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1 Introduction

Benford’s law, also called the significant-digit law or the first-digit law,
refers to the occurrence of leading digits in many real-life sources of data,
like the length of rivers, the cost of gas bills, population sizes, and so on.

Simon Newcomb, an American mathematician and astronomer, was
probably the first one to discover Benford’s law. In 1881, Newcomb
noticed that the first pages in the logarithmic tables were more referred to
than the last ones. Apparently, people did more calculations using numbers
that began with lower digits than with higher ones. Newcomb then found
a formula that matched his observations quite well.

Frank Albert Benford, an American electrical engineer and physicist,
rediscovered and generalized this phenomenon in 1938. He collected an enor-
mous set of data, including atomic weights, baseball statistics and street
addresses, in order to analyse this unexpected disparity.

One would maybe expect that the distribution of first- digit frequencies
for each of the nine possible digits would be one-ninth (11.11%). However,
about 30.1% of the numbers will start with 1.

As an example, one can easily see that the first one- hundred Fibonacci
numbers have this property:
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In contrary, the first one-hundred prime numbers do not follow this law:

2 Introductive example

Let us first have a look at the probability Pn(d), which is the probability that
d ∈ {1, ..., 9} is the first digit of the n first natural numbers (n ∈ N>0). Fix
n = 9. Then the probability P9(d) = 1

9
, ∀d ∈ {1, ..., 9}. This is the simplest

and clearest case.
Suppose n > 9. In this case the probability to have d as a first digit is not

constant. Let 1 6 n 6 99 and observe the case where d = 1 : P1(1) = 1 and
P2(1) = 1

2
. The probability falls until n = 9, where P9(1) = 1

9
. For n = 10 to

n = 19 the probability rises to P19(1) = 11
19

. The probability falls again for
19 < n 6 99 to P99(1) = 11

99
= 1

9
. So one can see that the probability Pn(1)

does not settle down . The cases for d = 2, ..., 9 are similar. We conclude
that (Pn(d))n∈N>0 is a divergent series.

n 1 9 19 99 199 999 1999 9999 19999
Pn(1) 1

1
1
9

11
19

11
99

111
199

111
999

1111
1999

1111
9999

11111
19999

n 8 9 89 99 899 999 8999 9999 89999
Pn(9) 0 1

9
1
89

11
99

11
899

111
999

111
8999

1111
9999

1111
89999

By comparing the two tables one can observe that the probability Pn(1) > 1
9

and the probability Pn(9) 6 1
9

for any n > 9. So we can conclude that in
general Pn(1)� Pn(9).
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3 The Formula

A set of numbers is said to satisfy Benford’s law if the leading digit d ∈
{1, ..., 9} occurs with probability:

P (d) = log10(d + 1)− log10(d) = log10(
d + 1

d
) = log10(1 +

1

d
).

The table below shows the probability for all d to be the leading digit:

d P (d)
1 0.3010
2 0.1761
3 0.1249
4 0.0969
5 0.0792
6 0.0669
7 0.0580
8 0.0512
9 0.0458

Sum 1.0000

1

1Reference[?]
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The distribution of first digits, according to Benford’s law. Each bar
represents a digit, and the height of the bar is the percentage of numbers
that start with that digit.

Applying the formula to our example in the introduction:

4 Some properties of Benford’s law

Benford’s law needs data that are neither totally random nor overly con-
strained, but rather lie somewhere in between. In fact, it applies most accu-
rately to data that are distributed smoothly across many orders of magnitude.

4.1 Proper Probability Space

The proper probability space is part of a mathematical explanation of Ben-
ford’s law by the American mathematician Theodore P. Hill, which deliv-
ers a convincing explanation of the recurrence of Benford’s law in natural
phenomenons.

The definition of the proper probability space is a very important key
for the understanding and the study of Benford’s law. In the case of
constructing such a space, a quickly appearing problem is the fact that the
event space is not a Borel set2of R. Example: All real numbers, whose
mantissae belong to a definite Borel set, are never included in a single interval.
So for example the mantissa3 of every number in [10, 20) is in [1, 2). But,
considering the fact that every number in [1, 2), [100, 200), [1000, 2000), ...

