divisors if $Z(R) \subseteq 1-U(R)=\{1-u \mid u$ an unit of $R\}$.
Lemma 3.10 : R be a ring with harmless zero-divisors and $a, b, c, u, v \in R$. Then:
(i) if $a \neq 0, a=b u$ and $b=a v$ then u, v are units.
(ii) a, b are weakly associated if and only if they are associated.
(iii) c is weakly irreducible if and only if c is irreducible.
(iv) if c is prime, then c is irreducible.

Proof: (i) Let us consider $a=b u$ and $b=a v$ with $a \neq 0$. Then $a(1-v u)=0$ then $(1-v u)$ is a zero-divisor, then $\exists w$ a unit such that $1-v u=1-w$ then $v u=w$ and u, v are units.
(ii) we have $a \mid b$ and $b \mid a \Longleftrightarrow \exists u, v$ such that $a=b u$ and $b=a v$ then by $(i) u$ and v are units then a and b are associated.
(iii) Suppose that $c=a b$ since c is weakly irreducible then $c \mid a$ or $c \mid b, \exists u, v$ such that $a=c u$ or $b=c v$ then by $(i) u, b$ are units or v, a are units.
(iv) Let $c=a b$ then $c \mid a b$. Since c is prime $c \mid a$ or $c \mid b$ then c is weakly irreducible and then irreducible.
Corollary 3.11 : If a commutative ring R satisfies $Z(R) \subseteq J(R)$ then the statements of the Lemma 3.10 hold.

Proof: Let us first prove that for any commutative ring $R, J(R) \subseteq 1-U(R)$. Let us consider $x \in J(R)$ such that $1-x$ is a non-unit, then $\exists S$ a maximal ideal such that $1-x \in S$. Since $J(R)$ is the intersection of all maximal ideals, $x \in S$ and then $1=(1-x)+x \in S$. This is a contradiction. By using this result, we have that $Z(R) \subset J(R) \subset 1-U(R)$ and then every commutative ring such that $Z(R) \subset J(R)$ is a ing with harmless zero-divisors.

Proposition 3.12: $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ is a ring with harmless zero-divisors.
Proof: Directly from the Proposition 3.7 and Corollary 3.11.
Definition 3.13 : We say that a commutative ring R satisfies the ascending chain condition for principal ideals (ACCP) if there is no infinite strictly ascending chain of principal ideals.

Theorem 3.14 : If R is a commutative ring which satisfies $A C C P$ then R is weakly atomic.
Proof: Let us suppose that there exists $r \in R$ such that r non-zero non-unit that cannot be expressed as a product of weakly irreducible elements. Then r is not weakly irreducible and $\exists a, b$ such that at least one of them is non-zero non-unit (since r is non-zero non unit) with $r=a b$. Suppose that a is non-zero non unit, $a \mid r$ and $r \nmid a$ then $(r) \varsubsetneqq(a)$. By iteration on (a) we obtain (c) (with c non-unit non-zero) such that $(r) \varsubsetneqq(a) \varsubsetneqq(c)$ and so on... We get then an infinite ascending chain of principal ideals which is a contradiction.
Lemma 3.15 : Every commutative ring with harmeless zero-divisors satisfying ACCP is atomic.
Proof: By using the Theorem 3.14 we have that every commutative ring with ACCP is weakly atomic, every non-zero non-unit is a product of weakly irreducible elements. By Lemma $\mathbf{3 . 9}$ every such factor is irreducible then we obtain a product of irreducible elements.
Corollary 3.16 : $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ is atomic.
In this section, we proved that in commutative rings the concept of harmless zero-divisors permits to avoid the problems with defining the concepts of irreducibility and primality which appear as soon as zero-divisors are engaged. Then we establish a relationship between 'weaker' concepts (weakly irreductible, weakly associative) and 'stronger' ones, especially for $\mathbb{Z} / p^{n} \mathbb{Z}[x]$. Therefore, we will be interested particulary in the non-zerodivisors, then in monic polynomials and finally in the monic primary polynomials.

4 Uniqueness of some kinds of factorizations over $\mathbb{Z} / p^{n} \mathbb{Z}[x]$

4.1 Arbitrary polynomials to non-zerodivisors

Lemma 4.1 : Let $f \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$. Then the following are equivalent:
(i) $f=p u$ for some $u \in U\left(\mathbb{Z} / p^{n} \mathbb{Z}[x]\right)$
(ii) f is prime
(iii) f is irreducible and a zero-divisor

Proof:
$(i) \Rightarrow(i i) p$ is prime in $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ (since $\left.v^{*}(p)=1\right), f$ is asociated to p, then f is prime as well.
$(i i) \Rightarrow(i i i)$ by Lemma $3.9 f$ is prime then f is irreducible. Moreover the ideal (f) is prime and by Propositon $3.6(p)=\operatorname{Nil}\left(\mathbb{Z} / p^{n} \mathbb{Z}[x]\right) \subseteq(f)$ then $f \mid p$ and p and f are associated. Since p is a zero-divisor, f is a zero-divisor as well.
$($ iii $) \Rightarrow(i) f$ is a zero-divisor, then $(f) \subseteq Z\left(\mathbb{Z} / p^{n} \mathbb{Z}[x]\right)=(p)$, then $\exists u \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$ such that $f=p u$. Moreover, f is irreducible then u must be a unit.

Proposition 4.2 :

(i) Let $f \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$ a non-zero polynomial,there exists a non-zerodivisor g and $0 \leqslant k \leqslant n$, such that $f=p^{k} g$. Furthermore, k is uniquely determined by $k=v^{*}(f)$, and g is unique modulo p^{n-k}.
(ii) In every factorisation of f into irreducibles, we have exactly $v^{*}(f)$ factors associated to p.

