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1 Introduction

Let us consider an s-sparse vector x0 in Rn, that is a vector in Rn with at most s
non-zero entries. Suppose we have m ≤ n linear measurements of our vector x0,
i.e. we have a vector y in Rm such that

y = Ax0, (1)

where A ∈ Mat(R,m, n). An important question in signal processing is, whether
we can reconstruct the vector x0 out of the knowledge of y. If m < n, this linear
system is under-determined and we cannot hope to solve this system uniquely.
We must specify additional constraints on x0 in order to reduce the number of
interesting solutions to 1. We thus ask whether we can find an unique solution to
the following optimization problem

minimize max {k|1 ≤ i1 < ... < ik ≤ n : xij 6= 0} =: ||x||0
subject to Ax = Ax0.

The || · ||0 pseudo-norm1 controls the sparsity of the vector x. Though it is pos-
sible under suitable conditions on A to solve this problem, it is computationally
untractable if n is large [2]. To circumvent this problem, it turns out that replac-
ing the function || · ||0 by || · ||1, the l1-norm, leads to a computationally efficient
algorithm. It is remarkable that the l1-norm is adequate to control the sparsity of
x. In this project we consider that the matrix A is random, more precisely we sup-
pose that the n ·m entries of A are independent and identically distributed normal
random variable N (0, 1/m). The problem we shall discuss is thus the following

minimize ||x||1 (2)

subject to Ax = Ax0.

In this work we present in detail that for m ≥ 2βs log n + s where β > 1
is arbitrary but fixed, we can recover x in problem (2) with high probability.
Problems of this kind fall in the domain of compressed sensing, which is currently
a rapidly developing field. This presentation is based on the paper [1]. Then we
illustrate the problem by computational experiments, which confirm the theoretical
results.

1It is not a norm because the triangle inequality is not satisfied.
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2 The sparse vector recovery problem

The aim will be to present the following result.

Theorem 1. Let x0 be an s-sparse vector in Rn and β > 1 . For a m×n matrix
A with normal N (0, 1

m
) random variables as entries and m ≥ 2βs log n + s the

recovery of x0 in problem (2) is exact with probability at least 1− 2n−f(β,s), where

f(β, s) =

(√
β
2s

+ β − 1−
√

β
2s

)2

.

Note that f(β, s) is positive for all β > 1 and s > 0
The proof is based on special properties of the l1 norm and on concentration

of measure inequalities. Recall that the subdifferential ∂f(x0) of a convex function
f : Rn → R at x0 ∈ Rn is defined as the set

∂f(x0) = {g ∈ Rn|∀x ∈ Rn : f(x) ≥ f(x0) + 〈g, x− x0〉},

where 〈·, ·〉 is the usual inner product on Rn.
It is clear from the triangle inequality that the l1 norm is a convex function on

Rn. The subdifferentials of || · ||1 have a special structure. For x ∈ Rn having at
least one zero entry we have that there exists a subspace T ⊆ Rn and e ∈ T such
that

∂||x||1 = {z ∈ Rn : PT (z) = e and ||PT⊥||∞ ≤ 1},

where PV designates the projection operator on V . We say in this case that the
norm || · ||1 is decomposable at x. Moreover we have that for w ∈ T⊥

||w||1 = sup
v∈T⊥,||v||∞≤1

〈v, w〉. (3)

Let us illustrate this in the case of R2. For x = (x1, x2) ∈ R we easily find the
following subdifferentials.2

sign(x1) sign(x2) ∂||(x1, x2)||1 T e

0 +1 {(x, 1) ∈ R2||x| ≤ 1} R(0, 1) (0, 1)
0 -1 {(x,−1) ∈ R2||x| ≤ 1} R(0,−1) (0,−1)

+1 0 {(1, x) ∈ R2||x| ≤ 1} R(1, 0) (1, 0)
-1 0 {(−1, x) ∈ R2||x| ≤ 1} R(−1, 0) (−1, 0)
0 0 {(x, y) ∈ R2||x| ≤ 1, |y| ≤ 1} {(0, 0)} (0, 0)

2sign(x)=0 means that x = 0.
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Formula (3) is easily seen to be valid. Similar types of computations can easily
be done also in higher dimensions. If x0 ∈ Rn is an s-sparse vector, one sees that
dim(T )= s, and e=sign(x0) where sign(·) return the signs of the components. This
shows that

||e||2 =
√
s. (4)

The following proposition gives a condition under which a unique solution to
(2) exists.

