
Report: Testing conjectures on primes

Alex Ferreira Costa
Joel Costa

31 May 2015

1

Contents

1 Introduction 3

2 Testing conjectures: procedure 5
2.1 Example . 5
2.2 Conjecture type 1 . 6
2.3 Conjecture type 2 . 7

3 Optimisation of the algorithms 8
3.1 Checking the validity of the conjecture only 8
3.2 Checking the conjecture in intervals 8
3.3 Mathematical optimisation . 9
3.4 Informatical optimisation . 10

4 Plotting the conjectures 12
4.1 Conjectures of type 1 . 12
4.2 Conjectures of type 2 . 14

5 Conclusion 15
5.1 Checking the validity . 15

5.1.1 Exception: conjecture 3.21.1 15
5.2 Analysing the plot . 16

6 Table 18

2

1 Introduction

Within the frame of a university course, experimental mathematics, we tested
some conjectures on prime numbers. The conjectures we tested were set up
by the Chinese mathematician Zhi-Wei Sun, more precisely we decided to
tackle his 60 open problems on combinatorial properties of primes.

The aim of this project was on the one hand to gather evidence for his theo-
ries, on the other hand to approach mathematics in a different matter from
how it’s taught in school or university, i.e. in a more experimental way. As
mathematics students, we were interested in mathematics research, and this
project was a first booster to this domain, so far unknown to us.

Prime numbers have very interesting properties, be it algebraic or analytic
ones. Around 300 BC Euclid demonstrated that there are infinitely many
primes. We notice, that already the ancient Greeks were aware of the com-
pelling nature of prime numbers.

Unfortunately, there is no known formula to set apart all prime numbers
from composites (non-prime number). So there is still a lot to prove about
prime numbers. However, the distribution of primes can be modelled. For
instance there is the prime number theorem, proven in the late 19th century,
stating that the probability of a randomly chosen number n to be prime is
inversely proportional to log n.

Still, many theories concerning prime number aren’t proved yet. In Mathe-
matics, we call these theories ’conjectures’ (on prime numbers, in this case),
two of the most famous being the Goldbach conjecture and the twin prime
conjecture.

Goldbach conjecture: ∀n ∈ 2N>2 : ∃p, q ∈ P : p+ q = n
In other words, each even number n > 4 can be written as sum of two primes.

Twin prime conjecture: There are infinitely many primes p such that p+2
is prime. In other words, there are infinitely many couples of primes with a
distance of 2 to each other.

Besides being very interesting, prime numbers are also quite useful. For
instance it is largely used in public-key cryptography, and in information
technology in general.

That’s why we decided to work on this subject, testing conjectures on primes.

3

For the rest of this document, we’ll use the following notations and defini-
tions:

Définition 1.1. We define the function π : N −→ N, x 7−→ π(x) where π(x)
returns the number of primes not exceeding x. Examples:

π(1) = #{} = 0
π(2) = #{2} = 1
π(3) = #{2, 3} = 2
π(4) = #{2, 3} = 2
π(5) = #{2, 3, 5} = 3
π(7) = #{2, 3, 5, 7} = 4
π(11) = #{2, 3, 5, 7, 11} = 5
. . .

Définition 1.2. We’ll denote P be the set of all prime numbers.

P = {2, 3, 5, 7, 11, 13, 17, . . .}

Définition 1.3. We define the function p : N∗ −→ P, n 7−→ pn where pn
returns the nth prime.

pn(1) = 2
pn(2) = 3
pn(3) = 5
pn(4) = 7
pn(5) = 11
. . .

4

2 Testing conjectures: procedure

2.1 Example

We tested the conjectures by implementing a checking algorithm in the open-
source mathematics software SageMath (http://www.sagemath.org/). In a
first attempt we checked the Goldbach conjecture up to small number in
order to familiarise with the Sage syntax.

We wrote a short code to check whether an integer is a Goldbach number.
A Goldbach number is an even number n > 4 that can be written as the
sum of two primes p and q. One the one hand we looked for the number
of unordered prime couples (p, q), as well as the smallest prime p for which
there is a prime q, such that p+ q = n. A little further on, we will see that
many conjectures can be treated the same way. Here is the code for the
Goldbach conjecture:

def isGoldbach(n):
c = 0
m = 0
aux = True
p = 2
while p<=n/2:

if is_prime(n-p):
c+=1
if aux:

m = p
aux = False

p = next_prime(p)
return [c,m]

The next step consisted of implementing algorithms for some more conjec-
tures. Therefore we took some conjectures of the mathematician Zhi-Wei
Sun (http://math.nju.edu.cn/~zwsun/). We tried to establish a structure
in our code, in order to change as little as possible when implementing a new
conjecture, i.e. to only change the condition when the conjecture is true. It
turns out that there are two recurring types of conjectures, in a way that the
algorithms to check conjectures of a same type are very similar. We decided
to treat those different types particularly and separately.

