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1 Introduction

The study of the number of zeros of a random polynomial has interested many scientists during
the last century. The underlying formula of this theory is the so-called Rice formula, which can
be stated in di�erent ways. It is called after Stephen Oswald Rice (1907 - 1986), an American
computer scientist who had a great in�uence in information theory and telecommunications.
This formula has great in�uence, not only in mathematics. In the 1950s and 1960s one could
�nd applications of Rice's formula to physical oceanography, for instance, whereas applications
to other areas of random mechanics were developed some time later. Another important math-
ematician in this theory is Mark Kac (1914 - 1984), widely known in probability theory. He
pointed out his formula known under the name Kac's counting formula, which, as we will see,
helps to state Rice's formula.

One of the �rst class of studied random polynomials were algebraic polynomials of degree n,
such as

F (x) = anx
n + . . .+ a1x+ a0 ,

where the coe�cients ak (0 ≤ k ≤ n) are independent standard Gaussian random variables, i.e.
with mean zero and variance one. Kac proved that in this case the asymptotic of the expected
number of zeros N0 is given by

E [N0] ∼ 2

π
log n .

Maslova established the known asymptotic for the variance of the number of real zeros, [11]

Var(N0) ∼ 4

π

(
1− 2

π

)
log n .

Apart of the asymptotic for variance, Maslova also established a Central Limit Theorem for the
number of zeros of this type of random polynomials, [8, 9]. An interesting fact arises when we
take a look at the distribution of the zeros of such polynomials. It is shown that the real zeros
concentrate near 1 and −1, whereas if one considers the complex plane, the complex zeros are
distributed on the unit circle. The asymptotic expectation of zeros changes when we slightly
modify the variance of the coe�cients. Namely, setting the variance of ak equal to

(
n
k

)
, we get

an exact expected number of zeros, namely

E [N0] =
√
n ,

which is actually more than in the previous case1. For this type of polynomials a Central Limit
Theorem has also been established, [4].

One more example of random polynomials are the trigonometric ones over [0, 2π], considered
by Dunnage,

F (x) = an cosnx+ bn sinnx+ . . .+ a1 cosx+ b1 sinx ,

for which he proves the estimate [6]

E [N0] ∼ 2√
3
n .

For trigonometric polynomials, a Central Limit Theorem for the number of zeros has been estab-
lished in the case where the coe�cients ak and bk are independent standard Gaussian random
variables. The proof of this theorem is based on Wiener Chaos expansion and Rice Formula.

1Indeed, ∀x ∈ R+, log x < x , hence log x = log
√
x2 = 2 log

√
x <
√
x.
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Our main aim of this paper will be to take in review these previous results and provide simple
arguments to prove some of them. At the end of this monograph, we will use Matlab to do some
simulations on the distribution of zeros of random algebraic polynomials and on the Central
Limit Theorem for random stationary trigonometric polynomials.

2 Basic ideas and de�ntions

In this �rst section we are interested in the main formula that will be useful all along this paper.
Firstly we start by giving a rough idea of this topic and �x some notations, as well as provide
some key de�nitions.

2.1 Random functions

In this paper we study the expected number of zeros of a random polynomial. The same can
be done for the number of crossings through some given level u for a random function. Thus in
order to study the distribution of the number of zeros of a random polynomial, we will mainly
restrict to u = 0.

A random function viewed as a stochastic process. In our paper, a random polynomial
F , that we will de�ne in a next step, can be seen as a path of a real-valued smooth stochastic
process F de�ned on some interval I, F = {F (t) : t ∈ I}, which gives the evolution of the
random variable F in terms of the time t.

Stationary stochastic process. Recall that a stochastic process {X(t) : t ≥ 0} is said to be
stationary if the distribution of X(s+ t)−X(s) over the interval (s, s+ t) only depends on the
length t of the interval, and not on the times t and s. In particular, if we assume that X(0) = 0,
we have that X(s+ t)−X(s) has the same distribution as X(t) = X(t)−X(0).

Notations. When we speak about the crossings of a stochastic process through some level u,
we can have di�erent situations, namely if F : I → R is a real-valued di�erentiable function,
then we denote

• Uu(F, I) := {t ∈ I : F (t) = u, F ′(t) > 0} the set of up-crossings of F

• Du(F, I) := {t ∈ I : F (t) = u, F ′(t) < 0} the set of down-crossings of F

• Cu(F, I) := {t ∈ I : F (t) = u} the set of crossings of F

The cardinality of this last set will be denoted by Nu(F, I).
Let us now give the de�nition of a random function in general, taken from [12].

De�nition 2.1. Let I ⊂ R be an interval and f0, f1, . . . fn : I → R some functions. Then a
random function F : I → R is given by the linear combination

F (t) =

n∑
k=0

akfk(t) ,

where the coe�cients ak are random variables for k = 0, 1, . . . , n de�ned on the same probability
space (Ω,A,P).
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Remark 2.2. From this de�nition we see that the random funtion is a �nite sum of random
variables, and hence a random variable, too. For simplicity we will assume that the coe�cients
of the random function are i.i.d. random variables. Even stronger, we will for most of the time
assume that the coe�cients are Gaussian random variables, which makes it easier to handle with
the formulas that we will meet.

2.2 Covariance function

Having de�ned a random function, we will now de�ne a function, which we will use quite often
in this paper, the covariance function. Let us start with the general de�nition.

De�nition 2.3. Let I ⊂ R. The covariance function2 of the stochastic process F = {F (t) : t ∈
I} is given by the covariance of the values of the process at times x and y, i.e. it is the function
K : I × I → R , de�ned by

K(x, y) = Cov(F (x), F (y)) = E [(F (x)− E [F (x)])((F (y)− E [F (y)])] . (2.1)

2.2.1 Covariance function for centered processes

Let us assume that the stochastic process F = {F (t) : t ∈ I} is centered, meaning that for all t
in I, E [F (t)] = 0. Then the covariance function as de�ned above in (2.1) takes the simpler form

K(x, y) = E [F (x)F (y)] .

Thus, for a centered random function as in De�nition 2.1, the above formula gives

K(x, y) = E

 n∑
i=0

aifi(x)
n∑
j=0

ajfj(y)

 =
n∑
i=0

n∑
j=0

fi(x)fj(y)E [aiaj ] , (2.2)

where the last equality immediately follows from the linearity of the expectation.

Case of a random function with independent coe�cients. Since for the remainder of
this paper we are essentially interested in the case where the coe�cients of the random function
are independent Gaussian variables, we try to derive a simpler form of the covariance function.

Let us see what happens if we assume that the coe�cients ak of the random function are
independent Gaussian variables with mean zero and variance vk , i.e. ak ∼ N (0, vk), 0 ≤ k ≤ n .
Since the random variables ai and aj are independent for i 6= j, we have that E [aiaj ] = 0 for
i 6= j. Thus the second sum will only have an non zero contribution for j = i. Hence (2.2) gives

K(x, y) =

n∑
i=0

fi(x)fi(y)E
[
ai

2
]
,

but since the coe�cients have all mean zero, we have

vi = Var(ai) = E
[
ai

2
]
− E [ai]

2 = E
[
ai

2
]
,

so that

K(x, y) =

n∑
i=0

vifi(x)fi(y) . (2.3)

In this last formula, we can see that assuming the coe�cients to be independent Gaussian
variables, we have simpli�ed the de�nition of the covariance function, so that it is easier to deal
with it.

2The covariance function of a stochastic process is also called the covariance kernel.

6



Covariance function of stationary processes. It often occurs that our stochastic process
that we analyse is stationary. In this case, the covariance function K(x, y), which is a priori a
function of two variables, only depends on the di�erence |x− y|, thus it only needs one variable
instead of two. Thus, instead of K(x, y), we can write K(|x− y|, 0). This notation is often made
easier by simply writing K(|x− y|) or K(τ) with τ = |x− y|.

2.3 Kac's counting formula

In this section, our goal is to provide the so-called Kac's counting formula, that will help us to
derive Rice's formula. Although we are interested in the expected number of zeros of a random
function, we will prove the general formula for crossings through some level u. For this part, we
follow Section 3.1 of [2] and Section 2 of [12].

Let us �rst make some assumptions on our random fuction F .

De�nition 2.4. Let F : [a, b]→ R be a C1-function. Then F is called convenient if the following
conditions are satis�ed:

• F (a) 6= u and F (b) 6= u ,

• if F (t) = u , then F ′(t) 6= 0 .

Remark 2.5. The second condition in the above de�nition means that the crossings of F through
level u are all nondegenerate. It is equivalent to writing that the set {t ∈ [a, b] : F (t) = u, F ′(t) =
0} is the empty set.

Lemma 2.6 (Kac's counting formula). Let F : [a, b] → R be a convenient C1-function. Then

the number of u-crossings of F in [a, b] is given by

Nu(F, [a, b]) = lim
ε→0

1

2ε

∫ b

a
1{|F (t)−u|<ε}|F ′(t)| dt . (2.4)

Proof. The assumption that F is convenient implies that F crosses level u �nitely many times,
say Nu(F, I) = n <∞. We will distinguish two cases, n = 0 and n ≥ 1.

If n = 0, then equality (2.4) is satis�ed, since the integrand in the r.h.s is equal to 0 for ε
small enough, so that we have 0 on both sides.

Assume n ≥ 1. Denote Cu(F, I) = {s1, s2, . . . , sn}. Since F is convenient, F ′(sk) 6= 0 for all
k = 1, 2, . . . , n. Then if ε > 0 is small enough, the inverse image of the open intervals (u−ε, u+ε)
is the disjoint union of n intervals Ik = (ak, bk) such that sk ∈ Ik for k = 1, 2, . . . , n. Observe
that since ak and bk are the extremities of the intervals Ik, we have that

F (ak) = u± ε and F (bk) = u∓ ε ,∀k = 1, 2, . . . , n ,

and thus by the fundamental theorem of calculus, we obtain∫
Ik

|F ′(t)| dt =

∫ bk

ak

|F ′(t)| dt = |F (t)|
∣∣∣∣bk
ak

= 2ε .

Finally, since ε is small enough, we get

1

2ε

∫ b

a
1{|F (t)−u|<ε}|F ′(t)| dt =

1

2ε

n∑
k=1

∫ bk

ak

|F ′(t)| dt =
1

2ε

n∑
k=1

2ε = n = Nu(F, [a, b]) ,

which concludes the proof.
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Figure 1: Kac's counting formula

Approximation of the Dirac function. We give here a rough idea of how one could derive
Kac's formula in a di�erent way. We follow the reasoning as in Section 2.1 of [5]. Let us consider
the function

ηε : R→ R , x 7→ 1

2ε
1{|x|<ε} .

This function is an approximation of Dirac's function when ε tends to 0. Using the properties
of Dirac's funtion, we can write ∫

R
δu(x) dx = 1 ,

which, by the change of variables x 7→ F (t), gives∫
R
δu(F (t))|F ′(t)| dt =

∫
Ik

δu(F (t))|F ′(t)| dt = 1 ,

for k = 1, 2, . . . , n. Now summing over k on both sides of the last equality, and using the fact
that F crosses level u in each of the intervals Ik at t = sk, it follows∫

[a,b]
δu(F (t))|F ′(t)| dt = n .

To derive Kac's counting formula from here, we use the fact that the function ηε approximates
Dirac's function when ε is small enough, thus the last equality can be rewritten as

lim
ε→0

∫
[a,b]

ηε(F (t)− u)|F ′(t)| dt = lim
ε→0

1

2ε

∫
[a,b]

1{|F (t)−u|<ε}|F ′(t)| dt = n ,

and hence we �nd back Kac's counting formula.