Proof:
(i) We have by Proposition 3.3 if f is a zero-divisor, $k=v^{*}(f)>0$, if not $k=v^{*}(f)=0$. Moreover, $\exists g \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$ such that $f=p^{k} g$. Uniqueness of g : let us assume that it exists g^{\prime} which satisfies the same condition, and $g \neq g^{\prime}$ we have in $\mathbb{Z}[x]: f=p^{k} g=p^{k} g^{\prime} \Rightarrow p^{k}\left(g-g^{\prime}\right)=0$ then by using the properties of the p-adic valuation we have: $v^{*}\left(p^{k}\left(g-g^{\prime}\right)\right)=v^{*}\left(p^{k}\right)+v^{*}\left(g-g^{\prime}\right)=k+v^{*}\left(g-g^{\prime}\right)=n$ then $v^{*}\left(g-g^{\prime}\right)=n-k$ but we have $v^{*}\left(g-g^{\prime}\right) \leqslant \min \left(v^{*}(g), v^{*}\left(g^{\prime}\right)\right)=0$ then $n=k$ and $f=0$ (in $\left.\mathbb{Z} / p^{n} \mathbb{Z}[x]\right)$. Contradiction.
(ii) It follows directly from (i) since we have $v^{*}(f)=k$ and p prime in $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ then irreducible in $\mathbb{Z} / p^{n} \mathbb{Z}$.

4.2 Non-zerodivisors to monic polynomials

Proposition 4.3 : Let R be a commutative ring. The units of $R[x]$ are precisely the polynomials $a_{0}+a_{1} x+\ldots .+a_{n} x^{n}$ with a_{0} a unit of R and a_{l} nilpotent for all $l>0$.

Proof: Let us consider $f=a_{0}+a_{1} x+\ldots .+a_{n} x^{n}$ and P prime ideal, then its image under projection to $(R / P)[x]$ is an unit. Since P is prime (R / P) is an integral domain, and $U((R / P)[x])=U(R / P)$, therefore a_{0} is not in any P and hence an unit, and for $l>0, a_{l}$ is in every P and therefore nilpotent. Conversely, if $f=a_{0}+h$ with a_{0} an unit of R and all coeficients of h nilpotent (in the intersection of all prime ideals of R) then h is in every prime ideal of $R[x]$ and hence $f=a_{0}+h$ is in no prime ideal of $R[x]$ and then an unit of $R[x]$.
Corollary 4.4 : The units of $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ are precisely the polynomials $f=a_{0}+a_{1} x+\ldots+a_{n} x^{n}$ such that (in $\left.\mathbb{Z} / p^{n} \mathbb{Z}\right) p \nmid a_{0}$ and $p \mid a_{l}$ for all $l>0$. Then a polynomial in $\mathbb{Z}[x]$ is a unit in $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ for some $n \geqslant 1$ if and only if is a unit in $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ for all n.

Proof: By Proposition 3.7 and Proposition 4.3. a_{0} is an unit in $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ then not a zero-divisor and $v^{*}\left(a_{0}\right)=0$ and $p \nmid a_{0}$. For $l>0 a_{l}$ is nilpotent then $v^{*}\left(a_{l}\right)>0$ and $p \mid a_{l}$
Theorem 4.5 : If f is a non-zerodivisor, then f is uniquely representable as $f=u h$ with $u \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$ an unit and h monic with $\operatorname{deg}(h)=\operatorname{deg}(\bar{f})$ where \bar{f} is the image of f under the canonical projection Π.
Proof: (Uniqueness only) Suppose that $f=u h=v g$ with $u, v \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$ units and h, g monic. Then $v^{-1} u h=g$. As h, g are monic, so is $v^{-1} u$. Knowing that the only monic unit in $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ is 1 , we obtain that $u=v$ and $g=h$.

Proposition 4.6 : Let $f \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$, not a zero-divisor. For every factorisation of $f f=c_{1} \ldots c_{k}$ into irreducibles, there exists uniquely determined monic irreducible $d_{1}, \ldots, d_{k} \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$ and units $v_{1}, \ldots, v_{k} \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$ with $c_{i}=v_{i} d_{i}$.
Proof: Since f is a non-zerodivisor, c_{i} is a non-zerodivisor $\forall i \in\{1 \ldots k\}$. Then by the Theorem 4.5, we have unique unit and monic polynomial v_{i} and d_{i} such that $c_{i}=v_{i} d_{i}$, then $f=c_{1} \ldots . c_{k}=v_{1} d_{1} \ldots v_{k} d_{k}=\left(v_{1} \ldots v_{k}\right) \cdot d_{1} \ldots d_{k}$ (with $v_{1} \ldots v_{k}$ a unit)
Remark 4.7 : By the Theorem 4.5 and Corollary 4.4 we conclude that (u, h) is uniquely determined by $h=d_{1} \ldots d_{k}$ and $u=c_{1} \ldots . c_{k}$.
Every non-zero divisor has then only finetely many factorisations into irreducibles (up to associates).

4.3 Monic polynomials to primary monic polynomials

Definition 4.8 : Let R be a commutative ring, and I an ideal of R. We define the radical of I, the ideal such that an element x is in the racidal if some power of x is in I. We denote it by $\operatorname{Rac}(I)$

Definiton 4.9 : Let I be a proper ideal of $\mathbb{Z} / p^{n} \mathbb{Z}[x], I$ is said to be primary if whenever $x y \in I$ then $x \in I$ or for some a natural number $t>0 y^{t} \in I$.

Definition 4.10 : We call a non-zerodivisor of $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ primary if its image under projection to $\mathbb{Z} / p \mathbb{Z}[x]$ is associated to a power of an irreducible polynomial.

Proposition 4.11: An ideal of $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ that does not consist only of zero-divisors is primary if and only if its radical is a maximal ideal.
Proof: \Rightarrow Let us take I a primary ideal of $\mathbb{Z} / p^{n} \mathbb{Z}[x]$. Let us consider $f_{1} f_{2} \in \operatorname{Rac}(I)$ then $\exists t \in \mathbb{N}$ such that $\left(f_{1} f_{2}\right)^{t}=f_{1}^{t} f_{2}^{t} \in I$ since I is primary $f_{1}^{t} \in I$ or $f_{2}^{t k} \in I$ then $f_{1} \in \operatorname{Rac}(I)$ or $f_{2} \in \operatorname{Rac}(I)$ then $\operatorname{Rac}(I)$ is prime.
\Leftarrow Let us consider an ideal I such that $\operatorname{Rac}(I)$ is maximal. We have $I \subseteq \operatorname{Rac}(I)$, since $\operatorname{Rac}(I)$ is maximal, $\operatorname{Rac}(I)$ prime then I is prime (in particular primary) and $(p)=Z\left(\mathbb{Z} / p^{n} \mathbb{Z}[x]\right) \subsetneq I$, then I is primary and does not consist only of zero-divisors.