2Borel sets are named after the French mathematician Emile Borel (7 January 1871
- 3 February 1956). A Borel set is any set in a topological space that can be formed from
open sets (or, equivalently, from closed sets) through the operations of countable union,
countable intersection, and relative complement.

Borel sets are important in measure theory, since any measure defined on the open sets
of a space, or on the closed sets of a space, must also be defined on all Borel sets of that
space. Any measure defined on the Borel sets is called a Borel measure. Borel sets and the
associated Borel hierarchy also play a fudamental role in descriptive set theory. In some
contexts, Borel sets are defined to be generated by the compact sets of the topological
space, rather than the open sets. [?]

3the decimal part of a logarithm to base 10 as distinguished from the integral part. [?]
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has also its mantissa in [1, 2) it becomes evident that a probability cannot
be devoted to a single interval if only one suits to the corresponding set of
mantissae.

Anyway, by considering the following example it becomes evident that the
set of real numbers

⋃∞
n=−∞B · 10n includes all positive numbers whose man-

tissae belong to B1, where B is a Borel of [1, 10). An observer might assign
a probability at this set by only looking at the mantissae. Consequently for
a measurable space combined with a kind of Benford-experiment, where
just positive numbers are sampled, an natural definition is (R+,M).

The main properties of the event space M , called the mantissa algebra,
are explained in the following lemma:

Lemma 1. 1. Every non-empty set in M is infinitive with accumulation
points at +∞ and at 0, i.e. in any set S ⊂M it is constantly possible
to find arbitrary small or arbitrary large non-zero numbers.

2. M is self-similar in the sense that ∀m ∈ N,S ⊂M → 10m · S ⊂M .

3. M is closed under scalar multiplication (∀s > 0, S ⊂M → s ·S ⊂M).

4.2 Scale invariance

Groups of numbers that follow Benford’s law are scale invariant:
Scale invariance means that any universal law should be independent of

units. One can measure data using a range of different scales (feet/metres,
pounds/dollars, gallons/ millilitres, etc.); so, if the digit frequency law is true
for some scale, it must be true for all of them.

So this means that if one multiplies all numbers by an arbitrary constant,
then the distribution of first-digit frequencies remains unchanged.

Since one is interested in the distribution of first significant digits, it
makes sense to express numbers in scientific notation x·10m where 1 6 x < 10
m ∈ Z, for all numbers except zero. The first significant digit d is then simply
the first digit of x. One can easily derive a scale invariant distribution for d
once one has found a scale invariant distribution for x.

If a distribution for x is scale-invariant, then the distribution of y =
log10(x) should remain unchanged when one adds a constant value c to y,
because one would be multiplying x by some constant a ∈ R, and

log10(ax) = log10(a) + log10(x) = log10(a) + y = c + y.

Now, the only probability distribution on y ∈ [0, 1[ that will remain un-
changed after the addition of an arbitrary constant to y, is the uniform
distribution.
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So y is uniformly distributed between log10(1) = 0 and log10(10) = 1.
In order to find the probability that d is 1, one has to evaluate:

P (d = 1) = P (1 6 x < 2) = P (0 6 y < log10(2))

To find this one calculates the integral :∫ log10(2)

0

1dy = log10(2)

which is approximately 0.301. In general:

P (d = n) = P (n 6 x < n+1) = P (log10(n) 6 y < log10(n+1)), n ∈ {1, ..., 9}

and this is given by∫ log10(n+1)

log 10(n)

1dy = log10(n + 1)− log10(n) = log10(
n + 1

n
)

The expression log10(
n+1
n

) was exactly the formula given by Newcomb
and later by Benford for the proportion of numbers whose first digit is n.

Now, one can show that equally likely digits are not scale invariant:

Proof. Suppose that each of the digits 1, 2, ..., 9 are equally likely to appear
as the first significant digits in any number. If the first significant digit is
1, then multiplying by 2 will yield a new first digit of 2 or 3 with equal
probability. But if the first significant digit is 5, 6, 7, 8 or 9 the new first
digit must be 1. It turns out that in the new set of accounts, a first digit of
1 is much more likely than any other first digit, as one can see in the picture
below:
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4

The original uniform distribution is now heavily skewed towards the digit
1. So if the numbers are scale invariant, they will not be uniformly dis-
tributed.