Remark 2.7. To simplify notations, we will denote

N ε
u(F, I) :=

1

2ε

∫
I
1{|F (t)−u|<ε}|F ′(t)| dt . (2.5)

Using this notation, we can rewrite Kac's counting formula in (2.4) as

Nu(F, [a, b]) = lim
ε→0

N ε
u(F, [a, b]) . (2.6)
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3 Kac-Rice formulas

3.1 Kac-Rice formulas for u-crossings

We are now in position to establish Kac-Rice's formula, which will cover the main part of this
subsection. Firstly we state a lemma, which turns out to be useful for what comes.

Lemma 3.1. Let I ⊂ R and F : I → R be a convenient C1-function. Assume that for u ∈ R
the function F (t) − u has r zeros and s critical points.3 Then for any ε we have the following

inequality

N ε
u(F, I) ≤ r + 2s .

Proof. DenoteG(t) = F (t)−u. ThenG has the same critical points as F−u and since the number
of u-crossings of F coincides with the number of zeros of G, we have that N ε

u(F, I) = N ε
0 (G, I).

Thus it is equivalent to prove N ε
0 (G, I) ≤ r + 2s.

Since G has only �nitely many critial points, the equation G′(t) = 0 has only �nitely many
solutions. Then Rolle's theorem4 implies that for any real constant c the equation G(t) = c has
�nitely many solutions. Let us now �x ε > 0. Using the above argument, the equation |G(t)| = ε
has �nitely many solutions. Thus {|G(t)| < ε} has �nitely many components, say n, which are
bounded intervals Ik = (ak, bk) such that for all k = 1, 2, . . . , n , |G(ak)| = |G(bk)| = ε .

Let us denote by jk the number of turning points of G(t) in Ik, that are the points where
G′ changes sign. If Ik contains no turning points, i.e. if jk = 0, then the function G is either
increasing or decreasing on Ik, and hence G(ak)G(bk) < 0. Thus, since G is continuous, it has a
unique zero in Ik.

Let us introduce the two following sets

τ0 = {k ∈ {1, . . . , n} : Ik contains no turning points}

τ1 = {k ∈ {1, . . . , n} : Ik contains turning points} .

Let us look at the cardinalities of τ0 and τ1. Since Ik has no turning points implies that G has
a unique zero in Ik , we clearly have that |τ0| = r. Now k ∈ τ1 means Ik contains at least one
turning point, i.e. G′ = 0 at least once in this interval. But by assumption G′ has s critical
points, therefore |τ1| ≤ s.

Then we can write

N ε
0 (G, I) =

1

2ε

∫
I
1{|G(t)|<ε}|G′(t)| dt =

1

2ε

n∑
k=1

∫ bk

ak

|G′(t)| dt

=
1

2ε

∑
k∈τ0

∫ bk

ak

|G′(t)| dt+
1

2ε

∑
k∈τ1

∫ bk

ak

|G′(t)| dt . (3.1)

But since ∫ bk

ak

|G′(t)| dt = |G(t)|
∣∣∣∣bk
ak

= 2ε ,

we have that the �rst sum in (3.1) is equal to |τ0| = r.

3Observe that the critical points of the function F (t)− u are the same as those of F (t) since (F (t)− u)′ = 0
implies F ′(t) = 0.

4Rolle's theorem states that if f : [a, b] → R is a di�erentiable function on (a, b) such that f(a) = f(b), then
there exists some constant c ∈ (a, b) such that f ′(c) = 0.
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Now let k ∈ τ1. We denote t1 < t2 < . . . < tjk the turning points5 in Ik. Then∫ bk

ak

|G′(t)| dt =

∫ t1

ak

|G′(t)| dt+

∫ t2

t1

|G′(t)| dt+ . . .+

∫ bk

tjk

|G′(t)| dt

= |G(ak)−G(t1)|+ |G(t1)−G(t2)|+ . . .+ |G(tjk)−G(bk)|
≤ 2ε(jk + 1) ,

since all the jk + 1 terms in the second equality are less or equal to 2ε. Thus (3.1) gives

N ε
0 (G, I) ≤ r +

1

2ε

∑
k∈τ1

2ε(jk + 1) = r +
∑
k∈τ1

jk + |τ1| ≤ r + 2s ,

where for the last inequality we noticed that the sum of the number of turning points is equal
to s.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Lemma 3.1

In I1 the function G is strictly increasing and has a unique zero, whereas in
I2, t1 < t2 are both turning points. In this case j1 = 0, hence 1 ∈ τ0 and

j2 = 2, hence 2 ∈ τ1.

In the following part of this section, we will establish Kac-Rice's formula.Our development
closely follows Section 2 of [12]. Up to now, we have seen Kac's counting formula, which gives
us the number of crossings through some level u of a random function F . Here we are interested
in the expected number of u-crossings of F . Hence the main idea is to start from Kac's counting
formula (2.4) and take expectation on both sides of the equality. We will discuss details in the
coming pages.

Let I ⊂ R and F : I → R be a random function as de�ned in de�nition 2.1. Consider the
probability space (Ω,A,P). Then the coe�cients of F are random variables

ak : Ω→ R , ω 7→ ak(ω) .

We may assume that the ak are independent Gaussian random variables with mean zero and
variance vk. Let us start by making two assumptions on F , namely

(A1 ) The random function F is almost surely convenient.

(A2 ) ∃ M > 0 constant such that almost surely Nu(F, I) +Nu(F ′, I) < M .

5Remember that jk stands for the number of turning points in Ik.
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By de�nition of the expectation and using (2.6), we can write

E [Nu(F, I)] =

∫
Ω
Nu(F, I)P(dω) =

∫
Ω

lim
ε→0

N ε
u(F, I)P(dω) .

Now in order to continue, we would like to interchange the limit and the integration operator.
This is possible by assumption (A2 ), Lemma 3.1 and using Lebesgue's dominated convergence
theorem. Thus after switching both operators, this last equality gives

lim
ε→0

∫
Ω
N ε
u(F, I)P(dω) = lim

ε→0
E [N ε

u(F, I)] ,

and using the de�nition of N ε
u(F, I) in (2.5), we obtain

lim
ε→0

E [N ε
u(F, I)] = lim

ε→0
E
[

1

2ε

∫
I
1{|F (t)−u|<ε}|F ′(t)| dt

]
= lim

ε→0

1

2ε

∫
I
E
[
1{|F (t)−u|<ε}|F ′(t)|

]
dt ,

where we have interchanged the expectation and the integration operator in the last equality.
Hence we �nally have

E [Nu(F, I)] = lim
ε→0

1

2ε

∫
I
E
[
1{|F (t)−u|<ε}|F ′(t)|

]
dt . (3.2)

Thus to know E [Nu(F, I)], (3.2) leads us to compute the expectation of 1{|F (t)−u|<ε}|F ′(t)|. In
order to do so, we observe that the random vector (F (t), F ′(t)) is Gaussian6. Indeed, (F (t), F ′(t))
is a Gaussian random vector since for all m1,m2 ∈ R , the random variable m1F (t) + m2F

′(t)
is Gaussian as a �nite sum of Gaussian random variables. Its covariance matrix7 is given by the
symmetric matrix

Mt =

(
At Bt
Bt Ct

)
,

where, using the fact that E [F (t)] and E [F ′(t)] are zero, we have8

At = Cov(F, F ) = E
[
F 2
]
− E [F ]2 = E

[
F 2
]
,

Bt = Cov(F, F ′) = E [FF ′]− E [F ]E [F ′] = E [FF ′] ,

Ct = Cov(F ′, F ′) = E
[
(F ′)2

]
− E [F ′]2 = E

[
(F ′)2

]
.

Now using the covariance kernel of F , K(x, y) = E [F (x)F (y)], and denoting Kx := ∂K
∂x , resp.

Kxy := ∂2K
∂x∂y the partial derivatives of K with respect to x resp. to x and y, we can write

At = K(t, t) , Bt = Kx(x, y)
∣∣
x=y=t

, Ct = Kxy(x, y)
∣∣
x=y=t

. (3.3)

For At this is clear, however for Bt and Ct, we need some computations in order to see this,
namely, using (2.3),

Kx(x, y) =
∂

∂x

n∑
i=0

vifi(x)fi(y) =
n∑
i=0

vifi
′(x)fi(y) = E

[
F ′(x)F (y)

]
,

6Recall the de�nition of a Gaussian random verctor. Let X = (X1, . . . , Xn) ∈ Rn be a random vector. Then
we say that X is a Gaussian random vector if for all reals a1, . . . , an , the random variable de�ned by the linear
combination a1X1 + . . .+ anXn is a Gaussian random variable.

7The covariance matrix of a Gaussian random X is given by C = (Cov(Xi, Xj))ij .
8We write F for F (t) and F ′ for F ′(t).

11



and hence Bt = Kx(x, y)
∣∣
x=y=t

. By the same reasoning,

Kxy(x, y) =
∂2

∂x∂y

n∑
i=0

vifi(x)fi(y) =
∂

∂x

n∑
i=0

vifi(x)fi
′(y) = E

[
F ′(x)F ′(y)

]
,

and hence Ct = Kxy(x, y)
∣∣
x=y=t

.

Denote by ∆t the determinant of the covariance matrix Mt of (F, F ′), then we make the
following assumption

(A3 ) ∀t ∈ I : ∆t := AtCt −Bt2 > 0 .

Set Ut = ∆t/At = Ct −Bt2/At .
Now in order to compute E

[
1{|F (t)−u|<ε}|F ′(t)|

]
, we observe that this is the expectation of

a function depending on the random variables F and F ′ ,9 namely

E
[
1{|F (t)−u|<ε}|F ′(t)|

]
= E

[
G(F (t), F ′(t))

]
,

where G(x, y) = 1{|x−u|<ε}|y| . Then it follows

E
[
1{|F (t)−u|<ε}|F ′(t)|

]
=

∫
R

∫
R
1{|x−u|<ε}|y|p(F,F ′)(x, y) dx dy , (3.4)

where p(F,F ′) is the density of the Gaussian random vector10 (F (t), F ′(t)). Since this vector has
mean (E [F ] ,E [F ′]) = (0, 0), its density is given by

p(F,F ′)(x) =
1

2π
√

∆t
exp (−1/2xTMt

−1x) ,where x ∈ R2 . (3.5)

Remark 3.2. Here xT denotes a line vector and x denotes a column vector. Thus we write

xT = (x, y) and x =

(
x
y

)
.

We will now compute xTMt
−1x. By assumption (A3 ), the matrix Mt is invertible and

Mt
−1 =

1

∆t

(
Ct −Bt
−Bt At

)
,

and thus xTMt
−1x is equal to

1

∆t
(x, y)

(
Ct −Bt
−Bt At

)(
x
y

)
=

1

∆t
(Ctx

2 − 2Btxy +Aty
2)

The next step is now to write this expression into a convenient way, namely

Ctx
2 − 2Btxy +Aty

2

= Aty
2 − 2Btxy + Bt2

At
x2 +

(
Ct − Bt2

At

)
x2

= At

(
y2 − 2BtAtxy +

(
Bt
At
x
)2
)

+
(
Ct − Bt2

At

)
x2

= At

(
y − Bt

At
x
)2

+
(
Ct − Bt2

At

)
x2

= At

(
y − Bt

At
x
)2

+ ∆t
At
x2 .

9We recall that if X and Y are two random variables, G : R2 → R a function, then E [G(X,Y )] =∫
R

∫
RG(x, y)p(X,Y )(x, y) dx dy , where p(X,Y ) is the density of the random vector (X,Y ).