5

http://www.sagemath.org/
http://math.nju.edu.cn/~zwsun/

2.2 Conjecture type 1

The first type was the most frequent one. Those conjectures had each time
the same structure, similar to this one:
Conjecture: ∀n ∈ N>m : ∃k ∈ N : a 6 k 6 b : . . .
We notice that there are several cases (k from a to b) for which this conjecture
may be true for a given integer n. One case is enough to prove it for this
certain n. However it is also interesting to know for how many cases it is
true. Therefore, we decided to look for two values. Once the number of ways
c for which the conjecture is true for a given n, and for the smallest k for
which the conjecture is true for n, which we denote m in the code. Here’s
an example of such a conjecture.

Conjecture 2.1.1: ∀n ∈ N>1 : ∃k ∈ N : 1 6 k 6 n : π(kn) is prime.

def check(n):
aux = True
c = 0
m = 0
for k in range(1,n):

if is_prime(prime_pi(k*n)):
c+=1
if aux:
m = k
aux = False

return [c,m]

arrayOfC = [] # stores the number of ways for which
the conjecture is true

arrayOfM = [] # stores the smallest case for which
the conjecture is true

bound = 1000 # sets up to which number the conjecture is
tested

for i in range(1,bound+1):
temp = check(i)
arrayOfC.append((i,temp[0]))
arrayOfM.append((i,temp[1]))

def plot(array):
s = scatter_plot(array, marker=".", facecolor=’black’)
s.show()

plot(arrayOfC)
plot(arrayOfM)

6

2.3 Conjecture type 2

The second most common type was about stating that there are infinitely
many positive integers, or primes, for which a conjecture is true. Naturally
one can see, that this kind of conjecture can’t be treated the same way as
the first one. It is more difficult to support it, because we can’t prove it
up to a certain number. However, we can look for the density in which the
integers satisfying the conjecture appear. For this reason we looked for two
things in this kind of conjecture. First of all we made a list with all the
integers fulfilling the conjecture up to a certain bound. Moreover we created
a map πc : N −→ N, that to a given n associates the number of integers not
exceeding n satisfying the conjecture, similar to the π-function. Here’s an
example

Conjecture 2.15.2: There are infinitely many primes p such that π(p),
π(π(p)) and π(p2) are all prime.

def check(n):
if is_prime(n) and is_prime(prime_pi(p)) and

is_prime(prime_pi(p*p)):
return True

else:
return False

def prime_c(b):
l = [] # list of integers fulfilling the conjecture
c = 0 # counts number of integers fulfilling the

conjecture so far
piMap = [] # defines the map p_c by storing the

couples (i,c) such that pi_c(i) = c
for i in range(1,b+1):

if check(i):
l.append(i)
c+=1

piMap.append((i,c))
return [l,piMap]

b = 1000
P = prime_c(b)

def pi_c(n):
return P[0][n-1][1] # [0] return the list, [n-1] the n-th

element and since the n-th element is
the couple (n,c) where c is what we need,
we have the [1]

7

3 Optimisation of the algorithms

There are ways to optimise certain algorithms. Since our goal was to check
each conjecture for bigger numbers than shown in the examples above, this
was necessary, as many conjectures simply take too long to check.