Proposition 1. Let x0 ∈ R be a point at which the l1-norm is decomposable and
T , e the corresponding subspace, respectively vector as previously described. Let
A be a random matrix as in theorem 2.1. Suppose that A is one-to-one on the
subspace T and that there exists y ∈ imA∗ ⊆ Rn such that

1. PT (y) = e

2. ||PT⊥(y)||∞ < 1.

Then x0 is the unique solution to the linear inverse problem (2).

Proof. One has to check that if h ∈ Rn is such that Ah = 0, then ||x0 + h||1 ≥
||x0||1. Using formula (3) we see that there exists v ∈ T⊥ such that ||v||∞ ≤ 1
and 〈v, PT⊥(h)〉 = ||PT⊥(h)||1. Note that PT (e + v) = e and ||PT⊥(e + v)||∞ =
||PT⊥(v)||∞ ≤ 1, so that e + v ∈ ∂||x0||1. Thus

||x0 + h||1 ≥ ||x0||1 + 〈e + v,h〉
= ||x0||1 + 〈e + v − y,h〉
= ||x0||1 + 〈v − PT⊥(y),h〉
= ||x0||1 + 〈v − PT⊥(y), PT⊥(h)〉
≥ ||x0||1 + (1− ||PT⊥(y)||∞)||PT⊥(h)||1.

The first equality comes from the fact that y = A∗w, so that 〈y,h〉 = 〈A∗w,h〉 =
〈w, Ah〉 = 0. The second equality simply uses that PT (y) = e. The third equality
comes from the fact that v − PT⊥(y) ∈ T⊥. The last inequality comes from the
fact that 〈PT⊥(y), PT⊥(h)〉 ≤ ||PT⊥(h)||1||PT⊥(y)||∞, where we have used (3).

Since ||PT⊥(y)||∞ < 1, we get that ||x0 +h||1 > ||x0||1 unless that PT⊥(h) = 0.
In the latter case we then have that h ∈ T . Since Ah = 0 and A is injective on T ,
we conclude that h = 0. This shows that x0 is a minimizer of (2).
Now observe that the previous arguments show that the minimizer x0 is unique.
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If the entries of A are independent and identically distributed centered gaussian
random variables with variance 1/m, then it is clear that provided dimT =: dT ≤
m, A restricted to T is one-to-one.
In order to find the vector y in proposition 1 we need a priori to solve the equation
PT (y) = e, which is of course not uniquely solvable. The plan is to find the least
square solution of the equation

PT (A∗q) = e, (5)

and then show that for y := A∗q we have ||PT⊥(y)||∞ < 1 with high probability.
This means that with high probability the problem (2) has a unique solution.

Note that the map PT ◦A∗ is a linear map from Rm → Rn, where m ≤ n. Let
AT and AT⊥ denote the restriction of A to T and T⊥,respectively. We then have
the following proposition.

Proposition 2. If AT is one-to-one, the least-square solution of (5) is given by

q = AT (A∗TAT )−1e. (6)

Moreover we have that
PT⊥(y) = A∗T⊥q. (7)

Proof. Note that by assumption A∗TAT is invertible, so that the MoorePenrose
pseudoinverse of A∗T is given by AT (A∗TAT )−1. The first formula and uniqueness
then follows from the relation of the MoorePenrose pseudoinverse and the least
square method, see for instance [4] .

The following proposition will be crucial for the sequel.

Proposition 3. Let A, A∗
T⊥ and q as before. Then, for any T , A∗

T⊥ and q are
independent.