10If X = (X1, . . . , Xn) ∈ Rn is a Gaussian random vector of mean E [X] = (E [X1] , . . . ,E [Xn]) = µ and covari-
ance matrix C, then if C is invertible, its density is given by pX(x) = 1

(2π)n/2
√
detC

exp (−1/2(x− µ)TC−1(x− µ)),
where x = (x1, . . . , xn) ∈ Rn.
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From this last equality, it follws that

−1

2
xTMt

−1x = − At
2∆t

(
y − Bt

At
x

)2

− x2

2At
,

and plugging this in (3.5), we �nally obtain the desired density of (F (t), F ′(t)),

p(F,F ′)(x, y) =
1

2π
√

∆t
exp

[
− At

2∆t

(
y − Bt

At
x

)2

− x2

2At

]
. (3.6)

In order to compute E
[
1{|F (t)−u|<ε}|F ′(t)|

]
, we continue with (3.4), where we replace p(F,F ′)(x, y)

by the expression obtained in (3.6). This gives

E
[
1{|F (t)−u|<ε}|F ′(t)|

]
=

∫
R

∫
R
1{|x−u|<ε}|y|p(F,F ′)(x, y) dx dy

=

∫
R

∫
R
1{|x−u|<ε}|y|

1

2π
√

∆t
exp

[
− At

2∆t

(
y − Bt

At
x

)2

− x2

2At

]
dx dy

=

∫
R

1

2π
√

∆t
1{|x−u|<ε}

(∫
R
|y| exp

[
− At

2∆t

(
y − Bt

At
x

)2

− x2

2At

]
dy

)
dx

=

∫ u+ε

u−ε

1

2π
√

∆t

(∫
R
|y| exp

[
− At

2∆t

(
y − Bt

At
x

)2
]

exp

[
− x2

2At

]
dy

)
dx

=

∫ u+ε

u−ε

1

2π
√

∆t
exp

[
− x2

2At

](∫
R
|y| exp

[
− At

2∆t

(
y − Bt

At
x

)2
]
dy

)
dx .

(3.7)

Now using that Ut = ∆t/At , we can write

1

2π
√

∆t
=

1√
2πAt

1√
2π∆t/At

=
1√

2πAt

1√
2πUt

,

so that the last line in (3.7) gives∫ u+ε

u−ε

1√
2πAt

exp

[
− x2

2At

](∫
R

1√
2πUt

|y| exp

[
− 1

2Ut

(
y − Bt

At
x

)2
]
dy

)
dx

=

∫ u+ε

u−ε
Φt(x) dx ,

where Φt(x) :=
1√

2πAt
exp

[
− x2

2At

](∫
R

1√
2πUt

|y| exp

[
− 1

2Ut

(
y − Bt

At
x

)2
]
dy

)
.

Let us now see what the integrand of the integral with respect to y in the expression of Φt(x)
is. To do so, we observe that this integrand has a similar shape as the density of a Gaussian
random variable11, that is to say

1√
2πUt

|y| exp

[
− 1

2Ut

(
y − Bt

At
x

)2
]

= |y| 1√
2π
√
Ut

exp

−1

2

(
y − Bt

At
x

√
Ut

)2
 = |y|ΨBt

At
x,Ut

(y) ,

11Recall that if X ∼ N (µ, σ2) is a Gaussian random variable of mean µ and variance σ2, then its density is

given by pX(x) = 1

σ
√
2π

exp
(
− 1

2

(
x−µ
σ

)2)
.
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where

ΨBt
At
x,Ut

(y) :=
1√

2π
√
Ut

exp

−1

2

(
y − Bt

At
x

√
Ut

)2
 .

Here one clearly recognizes the density of a Gaussian random variable, say Y , of mean E [Y ] =
Btx/At and variance Var(Y ) = Ut . Using this density, we can rewrite Φt(x) as

Φt(x) =
1√

2πAt
exp

[
− x2

2At

](∫
R
|y|ΨBt

At
x,Ut

(y) dy

)
. (3.8)

Remark 3.3. Having a closer look at the integral over R in (3.8), we observe that

Φt(x) =
1√

2πAt
exp

[
− x2

2At

]
E [|Y |] .

Then by (3.7) it follows that

E
[
1{|F (t)−u|<ε}|F ′(t)|

]
=

∫ u+ε

u−ε
Φt(x) dx ,

and thus, plugging this into (3.2), we have

E [Nu(F, I)] = lim
ε→0

1

2ε

∫
I

∫ u+ε

u−ε
Φt(x) dx dt . (3.9)

The idea is now to apply the limit on the integral with respect to x, this means we will have to
interchange the limit with the integral with respect to t. As already done in a previous reasoning,
we may use Lebesgue's dominated convergence theorem. Thus we have to see that there exists an
integrable function µ(t) on I such that |Φt(x)| ≤ µ(t). In order to do this, we use Cauchy-Schwarz
inequality12 to observe that for any random variable X, we have the inequality13

E [|X|] ≤
√
E [X2] =

√
Var(X) + E [X]2 . (3.10)

Now using the fact that |Y | ≥ 0 implies E [|Y |] ≥ 0 , we have, by Remark 3.3, that Φt(x) is
a positive function, so that |Φt(x)| = Φt(x). Applying the inequality in (3.10) to the random
variable Y , it follows that

E [|Y |] ≤
√
Var(Y ) + E [Y ]2 =

√
Ut +

(
Bt
At
x
)2
≤
√
Ut + |Btx|

At
, (3.11)

where for the last inequality we used that for a, b ≥ 0 ,
√
a+ b ≤

√
a+
√
b . Hence using (3.11)

in the expression of Φt(x) in remark 3.3, it comes

Φt(x) ≤ 1√
2πAt

exp

[
− x2

2At

](√
Ut +

|Btx|
At

)
.

Now we notice that the function x 7→ exp(−x2) has a maximum at x = 0 and exp(0) = 1, thus
for all x ∈ R , exp(−x2) ≤ 1 . In particular, for |x| < 1, we can write

Φt(x) ≤ 1√
2πAt

(√
Ut +

|Btx|
At

)
=

1√
2π

(√
∆t

At
+
|Bt|
A

3/2
t

)
:= µ(t) .

In order to use Lebesgue's dominated convergence theorem, we add a fourth assumption to our
random function F ,

12Cauchy-Schwarz inequality states that for any two random variables X and Y , E [XY ] ≤
√

E [X2]E [Y 2] .
13Indeed, by Cauchy-Schwarz inequality, we obtain that E [|X|] = E [1 · |X|] ≤

√
E [1]E [|X|2] =

√
E [X2] .
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(A4 ) The function µ(t) is integrable on I, i.e.

∫
I
µ(t) dt <∞ .

Hence assuming (A4 ) and using dominated convergence, (3.9) gives

E [Nu(F, I)] =

∫
I

lim
ε→0

1

2ε

∫ u+ε

u−ε
Φt(x) dx dt =

∫
I

Φt(u) dt , (3.12)

where Φt(u) is obtained using (3.8),

Φt(u) =
1√

2πAt
exp

[
− u2

2At

](∫ +∞

−∞
|y|ΨBt

At
u,Ut

(y) dy

)
. (3.13)

We are now in position to state Kac-Rice formula for u-crossings in the next theorem.

Theorem 3.4 (Kac-Rice theorem for u-crossings). Let I ⊂ R be an interval. For k = 0, 1, . . . , n,
consider fk : I → R smooth functions and ak independent Gaussian random variables with mean

zero and variance vk de�ned on the same probability space (Ω,A,P). Then, if the random function

F : I → R, F (t) =
n∑
k=0

akfk(t)

of covariance function K(x, y) = E [F (x)F (y)] satis�es assumptions (A1), (A2), (A3), (A4), the
expected number of u-crossings of F on I is given by

E [Nu(F, I)] =

∫
I

1√
2πAt

exp

[
− u2

2At

](∫ +∞

−∞
|y|ΨBt

At
u,Ut

(u) dy

)
dt , (3.14)

where

ΨBt
At
x,Ut

(y) = 1√
2π
√
Ut

exp

[
−1

2

(
y−Bt

At
x

√
Ut

)2
]
,

At = K(t, t) , Bt = Kx(x, y)
∣∣
x=y=t

, Ct = Kxy(x, y)
∣∣
x=y=t

, Ut = AtCt−Bt2
At

.

3.2 Kac-Rice formulas for 0-crossings

In this part of our paper, we will use the previous computations in order to derive Kac-Rice
formula for 0-crossings. We will then state Kac-Rice theorem for 0-crossings and see that it is
much simpler to handle with than the general case for u-crossings.

Replacing u = 0 in the expression of Φt(u) in (3.13), we obtain

Φt(0) =
1√

2πAt

(∫ +∞

−∞
|y|Ψ0,Ut(y) dy

)
, (3.15)

where we obtain Ψ0,Ut(y) by (3.1) as

Ψ0,Ut(y) =
1√

2π
√
Ut

exp

[
−1

2

(
y√
Ut

)2
]
. (3.16)

By an easy computation of the integral in (3.15), we obtain∫ +∞

−∞
|y|Ψ0,Ut(y) dy =

2√
2π
√
Ut

∫ +∞

0
y exp

[
−1

2

(
y√
Ut

)2
]
dy

=
2Ut√

2π
√
Ut

=
2
√
Ut√

2π
,
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and consequently, using Ut = ∆t/At, it follows

Φt(0) =
1√

2πAt
· 2
√
Ut√

2π
=

√
Ut

π
√
At

=

√
∆t

πAt
:=

1

π
ρt , (3.17)

where ρt :=
√

∆t/At , so that

ρt
2 =

AtCt −Bt2

At
2 =

K(x, y)
∣∣
x=y=t

Kxy(x, y)
∣∣
x=y=t

− (Kx(x, y)
∣∣
x=y=t

)2

(K(x, y)
∣∣
x=y=t

)2

=
∂2

∂x∂y
logK(x, y)

∣∣∣∣
x=y=t

.

Remark 3.5. Note that the last equality is non-trivial, but can be easily checked by calculating
the expression of the last line. We use the fact Kx(x, y) and Ky(x, y) coincide when we evaluate
them at x = y = t.

Hence, writing (3.12) for u = 0, we obtain using (3.17),

E [N0(F, I)] =

∫
I

Φt(0) dt =
1

π

∫
I
ρt dt .

Remark 3.6. The quantity 1
πρt in the integral above represents the expected density of zeros of

F at t.

We will now state Kac-Rice formula for 0-crossings in the next theorem.

Theorem 3.7 (Kac-Rice theorem for 0-crossings). Let I ⊂ R be an interval. For k = 0, 1, . . . , n,
consider fk : I → R smooth functions and ak independent Gaussian random variables with mean

zero and variance vk de�ned on the same probability space (Ω,A,P). Then, if the random function

F : I → R, F (t) =

n∑
k=0

akfk(t)

of covariance function K(x, y) = E [F (x)F (y)] satis�es assumptions14 (A1), (A2), (A3), (A4),
the expected number of zeros of F on I is given by

E [N0(F, I)] =
1

π

∫
I
ρt dt , (3.18)

where ρt is given by

ρt =

(
K(x, y)

∣∣
x=y=t

Kxy(x, y)
∣∣
x=y=t

− (Kx(x, y)
∣∣
x=y=t

)2

(K(x, y)
∣∣
x=y=t

)2

)1/2

, (3.19)

or equivalently

ρt =

(
∂2

∂x∂y
logK(x, y)

∣∣∣∣
x=y=t

)1/2

. (3.20)

Comparing this theorem to the general statement in Theorem 3.18, it seems to be easier
to deal with this one, since we got rid of the integral involving the density Ψ. To prove the
important results anounced in the introduction, we will use this theorem, as we are interested in
the number of zeros of random polynomials.