3.1 Checking the validity of the conjecture only

Since the goal of this project is to support the veracity of the conjectures,
for conjectures of type 1, we eventually decided to omit the computation of
the number of ways for which the conjecture was true for a certain n. This
accelerated the algorithm drastically. We just looked for the smallest k for
which it works, and kept this value. The final code looked like follows:

Conjecture 2.4: ∀n ∈ N>1 : ∃k ∈ N : 0 < k < pn : π(kn) is square.

def checkM(n):
aux = True
k = 1
m = 0
while k<nth_prime(n) and aux:

if prime_pi(k*n).is_square():
m = k
aux = False

k+=1
return m

3.2 Checking the conjecture in intervals

Instead of calculating a conjecture up to a certain number, it’s evident to
come up with the idea to split the calculations into several intervals. By
saving the lists that contain the data supporting (or not) the conjecture
during the calculations, we can resume them later. Saving a list L can be
done with the following command in Sage:

s = Sequence(L)
s.save("nameOfFile")

The list will be saved to a file called “nameOfFile.sobj” and can be loaded
to a list l with the command:

l = load("nameOfFile.sobj")

The code can then be changed to save such an object each time the list
reaches a certain length. This is useful, because we didn’t always know how
the speed of the calculations would evolve. It might calculate to 100000 in

8

a minute, but then slow down quickly. Since those calculations often take
hours, and one can’t watch them continuously, it is useful, in case the com-
puter may crash, causing the risk to lose all collected data.

3.3 Mathematical optimisation

Since this is a mathematical work, it is clear that at some point, we would
try to find a way to improve the algorithm mathematically. This part is
not as obvious. Whether there is a mathematical trick to accelerate the
calculations is entirely dependent on each conjecture itself. It was hard
to find such optimisations and often, as far as we knew, impossible. But
when we found them, they produced a high increase of speed. The following
example shows such an optimisation.

Conjecture 2.7.2: Any integer n can be written as k+m with 0 < k < m
such that

(
2k
k

)
+ pm is prime.

In other words: ∀n ∈ N∗ : ∃k ∈ N∗with 0 < k < n
2 :
(
2k
k

)
+ pn−k is prime.

Instead of calculating
(
2k
k

)
for every k, which takes a lot of computation, we

may find a way to calculate this term using the previous one.
We found that: ∀k ∈ N∗ :

(
2k
k

)
= 4k−2

k ·
(2(k−1)
k−1

)
Proof. (

2k

k

)
=

k∏
i=1

2k − i+ 1

i

=
2k · (2k − 1) · . . . · (k + 1)

1 · 2 · . . . · k

=
2k(2k − 1)

k2
· (2k − 2) · (2k − 3) · . . . · k

1 · 2 · . . . · (k − 1)

=
4k − 2

k
·
k−1∏
i=1

2(k − 1)− i+ 1

i

=
4k − 2

k
·
(
2(k − 1)

k − 1

)

That way, we can highly increase the speed of the algorithm, by getting the
next binomial term by multiplying the previous binomial term by a fraction.
The result is the following code:

9

def countM(n):
aux = True
k = 1
m = 0
c = 2
while k<(n/2) and aux:

if is_prime(c+nth_prime(n-k)):
m = k
aux = False

k+=1
c = ZZ((4-2/k)*c) # = (4k-2)/k*c

return m

Conjecture 2.14.3: ∀n ∈ N∗ : ∃p ∈ P : p ∈ [π(n2), π((n+ 1)2)].
For this conjecture, there is a fast way of calculating the number of primes
in the concerning interval, that is π(π((n+ 1)2))− π(π(n2)− 1). The −1 is
important, so the interval is closed, and includes π(n2).

def checkC(n):
c = prime_pi(prime_pi((n+1)**2)) - prime_pi(prime_pi(n**2)-1)
return c

3.4 Informatical optimisation

Another natural optimisation is the avoiding of repetition of computation of
already computed data. For instance, we have the following conjecture:

Conjecture 2.7.2: ∀n ∈ N∗ : ∃k ∈ N, 0 6 k 6 n− 1 : π((k + 1)n)− π(kn)
is prime.

In this example, one can easily see that the term π((k + 1)n) calculated in
one iteration can be used for the following one, replacing there the term
π(kn), since k increments by 1. This avoids the double computation of a
single term. This optimisation is not an individual case and can often be
used to make the algorithm faster.