Lemma 4.12 : Let $f \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$, not a zero-divisor. Then (f) is a primary ideal of $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ if and only if the image of f under the canonical projection Π is associated to a power of an irreducible polynomial in $\mathbb{Z} / p \mathbb{Z}[x]$.
Proof: In the PID $\mathbb{Z} / p \mathbb{Z}[x]$, the non-trivial primary ideals are precisely the principal ideals generated by powers of irreducible elements. We note that the projection Π induces a bijection between primary ideals of $\mathbb{Z} / p \mathbb{Z}[x]$ and primary ideals of $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ containing (p), then if the image \bar{f} of f under Π is associated to a power of an irreducible polynomial in $\mathbb{Z} / p \mathbb{Z}[x]$, the image \bar{f} belongs to a primary ideal I, then (\bar{f}) is also primary and then (f) which contains (p) is primary in $\mathbb{Z} / p^{n} \mathbb{Z}[x]$. Conversely, we know by Proposition 4.11 that the radical of (f) is maximal (in particular prime), by using the fact that every prime ideal of $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ contains (p). We have $(p) \subseteq \operatorname{Rac}((f))$ hence $\operatorname{Rac}((f))=\operatorname{Rac}((f)+(p))$. But $(f)+(p)=\Pi^{-1}(\Pi((f)))$ therefore, for a non-zerodivisor $f,(f)$ is primary if and only if $\operatorname{Rac}(f)$ is maximal which is equivalent to $(f)+(p)$ being primary which is equivalent to $\Pi(f)$ being a primary element of $\mathbb{Z} / p \mathbb{Z}[x]$.
Theorem 4.13 : (Hensel's Lemma) Every monic $f \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$ is a product of primary polynomials. Furthermore, the monic primary factors of a monic polynomial in $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ are uniquely determined.

Theorem 4.14: Let $f \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$ monic, then there exist monic polynomials
$f_{1}, \ldots ., f_{r} \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$ such that $f=f_{1} \ldots f_{r}$ and the residue class of f_{i} in $\mathbb{Z} / p \mathbb{Z}[x]$ is a power of a monic irreducible polynomial $g_{i} \in \mathbb{Z} / p \mathbb{Z}[x]$ with $g_{1} \ldots . g_{r}$ distinct. The polynomials $f_{1} \ldots f_{r} \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$ are primary and uniquely determined (up to ordering).
(Proof omitted)

5 Non-unique factorization over $\mathbb{Z} / p^{n} \mathbb{Z}[x]$

Proposition 5.1 : Every non-zero polynomial $f \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$ is representable as :

$$
f=p^{k} u f_{1} \ldots . . f_{r}
$$

with $0 \leqslant k<n$, u a unit of $\mathbb{Z} / p^{n} \mathbb{Z}[x], r \geqslant 0$, and $f_{1}, \ldots, f_{r} \in \mathbb{Z} / p^{n} \mathbb{Z}[x]$ monic polynomials such that the residue class of f_{i} in $\mathbb{Z} / p \mathbb{Z}[x]$ is a power of a monic irreducible polynomial $g_{i} \in \mathbb{Z} / p \mathbb{Z}[x]$ and g_{1}, \ldots, g_{r} are distinct. Moreover, $k \in \mathbb{N}$ is unique, u is unique modulo $p^{n-k} \mathbb{Z} / p^{n} \mathbb{Z}[x]$ and also f_{i} are unique (up to ordering) modulo $p^{n-k} \mathbb{Z} / p^{n} \mathbb{Z}[x]$.
Proof: Follows directly from: 4.2, 4.6, 4.14.

Theorem 5.2 : Let M^{\prime} be the submonoid of M consisting of all monic polynomials of $\mathbb{Z} / p^{n} \mathbb{Z}[x]$ and U its group of units. Then:

$$
M \simeq U \bigoplus M^{\prime}
$$

Furthermore: $M^{\prime} \simeq \sum_{f} M_{f}$ where f ranges through all monic irreducible polynomials of $\mathbb{Z} / p \mathbb{Z}[x]$.
Proof: Follows directly from previous statements of uniqueness of factorization into unit and monic primary polynomials.

Corollary 5.3 : The elasticity of M^{\prime} is infinite and $\Phi_{2}\left(M^{\prime}\right)=\infty$. Therefore the elasticity of M is infinite as well.

Proof: We proved in the Theorem 2.7 that the elasticity of each M_{f} is infinite, then M^{\prime} as an infinite direct sum of monoids M_{f} has an infinite elasticity and satisfies $\Phi_{2}\left(M^{\prime}\right)=\infty$. Moreover M is full elastic also.

6 Algorithm on sage and some examples

6.1 The algorithm

We aim at computing the factorizations of a monic polynomial P in $\mathbb{Z} / p^{n} \mathbb{Z}[X]$.
As we expect, the inputs should be the polynomial P, a prime p and a positive integer n. The algorithm starts by computing the factorization of P modulo p, which is unique since $\mathbb{Z} / p \mathbb{Z}[x]$ is a UFD.
Then we need to define a function (called "factor") to compute the factorizations of upper degrees. The algortihm proceeds as follows:
After computing the factorization of P into irreducible factors in the field $\mathbb{Z} / p \mathbb{Z}[x]$, we use the function factor(.,.) n-1 consecutive times.
This function gets a list and returns an other list. The function considers each element of the input list (namely a factorization), builds $m=\operatorname{deg}(P)$ variables (called $t_{0}, t_{1} \ldots, t_{m-1} \in \mathbb{Z} / p \mathbb{Z}$) and constructs a list L with all the coefficients $a_{i} \geqslant 0$ of each factor of the considered factorization (except for the higher degree). For instance, if we work on factorizations in $\mathbb{Z} / p^{r} \mathbb{Z}$ with $0<r \leqslant n$, we change all the coefficients a_{i} of L into $a_{i}+t_{i} * p^{r}$ and reconstruct the factors with these new coefficients, according to the corresponding degrees. Then we expand the product of the new factors, we subtract P and get a polynomial function l of which each coefficient is divisible by p^{r}. This constitute a system of modular equations that we solve by using " solve - mod".
We can divide l by p^{r}, then each of its coefficients has to equal 0 modulo p, this allows easier calculations.
Afterwards we reconstruct all the new factorizations by replacing all the t_{i} by their corresponding solution given by solve - mod, and get the factorizations of P in $\mathbb{Z} / p^{r+1} \mathbb{Z}$.