Proof. By Cochran’s theorem (see for example [5] theorem 5.17), if X ∼ N (0, Id)
and E1, E2 are two orthogonal spaces in Rd, then the projections ΠE1X,ΠE2X are
independent. Now note that q depends of AT , and the claim then follows.

In order to see that the second condition in proposition 1 is verified with high
probability for the y previously constructed, we need to know the distribution of
PT⊥(y). It is given by the following proposition.

Proposition 4. Let A and q be as in proposition 2. Then, conditioned on q, PT⊥(y)
is distributed as ιT⊥g,where ιT⊥ is an isometry from Rn−dT onto T⊥ and g ∼
N (0,

||q||22
m
I).
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Proof. Note that we have PT⊥(y) = A∗
T⊥(q). Then the claim follows immediately

from the fact that if X1, X2 are two independent normal random variables with
distribution N (0, 1), then aX1 + bX2 , a, b ∈ R, has distribution N (0, a2 + b2).

In the following we will need to bound probabilities of the following type.

P[||PT⊥(y)||∞ ≥ 1] = P[||PT⊥(y)||∞ ≥ 1| ||q||2 ≤ τ ] · P[||q||2 ≤ τ ]

+P[||PT⊥(y)||∞ ≥ 1| ||q||2 ≥ τ ] · P[||q||2 ≥ τ ]

≤ P[||PT⊥(y)||∞ ≥ 1| ||q||2 ≤ τ ] + P[||q||2 ≥ τ ] (8)

Here τ is some positive parameter to be specified later. Each of the probabilities
in (8) will now be bounded. To bound the second probability on the right hand
side of (8) we will use the following proposition.

Proposition 5. We have that

||q||22 =
〈
e, (A∗TAT )−1e

〉
,

and ||q||22 is distributed as ||e||22mB11, where B11 is the first entry in the first column
of an inverse Wishart matrix with m degrees of freedom and covariance IdT .

Proof. We first recall the distribution of a Wishart matrix. Suppose X is an n× p
matrix, each row of which is drawn independently from a p-variate random normal
vector with distribution N (0, V ). Then the Wishart distribution with n degrees
of freedom and covariance V is the probability distribution of the p × p random
matrix XTX.
Note that (6) implies by the definition of the adjoint that ||q||22 = 〈e, (A∗TAT )−1e〉.
By what has been said before we have that (A∗TAT )−1 is a dT ×dT inverse Wishart
matrix with m degrees of freedom and covariance 1

m
IdT .

Now let P denote an orthogonal matrix of size n×n such that Pe = ||e||2e1, where
e1 = (1, 0, ..., 0). We have then that the law of ||q||22 is equal in law to〈

e, (A∗TAT )−1e
〉

=
〈
e, (P ∗A∗TATP )−1e

〉
=
〈
e, P ∗(A∗TAT )−1P−1e

〉
=
〈
Pe, P ∗(A∗TAT )−1Pe

〉
= ||e||22

〈
e1, (A

∗
TAT )−1e1

〉
= ||e||22mB11,

where we have used in the first equality that the Gaussian distribution is isotropic.
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One will now show that B11 is distributed as an inverse chi-squared random
variable with m− dT + 1 degrees of freedom .

Proposition 6. Let m ≥ n. The first entry in the first column of an inverse
Wishart matrix with m degrees of freedom and covariance In is distributed as an
inverse chi-squared random variable with m− n+ 1 degrees of freedom.

Proof. We first show that the squared distance of a vector v ∈ Rm to a subspace
L ⊆ Rm spanned by the linearly independent vectors v1, ..., vn is given by

d2(v, L) =
G(v1, . . . , vn, v)

G(v1, . . . , vn),

where

G(x1, . . . , xk) = det

〈x1, x1〉 . . . 〈x1, xk〉
. . . . . . . . .