10

def checkM(n):
aux = True
m = 0
k = 1
p = prime_pi(n) # pi((k+1)n) for k = 0
q = 0 # pi(kn) for k = 0
while k<n and aux:

if (p-q).is_square():
aux = False
m = k

k+=1
q = p # the pi(kn) of the next iteration is the

pi((k+1)n) of this one
p = prime_pi((k+1)*n)

return m

We notice that there is a structure similar to the one in conjecture 2.14.3,
where we could save a value to use it in another iteration. The problem here
is, it isn’t exactly the same term that can be used afterwards. With some
fiddling, it’s possible though. However, we won’t check it for a specific n any
more, but for all n up to a certain bound b.

def checkC(b):
arrayOfC = []
b = 0 # pi(pi(n)-1) = 0 for n=1
for n in range(1,b+1):

a = b # contains pi(pi(n)) now
b = prime_pi(prime_pi((n+1)**2))
if is_prime(pi(n**2)):

a=a-1 # if we don’t do this, the
considered inverval will be
open on the left, instead of closed.
contains pi(pi(n)-1) now

c = b-a
arrayOfC.append((n,c))

11

4 Plotting the conjectures

The conjectures that were tested can be represented by a graph. The way
the graph evolves helps us to understand the conjecture better and support
its validity. Depending on the type of conjectures there are several graphs
that we can consider.

4.1 Conjectures of type 1

For this kind of conjecture, let’s plot the following conjecture:

Conjecture 2.1.1: ∀n ∈ N>1 : ∃k ∈ N : 1 6 k 6 n : π(kn) is prime.

Let’s remember, that for this kind of conjectures, we can look for a given
positive integer n for the number of ways for which the conjecture is true, as
well as the smallest case for which it is, which we will denote c(n) and m(n)
respectively.

Graph 1 The first way of plotting this type of conjecture is to draw the
graph of the function that to a given n associates c(n).

Figure 1: Graph {(n, c(n))|n ∈ N∗63000} where c(n) = #{k ∈
N∗6n |π(kn) is prime}

12

Graph 2 The second way of plotting this type of conjecture is to draw the
graph of the function that to a given n associates m(n).

Figure 2: Graph {(n,m(n))|n ∈ N∗63000} where m(n) = min{k ∈
N∗6n |π(kn) is prime}

13

4.2 Conjectures of type 2

For this kind of conjecture, let’s plot the following conjecture:

Conjecture 2.15.2 There are infinitely many primes p with π(p), π(π(p))
and π(p2) all prime.

For this type of conjectures we looked for each positive integer n up to a
certain bound that satisfy the conjecture, but in the same time created a
map πc : N∗ −→ N, n 7−→ πc(n), where πc(n) returns the number of positive
integers not exceeding n satisfying the conjecture.

We plotted this kind of conjecture, by drawing the graph of the function πc.
That way one can see the density of the numbers satisfying the conjecture
in N.

Figure 3: Graph {(n, πc(n))|n ∈ N∗6106} where πc(n) = #{p ∈
P6n |π(p), π(π(p)) and π(p2) are prime}

14

5 Conclusion

We checked the conjectures as far as possible. And all our results clearly
support Zhi-Wei Sun’s claims. None of our collected data contradicts his
conjectures, except for one minor detail, that we’ll explain further down.

5.1 Checking the validity

For the conjectures of type 1, we saved for each n, as described before, the
smallest case m. Afterwards we went through that list to check whether
there are any 0’s. That means we searched all n for which the conjecture
was not verified. If L was the list, the code would be the following:

for i in range(1,len(L)+1):
if L[i-1] == 0:

print i

We did this for all conjectures of type 1 and found no dissent with the
conjectures.

5.1.1 Exception: conjecture 3.21.1

For this conjecture we found a minor deviation. The conjecture is the fol-
lowing:

Conjecture 3.21.1: ∀n ∈ N>5 : ∃k ∈ N∗<n : 2k + 1 ∈ P ∧ pkn + kn ∈ P

Here are our results, wherem(n) = min{k ∈ N∗<n | 2k+1 ∈ P∧pkn+kn ∈ P}

n m(n) n m(n)

1 0 11 2
2 1 12 2
3 2 13 2
4 1 14 3
5 0 15 0
6 1 16 2
7 6 17 2
8 3 18 1
9 2 19 6
10 0 20 5

As we can see, the conjecture is wrong for the numbers 10 and 15, while the
conjecture states that it should be true for all n > 5. We checked again and
the conjecture hasn’t been changed yet. However the conjecture seems to be

15

true for all n > 15. We think that it’s probably a typing error. There is no
reason to say the conjecture is wrong, just because there is a small number
for which it’s wrong.

5.2 Analysing the plot

Previously we plotted the conjectures, and although they don’t serve as
proof for the conjectures, they strongly support them. Here’s again one of
the graphs for conjecture 2.1.1.:

Figure 4: Graph {(n, c(n))|n ∈ N∗63000} where c(n) = #{k ∈
N∗6n |π(kn) is prime}

We observe that the number of ways increase more and more. It gives us
the impression, that the bigger we choose n, the bigger c(n) probably is. It
doesn’t prove the conjecture, but still gives it a good support. This is the
case for most of the conjectures we treated of this type.