The algorithm is this:

```
R.<x>=ZZZ[x];
p=2
N=16
#P=\mp@subsup{x}{}{\wedge}6+2** x+1
P=\mp@subsup{x}{}{\wedge}3+2*}\mp@subsup{x}{}{\wedge}2+
AP=x^2
if P.is_irreducible()==t rue: awork on reducible polynomials
    print P, 'is irreducible'
else:
    print 'P =',P
    K=P.factor_mod(p)
    print 'Factorization of P mod', P, ':', K;
    0=1]
    O.append(K)
    def factor(0,z): #Def a function that compute the factorizations mod p^(z+1), from the previous ones in 0
        N-[]
        for y in range(len(0)):
            F=ZZ[x](0[y]. expand())
            Vect=[var('t/s' % i) for i in range(F.degree())] .List of deg(P) variables ti (all factors are monic)
            r=0
            for i in range(len(0[y])): #Consider each facotization
            or i in range(len(0[y])):
                    k=0(y)[i][0]
                    for v in range(0(y)[i][1]): wlist which will contain all new coeffs
                    S=0
                    H=Vect {r:r+len(L)]
                    for }1\mathrm{ in range(len(L));
                                    L[f]=ZZZ(k[j])+H[j]**的Z
                                    S=S+L[j]**^j
                    rer+len(L)
                    f(x)=S+\mp@subsup{x}{}{\wedge}(k.degree()) #each coeff ai becones: ai+ti*p^z
                    g=g*f #re-construction of each facorization
            l=(g.expand().collect (x)-P(x)). expand().collect (x);
            l=1/p^z
\#List containing all the new coeffs
\#to get the coeffs from a polynomial function (not recognized as polynonial)
for 1 in range(1,F, degree()):
\(1(x)=1(x)-1(\theta)\)
\(1(x)=l(x)\). factor ()
while \(1(\theta)==0\) :
\(\{(x)=(1(x) / x) \cdot \operatorname{collect}(x)\)
L. append ( \(l(0)==\theta\) )
```

$b=s o l v e \quad \bmod (L, p)$ \&Resolution
for s in range(ien(b)):
\#construction of the factorizations with the new coeffs from the resolution
$\mathrm{G}(\mathrm{x})=1$
for i in range(len($0[y]))$:
$\mathrm{k}=0[\mathrm{y}][1][\theta]$;
$\mathrm{L}=[0$. .k.degree() -1]
for v in range(0[y][1][11):
$\mathrm{S}=0$
$\mathrm{H}=\mathrm{b}[\mathrm{s}][\mathrm{u}: \mathrm{u}+\operatorname{len}(\mathrm{L})]$
for 1 in range(len $(L))$:
$L[j]=Z Z(k[j])+Z Z(H[j])^{*} p^{\wedge} Z$ $\mathrm{L}\left[\mathrm{S}+\mathrm{L}[1]^{*}(\mathrm{x} \sim \mathrm{j}\right.$
$f(x)=S+x^{\wedge}(k$.degree())
$U=U+\operatorname{len}(L)$
$\mathrm{G}=(\mathrm{G} \cdot \mathrm{f})$
N. append $(G(x))$
$0=1]$
$0=0+$ Set $(N) .11 s t() \quad$ \#to make sure that each factorization occurs only once
for 1 in range(len(0$)$):
$0[1]=Z Z[x](0[1]$, expand()). factor()
return 0
E=factor $(0,1)$
print 'There are', len(E), 'factorization of P mod', $p^{\wedge} 2$
print E

```
for i in range(2,n):
    E=factor(E,1)
    print 'There are', len(E), 'factorizations of P mod', p^(i+1)
    print E
```

 \#To repeat the process for each power of \(p\) until \(p^{*} n\)
 Woutput

6.2 Some examples

Some examples will here illustrate the previous reasoning. Remark that the algorithm returns only the new factorizations, in moving from $\mathbb{Z} / p^{r} \mathbb{Z}$ to $\mathbb{Z} / p^{r+1} \mathbb{Z}$.

```
- }P=\mp@subsup{x}{}{3}+2\mp@subsup{x}{}{2}+x,p=2,n=1
    P}=\mp@subsup{x}{}{\wedge}3+2*\mp@subsup{x}{}{\wedge}2+
    Factorization of P mod 2 : x * (x+1)^2
    There are 2 factorization of P mod 4
    [x* (x+1)^2, x* (x+3)^2]
    There are 2 factorizations of P mod 8
    [x*(x+1)^2, x* (x+5)^2]
    There are 3 factorizations of P mod 16
    [x* (x+1)^2, x* (x+5) * (x+13), x* (x+9)^2]
    There are 3 factorizations of P mod 32
    [x* (x+1)^2, x* (x+9) * (x+25), x* (x+17)^2]
    There are 5 factorizations of P Pmod 64
    [x* (x+33)^2, x* (x+1)^2, x * (x+9) * (x + 57), x * (x + 25) *
    (x + 41), x * (x+17) * (x + 49)]
    There are 5 factorizations of P mod 128
    [x* (x+1)^2, x* (x+65)^2, x** (x+17)* (x+113), x* (x+49) *
    (x+81), x * (x+33) * (x+97)1
    There are 9 factorizations of P mod 256
    [x* (x+1)^2, x* (x+129)^2, x* (x+81)* (x+177), x* (x+113)
    * (x+145), x* (x+65) * (x+193), x* (x+97) * (x+161), x * (x
    + 33) * (x + 225), x * (x + 49) * (x + 209), x * (x + 17) * (x + 241)]
    There are 9 factorizations of P mod 512
    [x* (x+1)^2, x* (x+257)^2, x* (x+65) * (x+449), x* (x+129)
    * (x+385), x* * x + 33) * (x+481), x* (x+193) * (x+321), x* (x
    + 161) * (x + 353), x * (x + 225) * (x + 289), x * (x + 97) * (x + 417)]
    There are 17 factorizations of P mod 1024
    [x*(x+513)^2,x* (x+449)* (x+577), x* (x+481)* (x+545),
    x* (x+97)* (x+929), x* (x+161)* (x+865), x* (x+385)* (x
    + 641), x * (x + 129) * (x + 897), x * (x + 193) * (x + 833), x * (x +
    225) * (x+801), x* (x+65) * (x+961), x* (x+1)^2, x* * (x+33)
    * (x+993), x* (x+321)* (x+705), x* (x+353)* (x+673), x*
    (x+289) * (x+737), x * (x+257) * (x+769), x * (x+417) * (x +
    609)1
```