14We obviously replace u = 0 in the assumptions, in particular in (A1 ) and (A2 ).
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3.3 Equivalent Rice formulas

In this section, we will see more general Rice formulas as those stated in the previous theorems.
However, we are not going to use these formulas to prove the main results, but as Kac-Rice for-
mula is mainly known under these formulas, we will just enounce them and make some comments.
We mainly follow the arguments in [2].

To be as general as possible, we may assume that the coe�cients ak are independent random
variables de�ned on the probability space (Ω,A,P). As usual, we consider smooth functions
fk : I → R for k = 0, 1, . . . , n and form the random function on an interval I,

F (t) =

n∑
k=0

akfk(t) .

As we already pointed out in the beginning, we may look at the random function as a stochastic
process F = {F (t) : t ∈ I}. In order to state the general Rice theorem rigorously, let us make
some assumptions on our stochastic process F .

(A1) The paths of the process F are almost surely C1.

(A2) The functions (t, x) 7→ pF (t)(x) and (t, x, y) 7→ p(F (t),F ′(t))(x, y) are continuous for t ∈ I, x
in a neighborhood of u and y ∈ R.

(A3) For all t ∈ I and x in a neighborhood of u, the conditional expectation E
[
|F ′(t)|

∣∣F (t) = x
]

has a continuous version.

(A4) If ω(F ′, h) = sups,t∈I,|s−t|≤h |F ′(s)− F ′(t)| denotes the modulus of continuity of F ′ on I,
then E [ω(F ′, h)]→ 0 when h→ 0.

Theorem 3.8. Let I ⊂ R be an interval. If the stochastic process F sati�es assumptions (A1),
(A2), (A3), (A4), then the expected number of u-crossings on I of the random function F is

given by

E [Nu(F, I)] =

∫
I
E
[
|F ′(t)|

∣∣F (t) = u
]
pF (u) dt , (3.21)

where pF denotes the probability density of the random variable F .

Remark 3.9. The proof of this theorem is a bit technical, hence we will not give the details. The
idea is again to use Kac's counting formula.

Another form under which Kac-Rice formula is often written is the next one. Here we assume
that all ak have mean zero and constant variance v. We state it in the next corollary.

Corollary 3.10. Let I ⊂ R be an interval. Assume that the coe�cients of the random function

have all mean zero and constant variance v. If the stochastic process F sati�es assumptions

(A1), (A2), (A3), (A4), then the expected number of u-crossings on I of the random function F
is given by

E [Nu(F, I)] =

∫
I

∫
R
|y|p(F (t),F ′(t))(u, y) dy dt , (3.22)

where p(F,F ′) denotes the probability density of the random vector (F, F ′).

Proof. Since for k = 1, . . . , n the coe�cients ak are independent with mean zero and constant
variance v, we have15

E
[
F (t)2

]
= Var(F (t)) =

n∑
k=1

Var(ak) = nv ,

15Recall that if X1, . . . , Xn are random variables we have Var(
∑n
k=1Xk) =

∑n
k=1 Var(Xk) +

2
∑

1≤i≤j≤n Cov(Xi, Xj). Moreover, if the variables Xk are independent, Cov(Xi, Xj) = 0 for i 6= j.
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so that di�erentiating both sides with respect to t leads to16

E
[
F (t)2

]′
= E

[
(F (t)2)′

]
= 2E

[
F (t)F ′(t)

]
= 0 ,

and therefore E [F (t)F ′(t)] = 0, which means that F (t) and F ′(t) are independent. Now using the
corresponding property of the conditional expectation17, we can write the conditional expectation
in (3.21) as an ordinary expectation, namely E

[
|F ′(t)|

∣∣F (t) = u
]

= E [|F ′(t)|]. Thus evaluating
the integral in (3.21), E [Nu(F, I)] is equal to∫

I
E
[
|F ′(t)|

]
pF (u) dt =

∫
I

(∫
R
|y|pF ′(y) dy

)
pF (u) dt =

∫
I

∫
R
|y|pF ′(y)pF (u) dy dt ,

and since F and F ′ are independent, pF (u)pF ′(y) = p(F,F ′)(u, y). Plugging this into the last
equality, we obtain the desired form (3.22).

3.4 Factorial moments of the number of crossings

In this subsection we will provide a formula that permits to study the factorial moments of the
random variable giving the number of crossings of a random polynomial. More precisely, we will
state a theorem giving the k-th factorial moment of crossings. We will see in the next section
how one can use this formula in order to obtain the variance of the number of zeros, for instance.

The following theorem is taken from [2].

Theorem 3.11. Let I ⊂ R be an interval and F = {F (t) : t ∈ I} a Gaussian stochastic process

with C1-paths. Let k ≥ 1 be an integer. Assume that for k pairwise di�erent t1, . . . , tk in I, the
random variables F (t1), . . . , F (tk) have a nondegenerate joint distribution. Then we have

E
[
N [k]
u (F, I)

]
=

∫
Ik

E
[
|F ′(t1) . . . F ′(tk)|

∣∣F (t1) = . . . = F (tk) = u
]

· p(F (t1),...,F (tk))(u, . . . , u) dt1 . . . dtk , (3.23)

where M [k] = M(M − 1) . . . (M − k + 1) for positive integers M and k.

As in the section before, assuming that the coe�cients of the stochastic process have mean
zero and constant variance, we can give an equivalent formula to (3.23), namely

E
[
N [k]
u (F, I)

]
=

∫
Ik

∫
Rk
|y1| . . . |yk|p(F (t1),...,F (tk),F ′(t1),...,F ′(tk))(u, . . . , u, y1, . . . , yk)

dy1 . . . dyk dt1 . . . dtk . (3.24)

Remark 3.12. The one-dimensional formulas in Theorem 3.8 respectively in Corollary 3.10 are
obtained if we replace k = 1 in (3.23) respectively (3.24).

Finiteness of the moments of crossings. For what comes, we follow the corresponding
parts in Section 3.2 of [2] and Section 2.1 of [10]. In many applications, it is irrelevant to know
the exact value of the expectation of the factorial moments of crossings given in (3.23). One
may rather be interested if this number is �nite or not. Moreover, in certain cases, the problem
to compute the r.h.s. of (3.23) is a very challenging task, that is why it sometimes su�ces to
know �niteness. The question of e�cient procedures to approximate the factorial moments is

16Note that one can pass the derivative inside the expectation.
17Let X be a random variable and C a conditional event. If X and C are independent, then E

[
X
∣∣C] = E [X].
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still a subject of great interest. Finiteness of moments of crossings have been considered by,
among others, Belayev (1966) and Cuzick (1975). Belayev proposed a su�cient condition for
the �niteness of the k-th factorial moment for the number of zeros on the interval [0, t]. This
condition is given by means of the covariance matrix Σk of the Gaussian vector (F (t1), . . . , F (tk))
and of the conditional variances σ2

i := Var(F ′(ti)|F (tj) = 0, 1 ≤ j ≤ k), namely

Theorem 3.13 (Belayev,1967). Let I ⊂ R be an interval. If

∫ t

0
dt1 . . .

∫ t

0
dtk

(∏k
i=1 σ

2
i

det Σk

)1/2

<∞ , (3.25)

then E
[
N

[k]
u (F, I)

]
<∞.

In 1975 Cuzick proved that the condition for �niteness given by Belayev was not only su�-
cient, but actually also necessary, that is the k-th factorial moment of the number of crossings
is �nite if and only if condition (3.25) is satis�ed. For factorial moments of order 2, Cramér and
Leadbetter deduced a su�cient condition by means of the covariance function of a stationary
stochastic process. This condition is nowadays known under the name of Geman condition. We
state it in the following theorem.

Theorem 3.14 (Cramér and Leadbetter). Let F be a stationary stochastic process with covari-

ance function K. If ∃δ > 0 such that

R(t) :=
K ′′(t)−K ′′(0)

t
∈ L1([0, δ], dx) , (3.26)

then E
[
N

[2]
u (F, [0, δ])

]
<∞.

In 1972, Geman proved that the condition (3.26) was also necessary, by showing that if R(t)
diverges on (0, δ), then so does the integral appearing in the r.h.s. of (3.24).

4 Random algebraic polynomials

For the following section, we closely follow [12]. Let us �rst de�ne a random algebraic polynomial.

De�nition 4.1. Let I ⊂ R be an interval. A random algebraic polynomial of degree n, F : I → R
is given by

F (t) =

n∑
k=0

akt
k ,

where ak are random variables for k = 0, 1, . . . , n de�ned on the same probability space (Ω,A,P).

Remark 4.2. Comparing this de�nition to de�ntion 2.1 of a random function, we see that we
have to take fk(t) = tk for all k, in order to obtain an algebraic polynomial.

For the rest of this section, we will assume that the coe�cients ak are Gaussian variables of
mean zero and variance vk.

In Kac-Rice theorem we derived a formula giving the expected number of 0-crossings of a
random function on an interval I of R. A question that one could ask is how does this expected
number change if we change the lenght of the interval I. This is what we will state in the
following lemma.
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Lemma 4.3. Let F : I → R be a random algebraic polynomial. Assume that the coe�cients ak
are independent Gaussian random variables with mean zero and variance vk. Then we have the

following results.

(i) E [N0(F,R+)] = E [N0(F,R−)].

(ii) Assume additionally that the variances vk verify the symmetry condition vk = vn−k for all

k. Then E [N0(F, (0, 1))] = E [N0(F, (1,∞))] .

(iii) Under the same assumptions as in (ii),
E [N0(F,R)] = 4E [N0(F, (0, 1))] = 4E [N0(F, (1,∞))] .

Proof. (i) If we de�ne F−(t) := F (−t) we have that

F−(t) =

n∑
k=0

ak(−t)k =

n∑
k=0

(−1)kakt
k .

The random variables (−1)kak are i.i.d. Gaussian random variables with mean zero and
variance vk, since E

[
(−1)kak

]
= (−1)kE [ak] = 0 and Var((−1)kak) = (−1)2kVar(ak) =

vk . So the random polynomials Fand F− have the same law and thus E [N0(F,R+)] =
E [N0(F,R−)].

(ii) De�ne F̃ (t) := tnF (1/t). Then

F̃ (t) = tn
n∑
k=0

akt
−k =

n∑
k=0

akt
n−k =

n∑
k=0

an−kt
k .

The random variables an−k all have mean zero and variance vk, since E [ak] = 0 for all k,
and Var(an−k) = vn−k = vk, by hypothesis. So, again, the random polynomials F and F̃
have the same law and thus E [N0(F, (0, 1))] = E [N0(F, (1,∞))] .

(iii) This is a direct consequence of (i) and (ii). Indeed by (i), we have

E [N0(F,R)] = E [N0(F,R−)] + E [N0(F,R+)] = 2E [N0(F,R+)] ,

and since R+ = [0, 1] ∪ [1,∞), it follows by (ii)18

E [N0(F,R+)] = E [N0(F, (0, 1))] + E [N0(F, (1,∞))]
= 2E [N0(F, (0, 1))]
= 2E [N0(F, (1,∞))] ,

so that E [N0(F,R)] = 4E [N0(F, (0, 1))] = 4E [N0(F, (1,∞))].

4.1 Expected number of zeros

Before we can apply Kac-Rice theorem to random algebraic polynomials we note that such
polynomials verify assumptions (A1 ), (A2 ), (A3 ) and (A4 ) of Theorem 3.7.

