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Abstract

In general, one in interested in the understanding of large-dimensional matrices, for they

are an abstract illustration of most scientific problems. Moreover, it has been found out

that the general idea works best for random matrices, which is a matrix with random

variable entries. This results in random eigenvalues and eigenvectors and our goal is to

understand their distribution and make some nice observations.

One of the first scientists to attack this problem was Eugene Wigner, whose theory will

be our base for this paper. Although he was in charge of quantum mechanics, Wigner’s

random matrix also had a big impact on mathematical physics and probability theory.

In particular, we will discuss Wigner’s semi-circle distribution and a couple of peculiar

cases.



1 Introduction

1.1 History

Eugene Paul Wigner [1] was a Hungarian-American theoretical physicist, engineer and

mathematician, who moved to Germany to study in Berlin and later on, work at the

University of Göttingen. At the age of 25, he discovered certain symmetries in quantum

mechanics and introduced what we will discuss in our paper: Wigner matrices and their

corresponding random matrix theory.

Originally, Wigner matrices helped in the understanding of group theory in quantum

mechanics because they are unitary matrices, written in an irreducible way of the

unitary and rotation group:

SU(2) =

⇢✓
a �b
b a

◆
: a, b 2 C, |a|2 + |b|2 = 1

�

SO(3) = {3⇥ 3 orthogonal matrices with det = 1}

Let J
x

, J
y

, J
z

be generators of the Lie algebra of the above groups, i.e. we have a vector

space g with a non-associative, alternating bilinear map: g ⇥ g ! g; (x, y) 7! [x, y],
satisfying the Jacobi identity, which means the sum of all even permutations is zero.

Then these three operators are the components of a vector operator, known as the

angular momentum. In quantum mechanic, this representation is often used for the

angular momentum of electrons in an atom or the rotation of an atom around itself,

called ”spin”.

However, this theory does not only explain di↵erent energy levels in an atom, but those

newly-discovered random matrices helped in the understanding of many important

physical systems because they can be represented as a matrix problem.

Thus, a variety of applications of random matrices will appear.

1.2 Applications

We will focus on two applications of Random Matrix Theory, one in quantum mechanics

[4] and one about image processing [1] [6].

1.2.1 Quantum Mechanics

In the mid 50s a large number of experiments with heavy nuclei was performed. These

heavy atoms absorb and emit thousands of frequencies. An experiment of this kind

o↵ers us a great number of di↵erences in the energy levels and it is di�cult to find the

set of levels behind the given di↵erences. In fact, it was impossible to determine the

energy levels exactly. To understand this problem, first one has to look at Schrödinger’s

equation:

~2
2m

r2
 + V (r) = �i~@ 

@t

where ~ is Planck’s constant, V the potential energy and  a wave function. Without

going too much in details, we can say that linear algebra is the main tool to understand
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this equation. Indeed, if we set the following:

H :

= i~@ 
@t

and E :

= � ~2
2m

r2
 + V (r) 

then we can write the equation above as:

H = E 

where H is a Hermitian operator on function-space,  is an eigenvector and E is the

corresponding eigenvalue. This operator H is also called Hamiltonian operator and E
denotes the energy levels. Unfortunately, understanding this Hamiltonian operator is a

hard problem as there are hundreds of nucleons involved.

Eugene Wigner then suggested that instead of dealing with the actual operator H, one

can consider a family of random matrices and compute the distribution of the

eigenvalues of these matrices. As H is defined on an infinite-dimensional vector space,

one should look for the asymptotic behaviour as the size of these matrices goes to

infinity. This view led Wigner to develop a theory based on random matrices for

explaining the distribution of the energy levels.

1.2.2 Image Processing

Although Wigner’s random matrices have had a huge impact on quantum mechanic

problems, there are also concrete applications of random matrix theory in our everyday

life, for example image processing.

There is a connection with random matrix theory and image denoising filters: Image

noise is a random variation of brightness or color information in images, and it is an

undesirable by-product of an image capture, which obscures the desired information.

Originally ”noise” denotes ”unwanted signal” and there exist many di↵erent types of

”noise” inter alia ”Gaussian noise”, which is caused by poor illumination, poor

transmission or high temperature during a digital image acquisition. Gaussian noise is

additive and independent of the signal at each pixel neighbourhood. We assume that

each local matrix associated to these pixels is random and since the eigenvalue density

of a random matrix is known, this provides a large threshold for removing the additive

Gaussian random noise in the capture, while preserving the main information of the

image.

To put it in a nutshell, the goal is to compute the eigenvalue density for each local

random matrix and find out at which scale the eigenvalue changes from the original

image to the noisy counterpart. Hence, by solving the inverse problem, one can free

images from unwanted Gaussian noise.
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Restoration of a noisy picture

Original Picture(L), Noisy Version(M), After Image Processing(R)

2 Recall

Definition 2.1. (Hermitian Matrix)

A square matrix A 2 M
n

(C) is called hermitian if A⇤
= A, where A⇤

denotes the

transjugate of A, i.e. if (a
i,j

) = (a
j,i

).

One important property of these matrices is that every hermitian matrix is

diagonalizable and its eigenvalues are real and its eigenvectors are two by two

orthogonal.

Definition 2.2. (Probability density function)

Let (⌦,A ,P) be a probability space, X : ⌦ 7! R a random variable. The probability

density function f
X

(x) of a continuous distribution is defined as the derivative of the

cumulative distribution function F
X

(x) (absolutely continuous):

F
X

(x) = P{X  x} =

Z
x

�1
f
X

(t)dt

Definition 2.3. (Empirical measure)

Let X1, X2, ... be a sequence of independent identically distributed random variables

with values in R. We denote by P their probability distribution. The empirical measure
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P
n

of a measurable subset A ⇢ R is given by

P
n

(A) =
1

n

nX

i=1

1
A

(X
i

) =

# {1  i  n|X
i

2 A}
n

where 1
A

is the indicator function.