It was trickier to analyse the veracity of the second type of conjecture. Let’s
take for example the following conjecture.

Conjecture 2.15.2: There are infinitely many p ∈ P such that π(p), π(π(p))
and π(p2) are all prime.

16

A method is to study the πc-function we build. We tried to find a function
f , such that:

πc(x) ∼ f(x) as x→ +∞

and

lim
x→+∞

f(x) = +∞

If we found such a function, we would have strong evidence for the conjecture
being true. In most cases it’s a logarithmic function. This is due to the fact
that:

π(x) ∼ x

log(x)
as x→ +∞

But in this case, didn’t find such a function. However we were able to major
πc. We have no proof on this, but computed it to 106, and it seems that:

lim
x→+∞

πc(x)

log(x)
= +∞

x πc(x)
log(x)

10 0.000
100 0.217
1000 1.013
10000 2.280
100000 9.468
250000 14.367
500000 21.109
750000 26.686
800000 27.883
900000 29.759
1000000 31.848

This shows, that πc grows faster than log. And since

lim
x→+∞

log(x) = +∞

we have some evidence supporting the conjecture.

17

6 Table

Here are the conjectures we tested (the enumerations corresponding to Zhi-
Wei Sun’s in his 60 open problems on combinatorial properties of primes)
alongside the bounds until which we tested them.

Tested conjectures Tested at number Tested conjectures Tested at number
Conjecture 2.1.1 5600000 Conjecture 3.6.2 167324
Conjecture 2.2.1 10000 Conjecture 3.7.1 8000000
Conjecture 2.3 29227 Conjecture 3.7.2 1000000
Conjecture 2.4 26971 Conjecture 3.8.1 616707
Conjecture 2.5.1 1000000 Conjecture 3.8.2 969007
Conjecture 2.5.2 100000 Conjecture 3.9 800000
Conjecture 2.6.1 1000000 Conjecture 3.10.1 700000
Conjecture 2.6.2 97475 Conjecture 3.10.2 600000
Conjecture 2.7.2 132000 Conjecture 3.11.1 1000000
Conjecture 2.8.1 1000000 Conjecture 3.11.2 650000
Conjecture 2.8.2 90000 Conjecture 3.12.1 150000
Conjecture 2.9.1 230000 Conjecture 3.12.2 100000
Conjecture 2.9.2 10000 Conjecture 3.13.1 200000
Conjecture 2.11 22016 Conjecture 3.15.1 100000
Conjecture 2.12.1 1000000 Conjecture 3.15.2 100000
Conjecture 2.12.2 16358 Conjecture 3.15.3 50000
Conjecture 2.14.3 415633 Conjecture 3.18 300000
Conjecture 2.15.1 100000 Conjecture 3.19 500000
Conjecture 2.15.2 1000000 Conjecture 3.21.1 150000
Conjecture 2.16.1 1000000 Conjecture 3.22.1 752669
Conjecture 2.16.2 1000000 Conjecture 3.23.1 1000000
Conjecture 2.16.3 120000 Conjecture 3.23.2 300000
Conjecture 2.17.1 1000000 Conjecture 4.1.1 43552
Conjecture 2.17.2 1000000 Conjecture 4.1.2 43497
Conjecture 2.18.2 1000000 Conjecture 4.1.3 26980
Conjecture 3.1 421745 Conjecture 4.2.1 51030
Conjecture 3.2 242325 Conjecture 4.3.1 100000
Conjecture 3.3 333000 Conjecture 4.3.2 120051
Conjecture 3.4 100000 Conjecture 4.4.1 40000
Conjecture 3.6.1 212446 Goldbach Conjecture 5000000

18

	Introduction
	Testing conjectures: procedure
	Example
	Conjecture type 1
	Conjecture type 2

	Optimisation of the algorithms
	Checking the validity of the conjecture only
	Checking the conjecture in intervals
	Mathematical optimisation
	Informatical optimisation

	Plotting the conjectures
	Conjectures of type 1
	Conjectures of type 2

	Conclusion
	Checking the validity
	Exception: conjecture 3.21.1

	Analysing the plot

	Table