- $P=x^{3}+2 x^{2}+x, p=7, n=5$
$P=x^{\wedge} 3+2^{*} x^{\wedge} 2+x$
Factorization of $\mathrm{P} \bmod 7: \mathrm{x}^{*}(\mathrm{x}+1)^{\wedge} 2$
There are 4 factorization of $P \bmod 49$
$\left[x *(x+22) *(x+29), x *(x+15)^{*}(x+36), x *(x+8) *(x+\right.$ 43), $\left.x^{*}(x+1)^{\wedge} 2\right]$

There are 4 factorizations of P mod 343
$[x *(x+148) *(x+197), x *(x+50) *(x+295), x *(x+99) *(x$ $\left.+246), x^{*}(x+1)^{\wedge} 2\right]$
There are 25 factorizations of $P \bmod 2401$
$\left[x *(x+50) *(x+2353), x^{*}(x+834) *(x+1569), x *(x+197) *\right.$
$(x+2206), x^{*}(x+687)^{*}(x+1716), x^{*}(x+785) *(x+1618), x^{*}$ $(x+99)^{*}(x+2304), x^{*}(x+589)^{*}(x+1814), x^{*}(x+736)^{*}(x+$ 1667), $\left.x^{*}(x+1)^{\wedge} 2, x^{*}(x+883)\right)^{*}(x+1520), x^{*}(x+344)$ * $(x+$ 2059), $x^{*}(x+295)^{*}(x+2108), x^{*}(x+442) *(x+1961), x^{*}(x+$ 393) ${ }^{*}(x+2010), x *(x+1128)^{*}(x+1275), x *(x+638)^{*} *(x+$ 1765) , $x^{*}(x+1030)^{*}(x+1373), x^{*}(x+1079)^{*}(x+1324), x^{*}(x$ $+246)^{*}(x+2157), x^{*}(x+981) *(x+1422), x^{*}(x+540)^{*}(x+$ 1863), $x^{*}(x+1177)^{*}(x+1226), x^{*}(x+491)^{*}(x+1912), x^{*}(x+$ 148) * $\left.(x+2255), x^{*}(x+932) *(x+1471)\right]$

There are 25 factorizations of $P \bmod 16807$
$\left[x *(x+6861) *(x+9948), x *(x+1)^{\wedge} 2, x *(x+5146) *(x+\right.$ 11663), $x^{*}(x+2059)^{*}(x+14750), x^{*}(x+1373){ }^{*}(x+15436), x^{*}$ $(x+4460) *(x+12349), x *(x+5489) *(x+11320), x^{*}(x+7204) *$ $(x+9605), x^{*}(x+6518)^{*}(x+10291), x^{*}(x+3431)^{*}(x+13378)$, $x *(x+6175)^{*}(x+10634), x^{*}(x+3088)^{*}(x+13721), x^{*}(x+$ 4117) * $(x+12692), x^{*}(x+2402)^{*}(x+14407), x^{*}(x+7890) *(x+$ 8919), $x^{*}(x+1030)^{*}(x+15779), x^{*}(x+4803){ }^{*}(x+12006), x^{*}$ $(x+8233)^{*}(x+8576), x^{*}(x+1716)^{*}(x+15093), x^{*}(x+2745)^{*}$ $(x+14064), x^{*}(x+5832) *(x+10977), x *(x+3774) *(x+13035)$, $x^{*}(x+687) *(x+16122), x^{*}(x+7547)^{*}(x+9262), x^{*}(x+344)$ * $(x+16465)]$