Let us now pass to the two fundamental results concerning random algebraic polynomials
with coe�cients whose variances satisfy the symmetry condition enounced in Lemma 4.3: Kac
polynomials and Kostlan-Shub-Smale polynomials.

18Notice that E [N0(F, [0, 1])] = E [N0(F, (0, 1))], since the integral over a single point is 0, so adding a point to
the interval does not change the expected number of zeros of a random function.
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4.1.1 Kac polynomials

Consider the random Kac polynomial, that is a random algebraic polynomial as in de�nition 4.1,

F (t) =
n∑
k=0

akt
k ,

where the coe�cients ak are i.i.d. standard Gaussian variables, i.e. with mean zero and variance
one for all k = 0, 1, . . . , n.

Remark 4.4. Note that since the coe�cients have all variance one, they ful�ll the the symmetry
condition.

Using the de�nition of the covariance function of the random polynomial F in (2.3), it follows

K(x, y) =
n∑
i=0

xiyi =
n∑
i=0

(xy)i =
1− (xy)n+1

1− xy
.

In order to calculate the expected number of zeros of the random Kac polynomial, we are
going to use formula (3.20) to compute ρt. We have

logK(x, y) = log
1− (xy)n+1

1− xy
= log (1− (xy)n+1)− log (1− xy) ,

so that
∂

∂x
logK(x, y) =

y

1− xy
− (n+ 1)(xy)ny

1− (xy)n+1
,

∂2

∂x∂y
logK(x, y) =

∂

∂y

(
∂

∂x
logK(x, y)

)
=

1

(1− xy)2
− (n+ 1)2(xy)n

(1− (xy)n+1)2
.

Evaluating this second partial derivative at x = y = t, we obtain

∂2

∂x∂y
logK(x, y)

∣∣∣∣
x=y=t

=
1

(1− t2)2
− (n+ 1)2t2n

(1− t2n+2)2
=: Hn(t) , (4.1)

and therefore, using Lemma 4.3, the expected number of zeros of F over R is given by

E [N0(F,R)] =
4

π

∫ +∞

1

√
Hn(t) dt . (4.2)

Remark 4.5. • The function
√
Hn(t) is the expected density of zeros of random Kac polyno-

mials. Plotting its graph for di�erent values of n, we see that if n increases, the graph has
two remarkable peaks at t = −1 and t = 1. This is actually an interesting result, namely
the real zeros of a random Kac polynomial tend to concentrate near −1 and 1. In Figure
3, we see the three di�erent densities for random Kac polynomials of degrees 10, 20 and
30.

• We know that any polynomial of degree n has n complex roots. One can show that the
complex roots of a random Kac polynomial of degree n are uniformly distributed on the
unit circle. (see Section 6)

The following theorem gives the asymptotic behaviour of the expected number of zeros over
R.
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Figure 3: Density of real zeros of random Kac polynomials

Theorem 4.6 (Kac, Edelman-Kostlan). Let F be the random Kac polynomial of degree n. As

n→∞ we have

E [N0(F,R)] =
2

π
(log n+ C) + o(1) ,

where the constant C is given by

C = log 2 +

∫ ∞
0

{(
1

x2
− 1

sinhx2

)1/2

− 1

x+ 1

}
dx .

Proof. Since we want the asymptotic behaviour of the expected number of zeros of the random
polynomial F , we have to compute

lim
n→∞

E [N0(F,R)] = lim
n→∞

4

π

∫ +∞

1

√
Hn(t) dt (4.3)

Making the change of variables t = 1 + x/n, the integral in (4.3) becomes∫ +∞

1

√
Hn(t) dt =

∫ +∞

0

√
1

n2
Hn(1 +

x

n
) dx =

∫ +∞

0

√
Gn(x) dx , (4.4)

where Gn(x) := 1
n2Hn(1 + x

n). Let us start by computing Gn(x). Using (4.1),

Gn(x) =

(
1

n(1− (1 + x
n)2)

)2

︸ ︷︷ ︸
=:An2(x)

−

(
n+1
n (1 + x

n)n

1− (1 + x
n)2n(1 + x

n)2

)2

︸ ︷︷ ︸
=:Bn2(x)

.

To compute the limit of Gn when n tends to in�nity, we compute limits of An and Bn. Using
that (1 + x/n)n → ex , when n→∞, we obtain for x > 0,

An(x) =
1

n(1− (1 + x
n)2)

=
1

nxn(2− x
n)

=
1

x(2− x
n)

n→∞−→ 1

2x
=: A(x) ,

Bn(x) =
n+1
n (1 + x

n)n

1− (1 + x
n)2n(1 + x

n)2

n→∞−→ ex

1− e2x
=

1

e−x − ex
= − 1

2 sinhx
=: B(x) ,
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so that

G(x) := lim
n→∞

Gn(x) = A2(x)−B2(x) =
1

4x2
− 1

4 sinh2 x
=

sinh2 x− x2

4x2 sinh2 x
.

Note that G(x) extends to 0 by continuity. Indeed the Taylor expansion19 at x = 0 gives
sinh2 x = x2 + x4/3 +O(x6), and then

sinh2 x− x2 =
x4

3
+O(x6)

x→0−→ 0 .

In addition, Gn(x) converges uniformly to G(x) for x ∈ [0, 1]. Thus the integral in (4.4) can be
rewritten as20∫ +∞

0

√
Gn(x) dx =

∫ 1

0

√
Gn(x) dx+

∫ +∞

1
(
√
Gn(x)−An(x)) dx+

∫ +∞

1
An(x) dx .

Now letting n tend to in�nity and using Lebesgue's dominated convergence theorem, we may
pass the limit inside the integrals on both sides, that is∫ +∞

0

√
G(x) dx =

∫ 1

0

√
G(x) dx+

∫ +∞

1
(
√
G(x)−A(x)) dx+

∫ +∞

1
An(x) dx+ o(1) . (4.5)

Let us compute the two remainig integrals of the r.h.s. of (4.5). Since A(x) = 1/(2x), we have∫ +∞

1
(
√
G(x)−A(x)) dx =

∫ +∞

1

(√
G(x)− 1

2x

)
dx =

∫ +∞

1

√
G(x) dx− 1

2

∫ +∞

1

1

x
dx .

The partial fraction decomposition of An(x) gives

An(x) =
1

x(2− x
n)

=
n

x(2n+ x)
=

1

2x
− 1

2(2n+ x)
,

and therefore, after computations, we obtain∫ +∞

1
An(x) dx =

∫ +∞

1

(
1

2x
− 1

2(2n+ x)

)
dx =

1

2
log (2n+ 1) .

Now observe that ∫ +∞

1

(
1

x
− 1

x+ 1

)
dx−

∫ 1

0

1

x+ 1
dx = 0 ,

so that ∫ +∞

1

1

x
dx =

∫ 1

0

1

x+ 1
dx+

∫ +∞

1

1

x+ 1
dx =

∫ +∞

0

1

x+ 1
dx .

Thus, plugging this into (4.5), it comes∫ 1

0

√
G(x) dx+

∫ +∞

1

√
G(x) dx− 1

2

∫ +∞

1

1

x
dx+

1

2
log (2n+ 1) + o(1)

=

∫ +∞

0

√
G(x) dx− 1

2

∫ +∞

0

1

x+ 1
dx+

1

2
log (2n+ 1) + o(1)

=

∫ +∞

0

(√
G(x)− 1

2(x+ 1)

)
dx+

1

2
log (2n+ 1) + o(1)

=
1

2

∫ +∞

0

{(
1

x2
− 1

sinh2 x

)1/2

− 1

x+ 1

}
dx+

1

2
log (2n+ 1) + o(1) .

19Recall that the Taylor expansion of sinh at x = 0 is given by sinhx =
∑∞
k=0

x1+2k

(1+2k)!
, so expanding this up to

order 5, we get sinhx = x+ x3/6 +O(x5), and therefore sinh2 x = x2 + x4/3 +O(x6) .
20One checks that the functions x 7→

√
Gn(x)−An(x) are integrable on [1,∞).
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Writing log (2n+ 1) = log 2 + log n+ o(1), it follows by (4.2) that

4

π

∫ +∞

1

√
Hn(t) dt =

4

π

∫ +∞

0

√
Gn(x) dx

=
2

π

(
log n+ log 2 +

∫ +∞

0

{(
1

x2
− 1

sinh2 x

)1/2

− 1

x+ 1

}
dx

)
+ o(1) ,

which is what we wanted to prove.

By this theorem we proved our �rst result, namely that the expected number of zeros of
random Kac polynomials of degree n is asymptotic to 2

π log n.

4.1.2 Kostlan-Shub-Smale polynomials

The Kostlan-Shub-Smale polynomial (KSS for short) is de�ned as the random algebraic polyno-
mial, where the coe�cients ak are independent Gaussian variables with mean zero and variance

Var(ak) =

(
n

k

)
.

The KSS polynomials are also called binomial polynomials, due to the binomial coe�cient ap-
pering in the above de�nition.

Remark 4.7. Also here, we see that the variances of the coe�cients of the KSS polynomials verify
the symmetry condition of Lemma 4.3, since for all 0 ≤ k ≤ n the binomial coe�cients satisfy(
n
k

)
=
(
n−k
k

)
.

Our goal of this section is to compute the expected number of zeros of the KSS polynomial
over R.

The KSS polynomials have covariance function

K(x, y) =

n∑
i=0

(
n

i

)
xiyi =

n∑
i=0

(
n

i

)
(xy)i = (1 + xy)n .

We are going to use formula (3.20) of Kac-Rice theorem in order to compute ρt. Since
logK(x, y) = log (1 + xy)n = n log (1 + xy), after computations, we obtain for the partial deriva-
tives

∂

∂x
logK(x, y) = n

∂

∂x
log (1 + xy) =

ny

1 + xy
,

∂2

∂x∂y
logK(x, y) =

∂

∂y

(
∂

∂x
logK(x, y)

)
=

n

(1 + xy)2
.

To obtain ρt, we evaluate the second partial derivative at x = y = t and take the square root,

ρt =

√
n

(1 + t2)2
=

√
n

1 + t2
.

Thus the expected number of zeros of the KSS polynomial over R is given by

E [N0(F,R)] =
1

π

∫ +∞

−∞

√
n

1 + t2
dt =

1

π

√
nπ =

√
n .

Thus, we have shown that for random KSS polynomials of degree n, the expected number of
zeros is equal to

√
n.

Remark 4.8. Comparing this result to the one obtained previously for the Kac polynomial, we
see that the KSS random polynomials have on average more zeros over R than the Kac random
polynomials. Moreover for the KSS polynomials we have an exact value for the expected number
of zeros.
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Application: Expected number of �xed points of a rational function. This application
is taken from [7]. Let us see how one can use this result in order to compute the expected number
of �xed points of a rational mapping. Consider two independent random polynomials P (t) and
Q(t) of degree n, with coe�cients as in the Kostlan statistics. Our goal is to determine the
expected number of �xed points of the rational function f(t) := P (t)/Q(t).

The equation
P (t)− tQ(t) = 0 (4.6)

gives zeros of the polynomial P (t)− tQ(t) of degree n+ 1. But since this polynomial is a linear
combination of Kostlan polynomials, it is itself a Kostlan polynomial, for which we have seen
that the expected number of zeros is exactly the square root of the degree, i.e.

√
n+ 1 in our

case. On the other hand, the equation in (4.6) is equivalent to

f(t) =
P (t)

Q(t)
= t ,

and thus, we obtain that the expected number of �xed points of the rational function f is
√
n+ 1.