〈xk, x1〉 . . . 〈xk, xk〉


is a Gram determinant. Note that (x1, ..., xk) is a linear dependent family if

and only if G(x1, ..., xk) = 0. Indeed, if (x1, ..., xk) is a linear dependent family,
then there is (λ1, ..., λk) 6= 0 such that

∑k
i=1 λixi = 0. Then

∑k
i=1 λiLi = 0, where

L1, ..., Lk are the lines of Gram matrix of x1, ..., xk. Conversely if G(x1, ..., xk) = 0,
then there is (λ1, ..., λk) 6= 0 such that

∑k
i=1 λiLi = 0, where L1, ..., Lk are the lines

of the Gram matrix of x1, ..., xk as previously. Then we can see that
∑k

i=1 λixi = 0
is orthogonal to all xi, and is thus 0. Linear dependence follows.

Now let v = u + k, where u ∈ L and k ∈ L⊥. By using the multi-linearity of
the determinant, we find that

G(v1, . . . , vn, v) = G(v1, . . . , vn, u) +G(v1, . . . , vn, k)

= G(v1, . . . , vn, u) + det


〈v1, v1〉 . . . 〈v1, vn〉 0
. . . . . . . . . . . .
〈vn, v1〉 . . . 〈vn, vn〉 0
∗ ∗ ∗ ||k||2


= G(v1, . . . , vn, u) +G(v1, . . . , vn)||k||2

Now G(v1, . . . , vn, u) = 0, because (v1, . . . , vn, u) is a linear dependent family. So
we get that

||u||2 = d2(v, L) =
G(v1, . . . , vn, v)

G(v1, . . . , vn)
.
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Let Φ be an m×n matrix with independent and identically distributed standard
normal random variables. Denote the columns of Φ by C1 to Cn. Since m ≥ n it
is clear that the family (C1, ..., Cn) is linearly independent. Then it is easy to see
that (Φ∗Φ)ij = 〈Ci, Cj〉. Let us denote the elements of the inverse Wishart matrix
(Φ∗Φ)−1 =: B by Bij (i, j = 1, ..., n). Using the basic formulas for computing the
inverse of matrices we find that

B11 =

det

〈C2, C2〉 . . . 〈C2, Cn〉
. . . . . . . . .

〈Cp, C2〉 . . . 〈Cp, Cn〉


det

〈C1, C1〉 . . . 〈C1, Cn〉
. . . . . . . . .

〈Cn, C1〉 . . . 〈Cn, Cn〉


=
G(C2, ..., Cn)

G(C1, ..., Cn)

By what we have seen previously we see that

B11 =
1

d(C1, L)2
,

where L is the vector space spanned by C2, ..., Cn. Now

d(C1, L)2 = ||ΠL⊥(C1)||2,

where ΠL⊥(C1) denotes the orthogonal projection of C1 to L⊥, a subspace of Rn

of dimension m− n− 1 (because L is of dimension n− 1). By Cochran’s theorem
(see for example theorem 5.17 in [5]) we have that

||ΠL⊥(C1)||2 ∼ χ2(m− n+ 1).

Then we can use the following concentration result.

Proposition 7. Let (Y1, ..., YD) be independent and identically distributed stan-
dard normal random variables and let α1, ..., αD be nonnegative. We set ||α||∞ =
supi=1,...,D |ai|, ||α||22 = α2

1 + ...+ α2
D. and

Z =
D∑
i=1

αi(Y
2
i − 1).

Then the following inequalities hold for all positive x:

P[Z ≤ −2||α||2
√
x] ≤ e−x. (9)
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For a proof we refer to ([3]), lemma 1, section 4. Now let U be a random variable
with a chi-squared distribution with D degrees of freedom. Then it follows readily
from (9) that for any positive x

P[D − U ≥ 2
√
Dx] ≤ e−x. (10)

In our case for D = m−dT +1 and τ =
√

m
m−dT+1−t ||e||2

3 in 8 we can deduce from

(10) the following large deviation result for ||q||2. For each t > 0,

P
[
||q||2 ≥

√
m

m− dT + 1− t
||e||2

]
≤ P[z ≤ m− dT + 1− t]

≤ exp

(
− t2

4(m− dT + 1)

)
, (11)

where z is a chi-squared random variable with m− dT + 1 degrees of freedom.