- $P=x^{7}-15 x^{4}+2 x^{3}-8 x^{2}-16 x, p=2, n=4$
$\mathrm{P}=\mathrm{x}^{\wedge} 7-15^{*} x^{\wedge} 4+2^{*} x^{\wedge} 3-8^{*} x^{\wedge} 2-16^{*} x$
Factorization of $P \bmod 2:(x+1)^{*} x^{\wedge} 4 *\left(x^{\wedge} 2+x+1\right)$
There are 2 factorization of P mod 4
$\left[(x+2) *(x+3) * x^{\wedge} 3 *\left(x^{\wedge} 2+3^{*} x+3\right), x^{*}(x+3) *(x+2)^{\wedge} 3^{*}\right.$
$\left.\left(x^{\wedge} 2+3^{*} x+3\right)\right]$
There are 4 factorizations of $\mathrm{P} \bmod 8$
$\left[(x+2)^{*}(x+3)^{*} x^{\wedge} 3 *\left(x^{\wedge} 2+3^{*} x+3\right),(x+3) *(x+4)^{*}(x+6)\right.$ ${ }^{*} x^{\wedge} 2^{*}\left(x^{\wedge} 2+3^{*} x+3\right), x^{*}(x+2)^{*}(x+3)^{*}(x+4)^{\wedge} 2^{*}\left(x^{\wedge} 2+3^{*} x\right.$ $\left.+3),(x+3)^{*}(x+6)^{*}(x+4)^{\wedge} 3^{*}\left(x^{\wedge} 2+3^{*} x+3\right)\right]$
There are 10 factorizations of $P \bmod 16$
$\left[(x+6)^{*}(x+11)^{*}(x+12)^{*}(x+8)^{\wedge} 2^{*}\left(x^{\wedge} 2+3^{*} x+11\right),(x+6)^{*}\right.$ $(x+11)^{*}(x+4)^{\wedge} 3^{*}\left(x^{\wedge} 2+3^{*} x+11\right),(x+11)^{*}(x+14) *(x+$ $12)^{\wedge} 3^{*}\left(x^{\wedge} 2+3^{*} x+11\right),(x+4)^{*}(x+11)^{*}(x+14)^{*}(x+8)^{\wedge} 2^{*}$ $\left(x^{\wedge} 2+3^{*} x+11\right),(x+4)^{*}(x+11)^{*}(x+14)^{*} x^{\wedge} 2 *\left(x^{\wedge} 2+3^{*} x+\right.$ 11), $\left.(x+4)^{*}(x+6)^{*}(x+11)^{*}(x+12)^{\wedge}\right)^{*}\left(x^{\wedge} 2+3^{*} x+11\right),(x+$ 11) $*(x+12){ }^{*}(x+14)^{*}(x+4)^{\wedge} 2^{*}\left(x^{\wedge} 2+3 * x+11\right),(x+6)^{*}(x+$ 11) * $(x+12)^{*} x^{\wedge} 2 *\left(x^{\wedge} 2+3^{*} x+11\right), x^{*}(x+4)^{*}(x+6)^{*}(x+8)$ $*(x+11)^{*}\left(x^{\wedge} 2+3^{*} x+11\right), x^{*}(x+8)^{*}(x+11)^{*}(x+12)^{*}(x+$ 14) $\left.*\left(x^{\wedge} 2+3^{*} x+11\right)\right]$
- $P=x^{2}+2 x+1, p=5, n=4$
$\mathrm{P}=\mathrm{x}^{\wedge} 2+2^{*} \mathrm{x}+1$
Factorization of $\mathrm{P} \bmod 5:(x+1)^{\wedge} 2$
There are 3 factorization of P mod 25
$\left[(x+6) *(x+21),(x+11) *(x+16),(x+1)^{\wedge} 2\right]$
There are 3 factorizations of P mod 125
$\left[(x+26)^{*}(x+101),(x+51) *(x+76),(x+1)^{\wedge} 2\right]$
There are 13 factorizations of P mod 625
$[(x+301) *(x+326),(x+101) *(x+526),(x+26) *(x+601),(x$
$+151)^{*}(x+476),(x+76)^{*}(x+551),(x+1)^{\wedge} 2,(x+201) *(x+$
$426),(x+251) *(x+376),(x+126) *(x+501),(x+51) *(x+$
576), $(x+276) *(x+351),(x+226) *(x+401),(x+176) *(x+$

451) $]$

There are 13 factorizations of P mod 3125
$[(x+1001) *(x+2126),(x+1126) *(x+2001),(x+376) *(x+$ 2751), $(x+1)^{\wedge} 2,(x+501)$ * $(x+2626),(x+251) *(x+2876),(x+$ 126) * $(x+3001),(x+751) *(x+2376),(x+1376) *(x+1751),(x+$ $1501) *(x+1626),(x+626) *(x+2501),(x+1251) *(x+1876),(x$ + 876) * (x + 2251)]
There are 63 factorizations of P mod 15625
$[(x+7126) *(x+8501),(x+7001) *(x+8626),(x+4376) *(x+$ 11251), $(x+1751)$ * $(x+13876),(x+1626) *(x+14001),(x+4501)$ * $(x+11126),(x+1876) *(x+13751),(x+4251) *(x+11376),(x+$ $2126) *(x+13501),(x+4001) *(x+11626),(x+1376) *(x+14251)$, $(x+4751)$ * $(x+10876),(x+6626) *(x+9001),(x+4876) *(x+$ 10751), $(x+1251) *(x+14376),(x+1126) *(x+14501),(x+126) *$ $(x+15501),(x+1001) *(x+14626),(x+6376) *(x+9251),(x+$ $3751)^{*}(x+11876),(x+1)^{\wedge} 2,(x+3626) *(x+12001),(x+6501) *$ $(x+9126),(x+3876) *(x+11751),(x+6251) *(x+9376),(x+$ $7501) *(x+8126),(x+2001)^{*}(x+13626),(x+7376) *(x+8251)$, $(x+2751) *(x+12876),(x+4626) *(x+11001),(x+5501) *(x+$ 10126), $(x+2876) *(x+12751),(x+7251) *(x+8376),(x+3126) *$ $(x+12501),(x+3001) *(x+12626),(x+376) *(x+15251),(x+$ $5751) *(x+9876),(x+5626) *(x+10001),(x+501) *(x+15126)$, $(x+5876) *(x+9751),(x+251) *(x+15376),(x+6126) *(x+$ 9501). $(x+7676) *(x+8001) .(x+5376) *(x+10251) .(x+751) *(x$
(We cannot display the whole output)