4.2 Expected number of critical points

We point out two more results for random algebraic polynomials, namely the asymptotic for the
expected number of critical points of Kac and Kostlan polynomials, i.e. the number of zeros of
the derivative of these polynomials.

Intuitively, we expect that that a given polynomial has more critical points than zeros. M. Das
has shown that the expected number of critical points of a random algebraic Kac polynomial of

degree n is asymptotic to 1+
√

3
π log n, for large n, whereas for random KSS polynomials of degree

n, it can be shown that the expected number of critical points is asymptotic to
√

3n− 2. Thus,
comparing these results to the corresponding ones for the number of zeros established previously,
they con�rm our feeling that a polynomial has more critical points that zeros, but they also tell
us that the number of critical points in both cases is of the same order than the corresponding
number of zeros.

4.3 Variance of the number of zeros

In this section, we will show how one can use Rice formula giving the second moment in order
to compute the variance of the number of zeros. For this, we may assume that {F (t) : t ∈ I} is
a stationary centered Gaussian process21 meaning that its covariance function K only depends
on one variable, i.e., for t > s,

K(t− s) = E [F (s)F (t)] .

In order to simplify the coming computations, we suppose that the covariance function of F at
0 is 1, K(0) = 1. For the following part, we write N0 for N0(F, I). We have

Var(N0) = E
[
N0

2
]
− E [N0]2 .

21Note that a non stationary Gaussian process can be made stationary by homogenising it. For instance,
homogenising the random algebraic polynomial F (t) =

∑n
k=0 akt

k, yields the stationary Gaussian process
F0(s, t) :=

∑n
k=0 akt

ksn−k. The polynomial F0 is homogeneous, i.e. F0(as, at) = anF0(s, t), for any a ∈ R.
One may thus think of F0 as acting on the unit circle. One easily checks that F0(s, t) is indeed stationary. Iden-
tifynig a given point (x, y) ∈ S1 with (cos t, sin t) for some t ∈ R, this process depends only on the single variable
t, namely F0(t) =

∑n
k=0 ak cos

k t sinn−k t. Moreover, if t is a real root of F , then the radial projection of (1, t) on
the unit circle is a root of F0.
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Now rewriting the �rst term as E
[
N0

2
]

= E [N0(N0 − 1)] + E [N0], we obtain

Var(N0) = E [N0(N0 − 1)] + E [N0]− E [N0]2 .

Notice that all terms in the r.h.s. are known except the �rst one. In order to get this term, the
idea is to use Theorem 3.11. By (3.23), we have

E [N0(N0 − 1)] =

∫
I

∫
I
E
[
|F ′(s)F ′(t)|

∣∣F (s) = F (t) = 0
]
p(F (s),F (t))(0, 0) ds dt . (4.7)

The double integral above is hard to compute due to the conditional expectation, which is in
general a very demanding problem. But as we have already seen before, the condition can be
removed if it is ndependent from the left part in the conditional expectation. That is what we
will try to do now, namely �nd some coe�cients α, β, γ, δ in order that the random variables

ζ(s) := F ′(s)− αF (s)− βF (t) and ζ(t) := F ′(t)− γF (t)− δF (s)

are independent from the conditions, that is from F (s) and F (t). This leads to two systems of
two equations with unknowns α, β, resp. γ, δ,{

E [ζ(s)F (s)] = 0
E [ζ(s)F (t)] = 0

,

{
E [ζ(t)F (s)] = 0
E [ζ(t)F (t)] = 0.

Note that, since ζ(s) and ζ(t) are linear combinations of Gaussian variables, they are still Gaus-
sian random variables.

Resolution of the �rst system. The �rst equation of this system is equivalent to

E
[
F ′(s)F (s)

]
− αE

[
F (s)2

]
− βE [F (t)F (s)] = 0 . (4.8)

Now, E
[
F (s)2

]
= K(0) = 1 by assumption, and E [F (t)F (s)] = K(t−s). It remains to see what

the �rst term is. Since E
[
F (s)2

]
= K(s) = 1, we have

E
[
F ′(s)F (s)

]
=

1

2
E
[
F (s)2

]′
= 0 ,

so that (4.8) can be written as
α+ βK(t− s) = 0 . (4.9)

Consider now the second equation, that is

E
[
F ′(s)F (t)

]
− αE [F (s)F (t)]− βE

[
F (t)2

]
= 0 . (4.10)

As before, we have that E [F (s)F (t)] = K(t− s) and E
[
F (t)2

]
= K(0) = 1. The �rst term is

E
[
F ′(s)F (t)

]
= −K ′(t− s) .

Hence the equation in (4.10) is equivalent to

αK(t− s) + β = −K ′(t− s) . (4.11)

Thus the �rst system consisting in equations (4.9) and (4.11) can be written in matrix form as(
1 K(t− s)

K(t− s) 1

)(
α
β

)
=

(
0

−K ′(t− s)

)
,

so that, when inverting the �rst matrix, we obtain(
α
β

)
=

1

1−K(t− s)2

(
1 −K(t− s)

−K(t− s) 1

)(
0

−K ′(t− s)

)
.

So we have for α and β the expressions

α =
K(t− s)K ′(t− s)

1−K(t− s)2
, β =

−K ′(t− s)
1−K(t− s)2

. (4.12)
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Resolution of the second system. Proceeding exactly in the same way as for the �rst
system, the second system leads to(

K(t− s) 1
1 K(t− s)

)(
γ
δ

)
=

(
K ′(t− s)

0

)
.

Thus, after inverting the coe�cent matrix, we obtain(
γ
δ

)
=

1

K(t− s)2 − 1

(
K(t− s) −1
−1 K(t− s)

)(
K ′(t− s)

0

)
,

that is

γ =
K(t− s)K ′(t− s)
K(t− s)2 − 1

, δ =
−K ′(t− s)
K(t− s)2 − 1

. (4.13)

Now plugging in the expressions (4.12) and (4.13) in those of ζ(s) and ζ(t), we can say that the
two Gaussian random variables

ζ(s) = F ′(s)− K(t− s)K ′(t− s)
1−K(t− s)2

F (s)− −K ′(t− s)
1−K(t− s)2

F (t) ,

ζ(t) = F ′(t)− K(t− s)K ′(t− s)
K(t− s)2 − 1

F (t)− −K ′(t− s)
K(t− s)2 − 1

F (s)

are independent from F (s) and F (t). Thus, we can replace the conditional expectation by an
ordinary expectation, that is

E
[
|F ′(s)F ′(t)|

∣∣F (s) = F (t) = 0
]

= E [|ζ(s)ζ(t)|] ,

where ζ(s) and ζ(t) are the random variables obtained above. Thus (4.7) gives

E [N0(N0 − 1)] =

∫
I

∫
I
E [|ζ(s)ζ(t)|] p(F (s),F (t))(0, 0) ds dt .

The next step would now be to compute the ordinary expectation E [|ζ(s)ζ(t)|], but this is not
so easy since we have the modulus of a product inside the expectation22. We will leave this part
open since the computations are quite far-reaching. We give the main result that is obtained by
following what we have done above, namely considering the random Kac polynomial of degree
n, i.e. the coe�cients being i.i.d. centered Gaussian variables having variance equal to 1, then
one can show that the asymtotic for the variance of the number of zeros when n tends to in�nity
is given by

Var(N0) ∼ 4

π

(
1− 2

π

)
log n .

5 Random trigonometric polynomials

Let us now see how we can obtain the result for trigonometric polynomials. Our computations
follow [12].

De�nition 5.1. A random trigonometric polynomial F : [0, 2π]→ R is of the form

F (t) =
n∑
k=1

(ak cos(kt) + bk sin(kt)) ,

where ak and bk are random variables for k = 1, . . . , n de�ned on the same probability space
(Ω,A,P).

22One way to solve this problem is to bound the modulus of the product as |ζ(s)ζ(t)| ≤ 1
2
(ζ(s)2 + ζ(t)2).

Alternatively, one can expand |ζ(s)ζ(t)| into a Taylor series.
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Remark 5.2. • The way to de�ne random trigonometric polynomials is not unique. For
instance, we could also de�ne them using the de�nition of a random function, by taking
f2k(t) = cos(kt) and f2k+1(t) = sin(kt).

• The polynomials in De�nition 5.1 are called stationary trigonometric polynomials. Ex-
amples of di�erent classes of random trigonometric polynomials are for instance classic

trigonometric polynomials,
∑n

k=1 ak cos(kt) or
∑n

k=1 ak sin(kt). The advantage of station-
ary trigonometric random polynomials is that, as the name tells us, they are stationary
with respect to t, which simpli�es the analysis of level crossings.

5.1 Expected number of zeros

We may assume that the coe�cients ak and bk are i.i.d. standard normal variables having mean
zero and variance one. Let us give the asymptotic behaviour of the expected number of zeros of
the stationary trigonometric polynomials. One checks that these polynomials vertify assumptions
(A1 ), (A2 ), (A3 ), (A4 ) of Theorem 3.7.

The stationary trigonometric polynomials have as covariance function

K(x, y) =

n∑
k=1

(cos(kx) cos(ky) + sin(kx) sin(ky)) =

n∑
k=1

cos(k(x− y)) . (5.1)

We see that the result only depends on the di�erence x−y. We could also write K(x−y) instead
of K(x, y). In order to compute ρt, we will this time use formula (3.19). We have

Kx(x, y) = −
n∑
k=1

k sin(k(x− y)), Kxy(x, y) =

n∑
k=1

k2 cos(k(x− y)) .

Evaluating K(x, y) and these two partial derivatives at x = y = t, we obtain

K(t, t) = n, Kx(x, y)
∣∣
x=y=t

= 0, Kxy(x, y)
∣∣
x=y=t

=

n∑
k=1

k2 =
n(n+ 1)(2n+ 1)

6
.

Thus using (3.19), it follows that

ρt =

(
n2(n+ 1)(2n+ 1)

6n2

)1/2

=

(
(n+ 1)(2n+ 1)

6

)1/2

,

and therefore the expected number of zeros on I = [0, 2π] is

E [N0(F, I)] =
1

π

∫ 2π

0

(
(n+ 1)(2n+ 1)

6

)1/2

dt =
2√
6

√
(n+ 1)(2n+ 1) ,

so that when n→∞, we have

E [N0(F, I)] =
2√
6

√
2n2 + 3n+ 1 ∼ 2√

3
n .

Thus, we have established the asymptotic behaviour of the expected numbers of zeros of station-
ary trigonometric polynomials.

Let us see this result on a concrete example. Consider the random trigonometric polynomial
of degree 5

− 2.0644 sin t+ 0.7574 cos t− 1.2338 sin 2t− 0.2712 cos 2t− 0.16 sin 3t− 0.5795 cos 3t

− 0.3516 sin 4t+ 1.8002 cos 4t− 0.2441 sin 5t+ 0.0748 cos 5t ,
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Figure 4: A random trigonometric polynomial of degree 5 on [0, 2π]

that is depicted in Figure 4. We see that this polynomial has 5 roots in [0, 2π], which is quite close
to the theoretical value, namely 2√

3
· 5 ' 5.7735. Moreover, denoting Tn the number of critical

points of a random trigonometric polynomial of degree n, we have the following asymptotic when
n tends to in�nity, (see Section 4 of [13])

E [Tn] ∼ 2n

√
3

5
.

Looking at Figure 4, we count 8 critical points on [0, 2π], whereas the above estimate gives
2 · 5

√
3/5 ' 7.7460, which compared to 8 is quite reasonable.