4.3 Base invariance

Base invariance can be defined as a more differential hypothesis that also
induces Benford’s law. In a general significant digit law the basic motiva-
tion for a deduction of base invariance is the intuitive assumption that any
reasonable kind of such law should be as valid for base 10 as for other integral
bases. The idea is that if a certain law should emerge in observing data tests
in base 10, then this law should also appear by using another base.

Before being generalized to other bases the definition of mantissa algebra
M was used. By that the notation Mb will indicate the mantissa algebra
in an uncertain base b (thus M10 = M). That means: All the theorems,
properties and definitions are practically identical, except that b replaces 10.
So for example logb replaces log in the probability distributions.

Definition 1. A probability measure P on (R+,Mb) is base invariant if

∀m ∈ N,∀S ∈Mb, P (S) = P (S
1
m )

At first sight it might not be very easy to understand why this definition

4Reference[?]
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has a relevance to base invariance. Therefore we have to consider :

S =
∞⋃

q=−∞

[by, bx) · bq

Whereby x, y ∈ [0, 1) (representation of any left-closed interval of [1, b)
can be represented in the form [by, bx) )

4.3.1 Base invariance in data tests

Usually data tests are expressed in 8 different bases from 3 to 10. For inves-
tigating bases greater than 10 is usually required a much more complicated
computer routine. It should be mentioned that the base 2 also has a special
function because in base 2 the first digit is always 1.

The following table shows the Chi-square, the distance and the p-value
for the first digits of each of the converted datasets. Here the distance and
the Chi-squares 5 don’t have the same meaning according the base (there are
b − 1 classes for the first digit in base b, so they tend to be naturally lower
in the low bases).

By taking that into account, the base invariance is verified if the average
distance |fi−ei| was considered to be the order of 10−3 on all the classes and
all the bases.

Base Chi-square Distance p-value
3 0.1 2.7 · 10−6 74%
4 5.7 7.1 · 10−5 6%
5 13.4 1.4 · 10−4 0%
6 13.9 1.3 · 10−4 1%
7 14.1 1.1 · 10−4 1%
8 20.4 1.9 · 10−4 0%
9 12.9 8.1 · 10−5 8%
10 6.1 3.5 · 10−5 64%

In the figure above the Chi-squares seem not to be significant. The excel-
lent fit in base 3 might be due to the fact that there exist only two classes.
Altough the p-values6 are bad as usual, the overall base invariance is verified

5In the probability theory and statistics, the Chi-squared distribution (also Chi-
square or χ -distribution) with k degrees of freedom is the distribution of a sum of squares
of k independent standard normal random variables. [?]

6The p-value is a function of the observed sample results. A statistic that is often used
for testing a statistical hypothesis. The so-called significance level of test, traditionally
5% or 1% and denoted as α is a threshold value, which is chosen before performing the
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quite well because the distance7 is considered.

4.4 Sum invariance

Sum invariance means that the sum of all entries with leading digit d is
constant for various d. For instance, in a sample of integers that follow the
first-digit law, there are lots of 1, a bit less of 2, and so on until 9. So the
sum of all the 1s should be roughly equal to that of 2s to that of 3s, etc. One
should also consider second and third significant digits, and so on, e.g.: the
expected sum of all entries starting with 2.7182 is equal to that of all entries
starting with 3.1415.

Informally, one can say that a distribution is sum-invariant if for any
natural number n, the expected sum of the mantissae of all entries starting
with that fixed n-tuple of significant digits is the same as that for any other
n-tuple. Here, on considers the mantissa function

M : R+ → [1, 10)

such that
x 7→M(x) = r

where r is the unique number in [1, 10) with x = r · 10n for some n in Z. For
example, M(5) = M(0.05) = 5.

5 Utility of Benford’s law

Benford’s law can be used to detect fraudulent or random-guess data in
applications like election campaign finance, toxic gas emission or income tax
returns like on the graphic below. Here the first significant digits of true
tax data follow Benford’s law closely. Fraudulent data taken from a study
of cash disbursement and payroll in business do not follow Benford’s law.
Likewise, data taken from the author’s study of 743 freshmen’s responses
to a request to write down a six-digit number at random do not follow the

test. If the p-value is smaller than or equal to the significance level (α), the suggestion can
be made that the observed data do not lead to the assumption that the null hypothesis is
true. In this case the hypothesis must be rejected and the alternative hypothesis is true.
When the p-value is calculated correctly, such a test is guaranteed control for the fact that
the Type I error rate is not greater than α. [?]