- $P=x^{2}+2 x+1, p=13, n=4$
$\mathrm{P}=\mathrm{x}^{\wedge} 2+2^{*} \mathrm{x}+1$
Factorization of P mod $13:(x+1)^{\wedge} 2$
There are 7 factorization of $P \bmod 169$
$\left[(x+53) *(x+118),(x+27)^{*}(x+144),(x+1)^{\wedge} 2,(x+66) *(x+\right.$ 105), $\left.(x+14)^{*}(x+157),(x+79)^{*}(x+92),(x+40) *(x+131)\right]$ There are 7 factorizations of P mod 2197
$\left[(x+846)^{*}(x+1353),(x+1015)^{*}(x+1184),(x+1)^{\wedge} 2,(x+170)^{*}\right.$ $(x+2029),(x+677)^{*}(x+1522),(x+508)^{*}(x+1691),(x+339)^{*}$ $(x+1860)]$
There are 85 factorizations of P mod 28561
$\left[(x+4902) *(x+23661),(x+9127)^{*}(x+19436),(x+170) *(x+\right.$ 28393), $(x+677)$ * $(x+27886),(x+4395) *(x+24168),(x+14197) *$ $(x+14366),(x+8113) *(x+20450),(x+3888) *(x+24675),(x+$ 10141) * $(x+18422),(x+5916)^{*}(x+22647),(x+2198) *(x+$ $26365),(x+13690) *(x+14873),(x+10648)^{*}(x+17915),(x+6423)$ * $(x+22140),(x+1)^{\wedge} 2,(x+13183)^{*}(x+15380),(x+1691) *(x+$ $26872),(x+10817) *(x+17746),(x+6592) *(x+21971),(x+13521)$ * $(x+15042),(x+8620) *(x+19943),(x+10310) *(x+18253),(x+$ 1353) * $(x+27210),(x+14028) *(x+14535),(x+5578) *(x+$ $22985),(x+6085) *(x+22478),(x+1860) *(x+26703),(x+9803) *$ $(x+18760),(x+8958)^{*}(x+19605),(x+9296) *(x+19267),(x+$ 4733) * $(x+23830),(x+508) *(x+28055),(x+339) *(x+28224)$, $(x+9465) *(x+19098),(x+5240) *(x+23323),(x+1015) *(x+$ 27548), $(x+9972) *(x+18591),(x+846) *(x+27717),(x+5409) *$ $(x+23154),(x+1184) *(x+27379),(x+5071) *(x+23492),(x+$ 9634) * $(x+18929),(x+12845))^{*}(x+15718),(x+6761)$ * $(x+$ 21802), $(x+2536) *(x+26027),(x+10986) *(x+17577),(x+11493)$ * $(x+17070),(x+7268)^{*}(x+21295),(x+13352) *(x+15211),(x+$ 3550) * $(x+25013),(x+13859) *(x+14704),(x+7775) *(x+$ 20788), $(x+1522)^{*}(x+27041),(x+5747)^{*}(x+22816),(x+4057)^{*}$ $(x+24506),(x+8282) *(x+20281),(x+8789) *(x+19774),(x+$ 4564) * $(x+23999),(x+6254)^{*}(x+22309),(x+10479)^{*}(x+$ 18084), $(x+4226) *(x+24337),(x+2029) *(x+26534),(x+8451) *$ $(x+20112),(x+12169) *(x+16394),(x+7944) *(x+20619),(x+$
- $P=x^{6}+x^{5}-x^{4}+2 x^{3}+11 x^{2}-12 x, p=3, n=8$
$\mathrm{P}=\mathrm{x}^{\wedge} 6+\mathrm{x}^{\wedge} 5-\mathrm{x}^{\wedge} 4+2^{*} \mathrm{x}^{\wedge} 3+11^{*} \mathrm{x}^{\wedge} 2-12^{*} \mathrm{x}$
Factorization of $P \bmod 3: x^{\wedge} 2^{*}\left(x^{\wedge} 4+x^{\wedge} 3+2^{*} x^{\wedge} 2+2^{*} x+2\right)$
There are 2 factorization of P mod 9
$\left[(x+6)^{\wedge} 2^{*}\left(x^{\wedge} 4+7^{*} x^{\wedge} 3+5^{*} x^{\wedge} 2+5 * x+5\right), x^{*}(x+3) *\left(x^{\wedge} 4+7 * x^{\wedge} 3\right.\right.$ $\left.\left.+5^{*} x^{\wedge} 2+5^{*} x+5\right)\right]$
There are 3 factorizations of P mod 27
$\left[(x+12)^{*}(x+18)^{*}\left(x^{\wedge} 4+25^{*} x^{\wedge} 3+5 * x^{\wedge} 2+14^{*} x+23\right),(x+9)^{*}(x\right.$
$+21)^{*}\left(x^{\wedge} 4+25^{*} x^{\wedge} 3+5^{*} x^{\wedge} 2+14^{*} x+23\right), x^{*}(x+3)^{*}\left(x^{\wedge} 4+25^{*} x^{\wedge} 3\right.$ $\left.\left.+5^{*} x^{\wedge} 2+14^{*} x+23\right)\right]$
There are 3 factorizations of $P \bmod 81$
$\left[(x+30)^{*}(x+54)^{*}\left(x^{\wedge} 4+79^{*} x^{\wedge} 3+5^{*} x^{\wedge} 2+68^{*} x+50\right), x^{*}(x+3)^{*}\right.$
$\left(x^{\wedge} 4+79^{*} x^{\wedge} 3+5^{*} x^{\wedge} 2+68^{*} x+50\right),(x+27)^{*}(x+57)^{*}\left(x^{\wedge} 4+79^{*} x^{\wedge} 3\right.$
$\left.\left.+5^{*} x^{\wedge} 2+68^{*} x+50\right)\right]$
There are 3 factorizations of $P \bmod 243$
$\left[x^{*}(x+165)^{*}\left(x^{\wedge} 4+79 * x^{\wedge} 3+86 * x^{\wedge} 2+149 * x+212\right),(x+3)^{*}(x+\right.$

162) * $\left(x^{\wedge} 4+79 * x^{\wedge} 3+86 * x^{\wedge} 2+149^{*} x+212\right),(x+81)^{*}(x+84)^{*}\left(x^{\wedge} 4\right.$ $\left.\left.+79 * x^{\wedge} 3+86 * x^{\wedge} 2+149 * x+212\right)\right]$
There are 3 factorizations of P mod 729
$\left[(x+408)^{*}(x+486) *\left(x^{\wedge} 4+565^{*} x^{\wedge} 3+86^{*} x^{\wedge} 2+392^{*} x+212\right), x^{*}(x\right.$ $+165)^{*}\left(x^{\wedge} 4+565^{*} x^{\wedge} 3+86 * x^{\wedge} 2+392^{*} x+212\right),(x+243) *(x+651) *$ $\left.\left(x^{\wedge} 4+565 * x^{\wedge} 3+86 * x^{\wedge} 2+392^{*} x+212\right)\right]$
There are 3 factorizations of $P \bmod 2187$
$\left[(x+894)^{*}(x+1458)\right)^{*}\left(x^{\wedge} 4+2023^{*} x^{\wedge} 3+815^{*} x^{\wedge} 2+1121^{*} x+941\right)$, (x
$+729)^{*}(x+1623)^{*}\left(x^{\wedge} 4+2023^{*} x^{\wedge} 3+815^{*} x^{\wedge} 2+1121^{*} x+941\right), x^{*}(x$
$\left.+165) *\left(x^{\wedge} 4+2023^{*} x^{\wedge} 3+815^{*} x^{\wedge} 2+1121^{*} x+941\right)\right]$
There are 3 factorizations of $P \bmod 6561$
$\left[(x+2187)^{*}(x+2352)^{*}\left(x^{\wedge} 4+2023^{*} x^{\wedge} 3+3002^{*} x^{\wedge} 2+1121^{*} x+3128\right)\right.$,
$x^{*}(x+4539)^{*}\left(x^{\wedge} 4+2023^{*} x^{\wedge} 3+3002^{*} x^{\wedge} 2+1121^{*} x+3128\right),(x+165)$