5.2 Central Limit Theorem

In this section we will state a Central Limit Theorem (CLT) for the number of zeros of the random
trigonometric polynomials and brie�y present the main points of the corresponding theory that
goes with it. For this section, ideas have been taken from Chapter 5 in [5] and Sections 1 and 2
of [1].

Consider the stationary random trigonometric polynomials of degree n for t ∈ [0, π],

Xn(t) =
1√
n

n∑
k=1

(ak cos(kt) + bk sin(kt)) , (5.2)

where the coe�cients ak and bk are i.i.d. Gaussian variables with mean zero and variance one.
We formulate the main theorem here below.

Theorem 5.3 (Central Limit Theorem). The normalized number of zeros of Xn on I = [0, π]
converges in distribution to a Gaussian random variable,

N0(Xn, I)− E [N0(Xn, I)]√
nπ

→ N (0, V 2) ,

when n→∞, where 0 < V <∞ is a constant.

General idea. We will see that for a convenient scale, the process Xn converges in a certain
sense to a stationary process X with covariance function sin(t)/t, for which a CLT can be
obtained. Thus the CLT for the zeros of Xn turns out to be a consequence of the one for the
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zeros of X. The idea is to de�ne the processes Xn and X in the same probability space, which
allows us to compute the covariance between these processes. Next we will write the Hermite
expansions for both processes giving the normalized number of zeros of Xn and X. Using these
representations, we can compute the L2 distance between the number of zeros of Xn and X.

5.2.1 Scaling the process

We will see that replacing t by t/n, the process Xn converges to the stationary process X with
covariance function23 sin t/t. The advantage of this is that we represent our initial processes Xn

by one single limit process X, for which a CLT is known. We state in the following theorem.

Theorem 5.4. Let X be a stationary centered Gaussian process with covariance function K(t) =
sin t/t. Then, the normalized number of zeros of X on I = [0, nπ] converges in distribution to a

Gaussian random variable,

N0(X, I)− E [N0(X, I)]√
nπ

→ N (0, V 2) ,

where 0 < V <∞ is a constant.

The proof of this theorem is based on the approximation of the covariance function K by
covariance functions which have a compact support. This will gives us anm-dependent stationary
Gaussian process, that is a sequence of stationary Gaussian processes (Xi)i≥1, for which Xs and
Xt are independent whenever |s− t| > m, for which we can obtain a CLT.

Indeed, if we replace t by t/n in (5.2), we obtain the scaled process on [0, nπ], given by

Yn(t) := Xn(t/n) =
1√
n

n∑
k=1

(
ak cos

(
k

n
t

)
+ bk sin

(
k

n
t

))
. (5.3)

This permits us to �nd a limit for the process Xn. Note that, as de�ned above, the scaled process
Yn is still Gaussian. Following the computations done in (5.1), we obtain the covariance function
KXn of the stationary process Xn,

KXn(t) =
1

n

n∑
k=1

cos

(
k

n
t

)
, (5.4)

so that the covariance function of the scaled process Yn is then KYn(t) = KXn(t/n). Using the
convergence of Riemann sums to the integral, we obtain that KYn(t) → K(t) := sin t/t when n
tends to in�nity. Thus we have a stationary Gaussian process having as covariance function the
cardinal sine function, for which we have a CLT by Theorem 5.4.

5.2.2 Stochastic integrals with respect to a Brownian motion

Consider a standard Brownian motion24 B = {Bt : t ∈ [0, 1]} de�ned on a probability space
(Ω,F ,P) and a step function f de�ned by

f(t) =

n∑
k=1

ak1Ak(t) ,

23The function f(x) = sinx/x is called the cardinal sine function.
24A standard Brownian motion (or Wiener Process) on an interval I = [0, T ] is a random variable Bt that

depends continuously on t ∈ I and satis�es B0 = 0, for 0 ≤ s < t < T ≤ K, we have Bt − Bs ∼ N (0, t − s) and
for 0 ≤ s < t < u < v ≤ T,Bt −Bs and Bv −Bu are independent.
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for n ∈ N, ak ∈ R and Ak = (tk−1, tk] two by two disjoint intervals in [0, 1], with 0 ≤ t0 < t1 <
. . . < tn. We de�ne the stochastic integral with respect to B of the simple function f by

IB1 (f) = B(f) =

∫ 1

0
f(t) dBt :=

n∑
k=1

ak(Btk −Btk−1
) .

Remark 5.5. One can extend the above de�nition of the stochastic integral with respect to a
Brownian motion to every square integrable function on [0, 1].

Denote by H the Hilbert space L2([0, 1],B, dλ), where B denotes the Borel σ-algebra and dλ
the Lebesgue measure. Then the map f 7→ B(f) de�nes an isometry between H and L2(Ω,F ,P).
In this case, the Brownian motion B is called an isonormal process associated to H.

The idea is now to de�ne the q-fold multiple stochastic integral IBq with respect to the Brow-
nian motion B. This construction is done in an analogous way as above in the one-dimensional
case. Instead of using indicator functions of intervals, we may consider indicator functions of
rectangles, i.e. products of pairwise disjoint intervals.

5.2.3 Wiener chaos expansion

We are now going to present the key ideas of the Wiener chaos expansion. Let us start by
recalling some facts about Hermite polynomials.

Hermite polynomials. The Hermite polynomial of degree m is de�ned by

Hm(x) = (−1)mex
2/2 d

m

dxm
e−x

2/2 .

Thus, for instance the Hermite polynomials of degree m ≤ 3 are given by

H0(x) = 1, H1(x) = x, H2(x) = x2 − 1, H3(x) = x3 − 3x .

The scalar product is given by

〈Hm, Hn〉 =

∫ +∞

−∞
Hn(x)Hm(x)

e−x
2/2

√
2π

dx .

Hermite polynomials are orthogonal with respect to the Gaussian density ϕ(x) = e−x
2/2

√
2π

, so that

we have the property ∫ +∞

−∞
Hn(x)Hm(x)

e−x
2/2

√
2π

dx = m!δn,m .

Note that this formula can be rewritten as

E [Hn(x)Hm(x)] = m!δn,m .

Thus the polynomials Hm(x) = (m!)−1/2Hm(x) satisfy 〈Hm, Hn〉 = δn,m.

Expansion into the chaos. We will now give the formula that gives the Wiener chaos ex-
pansion, also called Hermite expansion, for a square integrable function. Using the de�nition of
Hermite polynomials and the properties of multiple stochastic integration, one can show that for
f ∈ L2([0, 1]) having norm 1, we have

IBq (f⊗q) = Hq(B(f)) ,
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where f⊗q = f⊗q(x1, . . . , xq) = f(x1) . . . f(xq) stands for the tensor product of f with itself q
times.

Recalling that B(f) = IBq (f), we observe that this formula relates the one dimensional inte-
gral with respect to a Brownian motion to the multiple one by means of the Hermite polynomial
of degree q. Using this, one can deduce the fundamental Hermite expansion for any square inte-
grable function, more precisely, for F ∈ L2(Ω,F ,P), of the Brownian motion B, there exists a
unique sequence of functionals (fk)k≥1 with fk ∈ L2([0, 1]k, dλ), such that

F − E [F ] =
∞∑
k=1

IBk (fk) .

Thus, as already pointed out, the idea is to write the Hermite expansion of the number of
crossings of the two processes Xn and X.

6 Simulations with Matlab

In this last part of our paper, we will do some simulations with Matlab25. The codes can be
found in Appendix A.

6.1 Zeros of random Kac polynomials

6.1.1 Expectation and variance of the number of zeros

We know that, given a random Kac polynomial of degree n, we have the following asymptotics
when n tends to in�nity for the expectation and the variance of the number of zeros over R,

E [N0] ∼ 2

π
log n , Var(N0) ∼ 4

π

(
1− 2

π

)
log n . (6.1)

Using Matlab, we can convince ourselves that these results hold true. We implement an algorithm
(see Algorithm 1) that computes the expectation and the variance of the number of zeros for 1500
realizations26. We compute the quotients of the simulated values by the theoretical expressions
in (6.1). We state some runnings of the algorithm for the expectation in Table 1 and for the
variace in Table 2. We denote by n the degree, E [N0]s resp. Var(N0)s the simulated expectation
resp. variance of the number of zeros. For comparison, we also put the values of E [N0] and
Var(N0). We express the error of the simuated value and the theoretical value in %.

n E [N0]s E [N0] E [N0]s /E [N0] error (%)

200 3.9600 3.3730 1.1740 17.40
400 4.4920 3.8143 1.1777 17.77
700 4.8120 4.1705 1.1538 15.38
1500 5.2209 4.6557 1.1214 12.14

Table 1: Expected number of zeros of random Kac polynomials

25Matlab is not a free software. For this paper, we used the licence for student projects provided by the
University of Luxembourg.

26By realizations we mean the followong: we generate 1500 random polynomials of same degree and then take
the mean of the data that we want to observe. This gives much more accuracy than implementing only one
single polynomial, since in that case the randomness (of the coe�cients of the polynomial) can have remarkable
repercussions on our results.
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n Var(N0)s Var(N0) Var(N0)s/Var(N0) error (%)

200 2.7149 2.4514 1.1075 10.75
400 2.9893 2.7721 1.0784 7.84
700 3.2708 3.0310 1.0791 7.91
1500 3.5352 3.3836 1.0448 4.48

Table 2: Variance of the number of zeros of random Kac polynomials

We see that, comparing the errors in both tables, they are smaller in the second, i.e. for the
variance. However, we also note, that the more we increase the degree, the smaller this error
becomes. In Table 1, for instance, we started with an error of 17.40% for degree 200 and ended
with an error of 12.14% for a much larger degree, 1500. This suggests that the error decreases
only very slowly as the degree increases. For the variances, we started with an error of 10.75%
and ended with an error of 4.48%.

6.1.2 Distribution of zeros

There are very interesting results concerning the distribution of real and complex zeros of random
Kac polynomials.

Distribution of complex zeros. Consider a random Kac polynomial of degree n. It can
be shown that the complex roots of this polynomial are distributed around the unit circle. We
may do some simulations (see Algorithm 2) in order to visualize this fact. Figure 5 shows what
we obtained for three di�erent degrees, 50, 100 and 200. One point on the �gure represents a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Distribution of complex zeros of a random Kac polynomial of degree 50, 100 and 200

complex root of the polynomial. We immediately see that the larger the degree of the polynomial
is, the better one recongnizes the unit circle, due to the density of the zeros, which increases with
the degree. Indeed, comparing the �rst and the last plot in Figure 5, the black density of points
representing the roots is much intenser in the last one since the number of roots is multiplied by
4.

General ideas of proofs of this result can be found in [3]. The authors consider, among
others, random polynomials with independent complex coe�cients having all mean zero and
equal variance. It is shown that their roots tend to concentrate in the annulus near the unit
circle of the complex plane, and that the width of the annulus tends to zero as the degree of the
polynomials tends to in�nity. In order to illustrate the result, they plot the roots of 200 trials of
polynomials of degree 48. That is more or less what we have in the �rst plot of Figure 5, where
we consider polynomials of degree 50.