7In mathematics, a distance function or metric function generalizes the concept of the
physical distance. A metric is a function that concretely describes what consequences it
has for elements of some space to be far away from or closed to each other. In most cases,
”distance from A to B” is interchangeable with distance between B and A.[?]
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law. Although these are very specific examples, in general, fraudulent or
randomly chosen data appear to have far fewer numbers starting with 1 and
many more starting with 6 than do true data.

6 Conclusion

Benford’s law was discovered by the American mathematician and as-
tronomer Simon Newcomb in 1881 and was made famous in 1938 by physi-
cist Frank Benford. After observing sets of naturally occurring numbers,
Benford discovered as the first number in a list, the phenomenon of a sur-
prising pattern in the occurrence frequency of the digits one through nine.
In essence can be said that referring to the frequency distribution of digits
in diverse life data, 1 occurs as the leading digit in almost 33% of the time.
Oppositely, larger numbers in that position occur less frequently, so 9 (with
4.58%) as the first digit less than 5% of the time.

A summary of the mathematical properties described in the present
work could be:

1. Introduction with the context already mentioned above, including ta-
bles showing that the fist one-hundred Fibonacci numbers follow Ben-
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ford’s law and in contrary the first one-hundred prime numbers do
not. (??)

2. An introductive example which by comparing these two tables to the
conclusion that in general Pn(1)� Pn(9). (??)

3. Probability formula, graphic and table illustrating the distribution of
first digits, according to Benford’s law. (??)

4. As some properties of Benford’s law are mentioned:

(a) The proper probability space by Theodore P. Hill. (??)

(b) Scale invariance, including a table and mathematical derivations
and proofs showing where the distribution of first digits of a data
set is scale invariant (e.g. independent of the units the data are
expressed in or not). (??)

(c) Base invariance manifesting the assumption that if a certain law
should appear in base 10, then this law should also appear if an-
other base was used (inclusive table and a short explanation why
in regular data tests base invariance is expressed in different bases
from 3 to 10 in 4.3.1). (??)

(d) Sum invariance indicating that the sum of all entries with leading
digit d is constant for all various d. (??)

5. A brief declaration of the worldwide utility of Benford’s law, respec-
tive its use for the detection of random-guess or fraudulent data. (??)

Ultimately we have tried to give a short and understandable insight into
this leading digit phenomenon. Benford’s law unquestionably applies to
many situations in the real world and is therefore an interesting object of
study.
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7 Annex

7.1 Version 1

package Benfordslaw;

import java.util.Scanner;

public class Benford2 {

    public static void main(String[] args){
    
    Scanner scan = new Scanner(System.in);
    int length; // length of the numerical sequence 
    
    System.out.println("Enter the length of the numerical sequence :");
    length = scan.nextInt();
    System.out.println();
    
    
        int[] occurences = new int[9]; // frequencies of leading digits
        double[] digits = new double[length]; // sequence of numbers             
        
        System.out.println("Enter a sequence of numbers : ");
    
        createSequenceOfNumbers(digits,scan);
        System.out.println();
        System.out.println("We will test Benfords law by using the following 

sequence of numbers :");
        print(digits);
        System.out.println();
        

      System.out.println("occurences of each leading digit : ");  
      
        countOccurences(digits, occurences);
        print(occurences);
        System.out.println();
        
        System.out.println("Histogram:");
        for (int i = 0; i <9 ; i++){
        System.out.print(i+1 +": ");
        for (int n =0; n<occurences[i]; n++){
        
        System.out.print("*");
        }
        System.out.println();}
        System.out.println();

      
  

        
        System.out.println("Test of Benfords law : ");
        System.out.println();
        test(occurences, digits.length);
       

    } // print-methods for doubles and integers
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private static void print(int[] array) { //prints an array of integer values
         for (int j = 0; j <array.length; ++j) {
             System.out.print(array[j] + " ");
         }
         System.out.println();
     }

     private static void print(double[] array) {  // prints an array of double  
values

     

       
         for (int j = 0; j <array.length; ++j) {
             System.out.print(array[j] + " ");
                                       