We now need to bound the first probability on the right hand side of (8). Using
the same reasoning as in proposition 4, it follows directly from (7) that conditioned
on q, the components of PT⊥(y) in T⊥ are independent and identically distributed
with distribution N (0, ||q||22/m). Thus for any τ > 0, we have

P[||PT⊥(y)||∞ ≥ 1| ||q||2 ≤ τ ] ≤ (n− s)P[|v| ≥
√
m/τ ]

≤ n exp
(
− m

2τ 2

)
, (12)

where in the first inequality we have used the basic union bound, the fact that
dimT = n − s and v ∼ N (0, 1). In the second inequality we have used the fact
that P[|v| ≥ t] ≤ e−t

2/2 for positive t.
Using the same τ as above with (4), i.e. τ =

√
ms

m−s+1−t , we get that

P[||PT⊥(y)||∞ ≥ 1| ||q||2 ≤ τ ] ≤ n exp

(
−m− s+ 1− t

2s

)
, (13)

Let D = m−s+1. As a consequence of (8), (11) and (13) we have thus proven
until now that

P[||PT⊥(y)||∞ < 1] = 1− P[||PT⊥(y)||∞ ≥ 1]

≤ 1− exp

(
− t2

4D

)
− n exp

(
−D − t

2s

)
. (14)

3This is natural in view of what follows.
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We now want to choose t on the right hand side of (14) such that both expo-

nential terms are equal. For this set t = 2β log(n)
(√

1 + 2s(β−1)
β
− 1
)

, and choose

m = 2βs log(n) + s− 1 with β > 1.

Observe that

t = 2β log(n)

(√
1 +

2s(β − 1)

β
− 1

)
= 2 log(n)

√
2sβ
√
f(β, s),

where f(β, s) =

(√
β
2s

+ β − 1−
√

β
2s

)2

as in theorem 2.1. We thus get that

t2

4(m− s+ 1)
= f(β, s) log(n),

and using m = 2βs log(n) + s − 1 we find that the first exponential term on the
right hand side of 14 equals to

e−
t2

4(m−s+1) = n−f(β,s).

Now observe that √
f(β, s) =

√
β

2s
+ β − 1−

√
β

2s

⇒

(√
f(β, s) +

√
β

2s

)2

=
β

2s
+ β − 1

⇔ f(β, s) + 2
√
f(β, s)

√
β

2s
+
β

2s
=

β

2s
+ β − 1

⇔
√

2β

s
f(β, s) = β − 1− f(β, s)

From this we get that

t = 2s log(n)(β − 1− f(β, s)).

Using once more that m = 2βs log(n) + s− 1 we get that

m− s+ 1− t = 2s(1 + f(β, s)) log(n)

⇒ −m− s+ 1− t
2s

= log(n−1−f(β,s))
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so that
ne−

m−s+1−t
2s = n−f(β,s).

Taking the previous computations all together, we find that

P[||PT⊥(y)||∞ < 1] ≤ 1− 2n−f(β,s).

We get thus theorem 2.1.

3 Numerical simulations

We use Matlab to show how a phase transition in the convex optimization problem
(2) takes place. We proceed as described in appendix A of [2].

1. Construct a vector x0 ∈ Rd with s nonzero entries. The locations of the
nonzero entries are random, and the nonzero entries are equal to +1 or −1
with equal probability.

2. Draw a random standard normal matrix A ∈ Rm×d.

3. Solve 2 to find x̂ using the cvx package.

4. Declare success if ||x̂− x0||2 ≤ 10−5.

This procedure is repeated for a given m, s and d times, where d will be specified.