Distribution of real zeros. Let us now come to the distribution of the real zeros of a random
Kac polynomial. As already seen in Figure 3, the density of real zeros of a random Kac polynomial
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n E [N0] N0 N±1
0 N±1

0 /N0 (%)

200 3.3730 3.9853 2.3310 58.49
500 3.9563 4.3773 2.9170 66.64
1000 4.3976 4.7320 3.3890 71.62
1500 4.6557 4.8560 3.6420 75

Table 3: Distribution of real roots of random Kac polynomials

has two peaks at 1 and −1, which suggests that the real zeros are concentrated near these points.
Using Matlab, we can do the same type of simulations as the one above for the complex zeros,
however keeping the same degrees, we cannot really convince ourselves, since the logarithm
increases very slowly. Indeed, the expected number of real zeros of a Kac polynomial of degree
n being 2/π log n, we get very few real roots for degrees 50, 100 and 200. For instance, for
n = 200, we obtain in average 3.3730 real roots, which is clearly too low to be able to do good
simulations. Sensibly increasing the degree does not change this aspect much, since for instance
for n = 200000 (we multiply by 104 the previous degree !) we have on average 7.7706 real roots.

For completeness, we implement an algorithm (see Algorithm 3) that computes the real roots
of a random Kac polynomial of degree n. We denote by N0 the average number of real roots
and by N±1

0 the average number of real roots that are close to ±1. In order to decide whether a
root is near to ±1, we �x a tolerance at 15%, that is, all roots whose absolute value lies in the
interval ]0.85; 1.15[ are considered close to ±1. Expressing in % the number of roots that are
close to ±1, we obtain Table 3. At each time, we run the algorithm for 1000 realizations. For
comparision, we put the theoretical expected number of real roots in the second column, as we
already did in Table 1. We observe that the percentage of the real roots close to ±1 increases
with the degree. For degree 200 we have a quite low percentage, but increasing the degree up
to 1500, we obtain in average 75% of the real roots that are concentrated at ±1. Increasing the
degree would augment the percentage still more and hence con�rm our result.

6.2 Zeros of random stationary trigonometric polynomials

In this part we focus on random stationary trigonometric polynomials. More precisely, we are
going to simulate the expected number of zeros and the CLT. (see Algorithm 4)

6.2.1 Expected number of zeros

Consider a random stationary trigonometric polynomial of degree n. As wee have seen in the
previous section, the expercted number of zeros over [0, 2π] is 2√

3
n. We denote the simulated

expected number of zeros by E [N0]s and the theoretical value by E [N0] = 2√
3
n. In Table 4 we

state the results that we obtained for di�erent degrees n, for 1500 realizations.

n E [N0]s E [N0] E [N0]s /E [N0] error (%)

100 116.4800 115.4701 1.0087 0.87
300 346.9253 346.9253 1.0015 0.15
500 578.4340 577.3503 1.0019 0.19
700 809.4587 808.2904 1.0014 0.14
1200 1385.8 1385.6 1.0001 0.01

Table 4: Expected number of zeros of random trigonometric polynomials

We observe that increasing the degree of our polynomial the quotient E [N0]s /E [N0] gets
always closer to 1, i.e. the error, that we expressed in %, becomes smaller.
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6.2.2 Central Limit Theorem for random trigonometric polynomials

We will simulate the CLT (see Algorithm 4) for stationary trigonometric polynomials. Denote
Xn the random trigonmometric polynomial of degree n over I = [0, 2π]. We draw the histogram
of the random variable

N0(Xn, I)− E [N0(Xn, I)]√
nπ

, (6.2)

for di�erent degrees and see the evolution of the plot. If we take n very large27, the histogram
is supposed to look like a real Gaussian. We put here some plots of the histogram obtained
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Figure 6: Histogram of the normalized number of zeros for 1500 polynomials

by always increasing the degrees. More precisely, Figure 6 shows what we obtained for random
trigonometric polynomials of degree 1000, 2000 (in the �rst row) resp. 3000 and 4000 (second
row).

For each of the four plots in Figure 6, we considered 1500 realizations. We observe that the
histogram of the normalized number of zeros roughly has the shape of a Gaussian, but on the
other hand, there are some �uctuations, in the sense that the obtained curve is not as smooth
as it is supposed to be. This may have more reasons. A �rst one consists in too small degrees.
As the CLT holds for the degree tending to in�nity, taking as degree 4000 might not be large
enough.

Another point that could explain the �uctuations is the following. By increasing the number
of realizations we may obtain a more accurate result, since we take the mean of more values,
which might contribute to more precision. For instance , let us have a look how Figure 6 changes
when we double the number of realizations, i.e. consider 3000 polynomials. Comparing this to
Figure 6, we notice that there are less �uctuations than before. Especially in the last three plots,
i.e. for degrees 2000, 3000 and 4000, the Gaussian curve appears neater.

Unkown velocity of convergence. An important remark to the CLT for random trigono-
metric polynomials arises when talking about the velocity of convergence. The only known fact
is that, for a large degree, the distribution of the normalized number of zeros behaves as the
distribution of a normal random variable, but we we do not have any information about the
velocity of convergence. This may also explain our, so to speak, rough Gaussian curves obtained
in Figures 6 and 7. Increasing the degree of the polynomials would probably give better results.
However, one has to note that our algorithm turns out to be quite slow for degrees larger than

27Note that the theorem states the result for n tending to in�nity, so we have to choose large but still reasonable
values for the degree n in our simulations, in order to have an e�cient result.
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Figure 7: Histogram of the normalized number of zeros for 3000 polynomials

4000 and also for a number of realizations larger than 3000. These types of simulations take
enormous time to a personal computer for a very high degree, that is why we limit our results to
reasonable degrees, otherwise we would have to use a cluster of computers in order to do heavier
simulations.

Kolmogorov-Smirnov hypotesis test. In order to convince ourselves somehow more than
by only plotting the histograms, we may check normality of the normalized number of zeros given
in (6.2) using Kolmogorov-Smirnov's hypotesis test. For this we formulate our null hypothesis
as follows: The distribution of the random variable in (6.2) comes from a Gaussian distribution.
We �x the signi�cance level at 5%. At each time, the algorithm returns two numbers h, either
0 or 1, and p, the p value28. If h = 0 the Kolmogorov-Smirnov test accepts the null hypothesis
at the 5% signi�cance level, otherwise, if h = 0, we reject the null hypothesis, i.e. we accept the
alternative hypothesis, that is the random variable is not normal. If the p value is larger than
5%, the test accepts the null hypothesis, otherwise the test rejects the null hypothesis in favour of
the alternative hypothesis. In Table 5, we put some results obtained for di�erent degrees, always
obtained for 1500 realizations. Interpreting Table 5, we see that the null hypothesis is rejected
in the �rst two cases, certainly due to the small degrees. Note that we want to see normality as
the degree tends to in�nity, so increasing the degree changes the result as expected. Thus, from
this test, it becomes clear (as before with the plots) that increasing the degree, the normalized
number of zeros behaves like a Gaussian random variable.

n h p

300 1 0.0064
900 1 0.0457
1200 0 0.1349
1500 0 0.3405
2500 0 0.2863

Table 5: Kolmogorov-Smirnov test for CLT

28Recall the notion of p value, that is the probability of obtaining the observed sample results, or more extreme
results, assuming that the null hypothesis is true.
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A Matlab Codes

A.1 Zeros of random Kac polynomials

A.1.1 Expectation and variance of the number of zeros

• Lines 1− 3: Generate W random Kac polynomials of degree n using Matlab's predein�ned
command randn.

• Lines 4 − 8: For each of the W polynomials, compute the complex roots r and only keep
the real ones, rr. Count the number l of real roots, using the command length.

• Lines 9− 10: Compute the average expected number m of real roots, and the quotient of m
by the theroretical expression of the expected number of zeros.

• Lines 11− 12: Do the same as in lines 9− 10 for the variance.

1 n = 1500;

2 W = 1500;

3 p = randn(W,n+1);

4 for i=1:W

5 r = roots(p(i,:));

6 rr = r(r == real(r));

7 l(i) = length(rr);

8 end

9 m = mean(l)

10 mquotient = m/((2/pi)*log(n))

11 v = var(rr)

12 vquotient = v/((4/pi)*(1-2/pi)*log(n))

Algorithm 1: Expectation and variance of the number of zeros

A.1.2 Distribution of zeros

Distribution of complex zeros.

• Line 1: De�ne the degree n. We want three simulations, one for each component of the
vector n.

• Lines 5−6: Generate a random Kac polynomial of degree n and compute its complex roots.

• Lines 7− 9: Plot the roots for each degree in the vector n.

• Lines 2, 4, 7− 9: Commands to de�ne the plot.

1 n = [50 100 200];

2 MS = 'markersize '; ms = 12;

3 for i = 1:3

4 subplot(1,3,i)

5 a = randn(1,n(i)+1);

6 r = roots(a);

7 plot(r,'.k',MS,ms)

8 set(gcf ,'color','w');

9 axis (1.5*[ -1 1 -1 1]), axis square

10 end

Algorithm 2: Distribution of complex zeros of random Kac polynomials
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Distribution of real zeros.

• Lines 1− 3: Generate W random Kac polynomials of degree n.

• Line 4: De�ne the �xed tolerance tol in order to have a condition when a real root is close
to ±1.

• Lines 5 − 10: For each of the W polynomials, compute the complex roots r (line 6), then
extract of this vector all the real roots rr and count them (lines 7− 8). Count the number
of real roots close to ±1, goodrr, using Matlab's built-in command sum, by putting a con-
diton on the absolute value of the roots.

• Lines 11−13: Compute the average number of real roots m and the average number of real
roots close to ±1, M. Then compute the quotient of both.

1 n = 3000;

2 W = 1000;

3 p = randn(W,n+1);

4 tol = 0.15;

5 for i=1:W

6 r = roots(p(i,:));

7 rr = r(r == real(r));

8 l(i) = length(rr);

9 goodrr(i) = sum(abs(rr) <1+tol &abs(rr)>1-tol);

10 end

11 m = mean(l)

12 M = mean(goodrr)

13 quotient = M/m

Algorithm 3: Distribution of real roots of random Kac polynomials

A.2 Zeros of random stationary trigonometric polynomials

• Lines 1− 10: Generate W random stationary trigonometric polynomials of degree n that we
evaluate in di�erent times t in [0, 2π].

• Lines 11 − 12: Compute the expected number of zeros N0 of these W polynomials. Taking
the mean of this vector conatining the numbers of zeros, we have the average number of
zeros EN0.

• Lines 13 − 15: De�ne X to be the normalized number of zeros. Compute its expectation
and its variance.

• Lines 16− 17: EN0t is the theroetical expected number of zeros. We compute the quotient
of the simulated one by the theoretical one.

• Lines 18− 21: Plot the histogram of the normalized number of zeros.

• Lines 22 − 23: Execute the Kolmogorov-Smirnov test using Matlab's built-in command
kstest. Note that this command compares the entered random variable to a standard
Gaussian, thus we apply it to the normalized random variable normX.

1 n = 2500;

2 W = 1500;

3 t = 0:.0001:2* pi;

4 l = length(t);
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5 A = (1:n)'*t;

6 cosine = cos(A);

7 sine = sin(A);

8 A = randn (2*W,n);

9 Poly = A(1:W,:)*cosine + A((W+1) :(2*W) ,:)*sine;

10 Poly = Poly (:,1:(l-1)).*Poly (:,2:l);

11 N0 = sum(Poly '<0);

12 EN0 = mean(N0);

13 X = (N0-EN0)/(sqrt(n*pi));

14 EX = mean(X);

15 VarX = var(X);

16 EN0t = (2*n/sqrt (3))

17 quotient = EN0/EN0t

18 x = -1.5:.1:1.5;

19 figure;

20 set(gcf ,'color','w');

21 hist(X,x);

22 normX = (X-EX)/sqrt(VarX);

23 [h,p] = kstest(normX)

Algorithm 4: Expected number of zeros and CLT for random trigonometric polynomials
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