* $\left.(x+4374)^{*}\left(x^{\wedge} 4+2023^{*} x^{\wedge} 3+3002^{*} x^{\wedge} 2+1121^{*} x+3128\right)\right]$
- $P=x^{6}+x^{5}-x^{4}+2 x^{3}+11 x^{2}-12 x, p=2, n=8$
$\mathrm{P}=\mathrm{x}^{\wedge} 6+\mathrm{x}^{\wedge} 5-\mathrm{x}^{\wedge} 4+2^{*} \mathrm{x}^{\wedge} 3+11^{*} \mathrm{x}^{\wedge} 2-12^{*} \mathrm{x}$
Factorization of $P \bmod 2:(x+1)^{*} x^{\wedge} 2^{*}\left(x^{\wedge} 3+x+1\right)$
There are 2 factorization of P mod 4
$\left[(x+1)^{*}(x+2)^{\wedge} 2 *\left(x^{\wedge} 3+3^{*} x+3\right),(x+1)^{*} x^{\wedge} 2 *\left(x^{\wedge} 3+3^{*} x+3\right)\right]$
There are 1 factorizations of P mod 8
$\left[x *(x+4)^{*}(x+5)^{*}\left(x^{\wedge} 3+3^{*} x+7\right)\right]$
There are 2 factorizations of P mod 16
$\left[x *(x+12){ }^{*}(x+13) *\left(x^{\wedge} 3+8^{*} x^{\wedge} 2+11^{*} x+15\right),(x+4) *(x+8)\right.$
* $\left.(x+13)^{*}\left(x^{\wedge} 3+8^{*} x^{\wedge} 2+11^{*} x+15\right)\right]$

There are 4 factorizations of P mod 32
$\left[x *(x+13) *(x+28) *\left(x^{\wedge} 3+24 * x^{\wedge} 2+27 * x+15\right),(x+12) *(x+\right.$
13) * $(x+16) *\left(x^{\wedge} 3+24^{*} x^{\wedge} 2+27 * x+15\right),(x+8) *(x+13) *(x+$
20) * ($\left.x^{\wedge} 3+24^{*} x^{\wedge} 2+27^{*} x+15\right),(x+4)^{*}(x+13)^{*}(x+24)^{*}\left(x^{\wedge} 3+\right.$
$\left.\left.24 * x^{\wedge} 2+27 * x+15\right)\right]$
There are 4 factorizations of P mod 64
$\left[(x+13)^{*}(x+28)^{*}(x+32)^{*}\left(x^{\wedge} 3+56 * x^{\wedge} 2+59^{*} x+15\right), x^{*}(x+\right.$
13) * $(x+60) *\left(x^{\wedge} 3+56^{*} x^{\wedge} 2+59^{*} x+15\right),(x+12) *(x+13) *(x+$ 48) * $\left(x^{\wedge} 3+56 * x^{\wedge} 2+59^{*} x+15\right),(x+13)^{*}(x+16) *(x+44) *\left(x^{\wedge} 3\right.$ $\left.\left.+56 * x^{\wedge} 2+59 * x+15\right)\right]$
There are 4 factorizations of P mod 128
$\left[(x+13)^{*}(x+28)^{*}(x+96)^{*}\left(x^{\wedge} 3+120 * x^{\wedge} 2+123^{*} x+15\right),(x+13)\right.$ * $(x+60)^{*}(x+64)^{*}\left(x^{\wedge} 3+120^{*} x^{\wedge} 2+123^{*} x+15\right),(x+13)^{*}(x+$ 32) * $(x+92)^{*}\left(x^{\wedge} 3+120^{*} x^{\wedge} 2+123^{*} x+15\right), x^{*}(x+13)^{*}(x+124)$ * $\left.\left(x^{\wedge} 3+120^{*} x^{\wedge} 2+123^{*} x+15\right)\right]$

There are 4 factorizations of $P \bmod 256$
$\left[(x+60)^{*}(x+141)^{*}(x+192)^{*}\left(x^{\wedge} 3+120 * x^{\wedge} 2+251 * x+15\right),(x+\right.$ $64)^{*}(x+141) *(x+188) *\left(x^{\wedge} 3+120 * x^{\wedge} 2+251 * x+15\right),(x+124) *$ $(x+128)^{*}(x+141)^{*}\left(x^{\wedge} 3+120 * x^{\wedge} 2+251^{*} x+15\right), x^{*}(x+141) *(x$ $\left.+252)^{*}\left(x^{\wedge} 3+120 * x^{\wedge} 2+251 * x+15\right)\right]$

7 References

[1] Frei/Frisch : Non-unique factorization of polynomial over residue class rings of the integers. Commutative Algebra 39 (2011), no.4, 1482-1490.
 rings with zero-divisors. III., Rocky Mountain J.Math. 31 (2001), 1-21.
[3] D.D ANDERSON AND S.VALDES - LEON, Factorisation in commutative rings with zero divisors, Rocky Mountain J.Math. 26 (1996), 439-480.
[4] S.Frisch, Polynomial functions on finite commutative rings, in Advances in commutative ring theory (3rd Fez Conf.1997), D.Dobbs et al., eds.,vol. 205 of Lect. Notes Pure Appl.Math.,Marcel Dekker, 1997, 197-219.
[5] J.J JIANG, G.H PENG, On polynomial functions over finite commutative rings, Acta Math. Sin.(Engl.Ser.) 22 (2006), 1047-1050.
[6] PAUL ZIMMERMANN, Calcul mathémathique avec Sage (Sagebook).

8 Acknowledgement

The author wishes to thank Pr.WIESE and Dr.TSAKNIAS for providing valuable advice on this subject.