3.1 Experimental results

The following diagrams indicate the empirical probability of success to solve the
convex optimization problem 2. The color bar indicates the probability of success.
s is the number of non-zero elements in the vector x0 ∈ Rd to be recovered and m
is the number of random linear measurements done to recover x0. Note the sharp
transition between certain failure (blue) and certain correct recovery (red).
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Figure 1: The dimension of the ambient space is d = 25. For each point the convex
optimization problem has been repeated 10 times and the arithmetic mean is then
used as an estimate for the probability of success.
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Figure 2: The dimension of the ambient space is d = 30. For each point the convex
optimization problem has been repeated 20 times and the arithmetic mean is then
used as an estimate for the probability of success.
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Figure 3: The dimension of the ambient space is d = 50. For each point the convex
optimization problem has been repeated 10 times and the arithmetic mean is then
used as an estimate for the probability of success.
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3.2 Matlab code

1 f unc t i on [ y]=RandomVector (d , s )
2 %d i s the s i z e o f the random vecto r
3 %s the number o f non−zero e lements .
4

5 a=ze ro s (d , 1 ) ;
6 l =1;
7 whi le l<s +1,
8

9 x = f l o o r (1 + (d)∗ rand (1 , 1 ) ) ;
10 %This a random element between 1 and d .
11 i f a ( x )==0,
12 a ( x )=2∗binornd (1 ,1/2)−1;
13 %This a −1/1 random element
14 l=l +1;
15 end ,
16 end
17 y=a ;

1

2 f unc t i on [Y]=RandomSystem(m, n)
3 % C r e une matr ice m f o i s n avec de v . a . nomales standard .
4 Y=randn (m, n) ;

1 f unc t i on w=s u c c e s s e s (N,m, d , s )
2 %N i s the number o f exper iments to do , f . ex . 50
3 %The s i z e o f the gauss ian matrix i s m times d . s i s the

s p a r s i t y
4 %of the vec to r to be recovered .
5 %Succe s s e s est imated the p r o b a b i l i t y o f s u c c e s s g iven the

data .
6

7 l =0;
8 %Counting the number s u c c e s s e s .
9 t = [ ] ;

10 y = [ ] ;
11 r =[ ]
12 z = [ ] ;
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13 f o r i =1:N,
14 t=RandomVector (d , s ) ;
15 y=MinimizationProblem (RandomSystem(m, d) , t ) ;
16 r=y−t ;
17 z=norm( r ) ;
18 i f z<10ˆ(−5) ,
19 %This th r e sho ld can be modi f i ed
20 l=l +1;
21 end
22 end
23 w=l /N;

1 f unc t i on s=MinimizationProblem (A, y )
2 %Solves the convex l i n e a r opt imiza t i on problem
3 %using the cvx package
4 b=A∗y ;
5 n=s i z e (y , 1 ) ;
6 cvx beg in
7 v a r i a b l e x (n) ;
8 minimize ( norm(x , 1 ) ) ;
9 A∗x == b ;

10 cvx end
11 s=x ;

1 f unc t i on Plot t ingFunct ion (N, d)
2 %N i s the number o f exper iments to do , f . ex . 50
3 %d i s the dimension o f the ambient space
4 %This p l o t s the p r o b a b i l i t i e s o f s u c c e s s as a func t i on
5 %of m( number o f measurements ) and s ( s p a r s i t y )
6

7 A= [ ] ;
8 %This matrix w i l l conta in de data
9

10 f o r s =1:(d−1) ,
11 f o r m=1:(d−1) ,
12 A(max( ( s−1)∗d−1 ,0)+m)=s u c c e s s e s (N,m, d , s ) ;
13 end
14 end
15

16

17 S = [ ] ;
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18 M= [ ] ;
19 f o r i =1:(d−1) ,
20 f o r j =1:(d−1) ,
21 S(max( ( i −1)∗d−1 ,0)+j )=i ;
22 end
23 end
24

25 f o r i =1:(d−1) ,
26 f o r j =1:(d−1) ,
27 M(max( ( i −1)∗d−1 ,0)+j )=j ;
28 end
29 end
30

31 t r i = delaunay (S ,M) ;
32 t r i s u r f ( t r i , S ,M,A) ;
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