         }
         System.out.println();
     }

    public static int leadingDigit(double digit){ // returns the number which is 
nearest to the left of digit (computes the leading digit)

        if (digit == 0) {
            return 0;
        } else if (digit < 0){
            digit = -digit;
        }
        while (digit < 1){
            digit *= 10;
        }

        while (digit >= 10){
            digit  /= 10;
        }

        return (int)digit;
    }

    public static void createSequenceOfNumbers(double[] digits,Scanner x){ // 
method creates a sequence of numbers which can be entered by the user

                                                                   
    double inputNumber;
    
        for (int i = 0; i < digits.length; i++){       
           
            inputNumber = x.nextDouble(); // input of a number by the user 
            digits[i]=inputNumber;        // each input number will be stored in 

an array of type double
        }
    }

  

14



  public static void countOccurences(double[] digits, int[] occurrences) { // for each 
number in digits[] this method determines the amount of occurrences where i+1 is a 
leading digit in the sequence of numbers  

        for (int i = 0; i < digits.length; ++i){                             // 
computes an array of counts for the occurrences of each leading digit (0-9) 

            int k = leadingDigit(digits[i]);
            ++occurrences[k-1];
            
            
         
        }   
    }
    
       

    public static void test(int[] occurrences, int size) { // this method 
compares the frequencies with the predictions of Benfords law

        System.out.println("We compare the frequencies with the predictions of 
Benfords law :");

        System.out.println();
        for (int i = 0; i < 9; ++i){
            System.out.print( (i+1) + " : " + 100*(occurrences[i]/(double)size) +

"%, ");
            System.out.println( " Benford: "  + Math.log10(1 + 1.0/(i+1))*100 + 

"%");
        }
    }
    
    

}
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7.2 Version 2

package Benfordslaw;

import java.io.*;
import java.util.*;

public class Benfordslaw {

    public static void main(String[] args) {
    
    Scanner scan;
   try{

   
        scan = new Scanner(new File("fibonnacci.txt"));
      
        analyze(countFrequencies(scan));
        
    }catch(FileNotFoundException e){
       
    e.printStackTrace();
    }
    } 
    
    public static int leadingDigit(int number) { // returns the leading digit (leftmost digit) of a 

number
        int leadingDigit = Math.abs(number); 
        while (leadingDigit >= 10) {
            leadingDigit = leadingDigit / 10;
        }
        return leadingDigit;
   }
    
    public static int firstDigitOf(String s) { // returns the first nonzero digit of a string
                                           // returns 0 if the string does not contain any digits
    char c;
    
    for (int i = 0;i<s.length();i++){
    c=s.charAt(i);
    if(Character.isDigit(c)&&(c >= '1' && c <= '9')){
       
         
                 return c - '0';
        }
    }
    return 0;
    }
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    public static int[] countFrequencies(Scanner s) { // reads in integers from a text file 
    int [] frequencies = new int[10];             // counts the frequencies of   each leading 

digit (from 0 to 9)
        int digit = 0 ; 
        while (s.hasNext()) {
             
            digit = firstDigitOf(s.next());
            frequencies[leadingDigit(digit)]++;
        }
        return frequencies;
    }
    
    public static int computeSum(int[] numbers) { // returns the sum of integers of a given 

array
        int sum = 0;
        for (int i = 0; i<numbers.length; i++) {
            sum = sum + numbers[i];
        }
        return sum;
    }

  
   

    
    
    public static void analyze(int[] frequencies) { // prints frequency distribution of each 

leading digit
        System.out.println();
       
        int total = computeSum(frequencies) - frequencies[0];
        double percent;
        System.out.println("Digit Count Percent");
        for (int i = 1; i < frequencies.length; i++) {
            percent = frequencies[i] * 100.0 / total;
            System.out.printf("%5d %5d %6.2f\n", i, frequencies[i], percent);
            
        }
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        System.out.printf("Total %5d %6.2f\n", total, 100.0);
        System.out.println();
        System.out.println("predictions by Benfords Law :"); // comparison with the 

predictions of Benfords Law
        for(int i = 1;i<frequencies.length;i++){
        
        System.out.println(i+" :  "+Math.log10(1 + 1.0/(i+1))*100+" %");
        
        }
    }

}
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