Note that if we choose A =]�1, x], 8x 2 R, then P
n

(A) is the empirical distribution

function.

3 Wigner Matrices

Definition 3.1. [3]
A Wigner matrix W

n

2 M
n

(C) is a hermitian matrix (X
i,j

)

i<j

such that

• X
i,j

are independent and identically distributed complex random variables for i < j

• X
i,i

are independent and identically distributed real random variables

• E [X
i,j

] = 0, 8i, j

• E [|X
i,j

|2] = s2 if i 6= j

• E
⇥
X2

i,i

⇤
< 1.

Remark 3.1. [1] [9] We call a Wigner ensemble the collection of all these matrices. Some

iconic Wigner ensembles are the Gaussian Unitary Ensemble (GUE) and the Gaussian

Orthogonal Ensemble (GOE), which are defined as follows:

(GUE) : (W
n

)

ij

:

=

⇢
X

i,j

⌘ N(0, 1)C, i > j
X

i,j

⌘ N(0, 1)R, i = j

Let C 2 Cn⇥n

be unitary, then CC⇤
= I and C⇤W

n

C has same distribution than W
n

, i.e.

(GUE) is invariant under unitary conjugation.

(GOE) : (W
n

)

ij

:

=

⇢
X

i,j

⌘ N(0, 1)R, i > j
X

i,j

⌘ N(0, 2)R, i = j

Let C 2 Rn⇥n

be orthogonal, then CCT

= I and CTW
n

C has same distribution than

W
n

, i.e. (GOE) is invariant under orthogonal conjugation.

In the next pages, we will put our focus on Gaussian Wigner Matrices, whose entries are

Gaussian random variables with zero mean and variance s2 if i 6= j and 2s2 if i = j, but
the theory that we will expose holds for general distributions too.
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3.1 Theory

Definition 3.2. (Operator Norm)

Let M 2 Mat
n⇥n

(C) be a matrix. The operator matrix norm of M is defined as

kMk
op

:

= sup

kxk1
kMxk

where x 2 Cn

and k.k is a vector norm on Cn

.

Theorem 3.1. (Bai-Yin theorem, upper bound [5])
Let W

n

be a Wigner matrix. Then we have almost surely:

lim sup

n!1

kW
n

k
opp

n
 2.

Hence, it is natural to deal with the normalized version X
n

:=

Wnp
n

.

Theorem 3.2. (Wigner’s semicircle law [9])

Let (W
n

)

n�1 be a sequence of Wigner matrices, let µ
n

be the probability measure

µ
n

(I) =
#{i 2 {1, ..., n} : �

i

(X
n

) 2 I}
n

, I ⇢ R

where �1(Xn

)  ...  �
n

(X
n

) 2 R are the eigenvalues of X
n

.
Then µ

n

converges weakly to the semicircle distribution,

µ
sc

(x)dx =

1

2⇡s2
p
4s2 � x21|x|2sdx.

Proof. (Moment Method: Idea of proof)

One of the most iconic and direct proofs of the macroscopic scale of Wigner random

matrices uses the moment method. This approach relies on the intuition that

eigenvalues of Wigner matrices are distributed according to a limiting law - which, in

our case, is the semicircle distribution µ
sc

. The moments of the empirical distribution µ
n

correspond to sample moments of the limiting distribution, where the number of

samples is given by the size of the matrix.

We want to compute the k-th moment with law µ of a random variable X, which is the

expectation E(Xk

). We denote the eigenvalues of X
n

by �
j

(X
n

) with order

�1(Xn

)  �2(Xn

)  ...  �
n

(X
n

).

Note that we can diagonalize X
n

as it is hermitian. Indeed, we have X
n

= U tD
n

U where

D
n

= diag (�1(Xn

),�2(Xn

), ...,�
n

(X
n

)). Therefore, we get for the k-th moment:

E
µn

⇥
Xk

n

⇤
=

1

n

nX

j=1

�
j

(X
n

)

k

=

1

n

nX

j=1

(D
n

)

k

jj

=

1

n
Tr

�
U tDk

n

U
�
=

1

n
Tr

�
Xk

n

�
.

The moments of the semicircle law are given by:

E
µsc[X

k

n

] =

Z
xkµ

sc

(x) =

⇢
skC k

2
, if k is even

0 , if k is odd
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where C
n

is the nth Catalan number, which is given directly in terms of binomial

coe�cients by C
n

=

1
n+1

✓
2n
n

◆
.

Miraculously, it turns out that the semi-circle law is the unique distribution where the

k-th moments are given by the Catalan numbers:

E
µn [X

k

n

]

n�!
Z

xkµ
sc

We can conclude that 8k � 1, E
µn

�
Xk

�
! E

µsc

�
Xk

�
as n ! 1 which is equivalent to

µ
n

! µ
sc

weakly as n ! 1.

The following MatLab [7] code gives a formal verification of the convergence explained

in the proof.

In the code, we construct di↵erent Wigner matrices and store their eigenvalues in an

array. As one requires to use normalized eigenvalues, we have to divide column-wise by

a vector x which contains the di↵erent matrix sizes.

Indeed, the output of the code will be an array whose columns represent a sequence

(W
i

)

i�1 of Wigner matrices and whose rows represent the k first moments of the

empirical distribution of the eigenvalues of W
i

. While running the program, one is

required to choose the initial size i of the matrices, the final size f , the iteration step p,
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the moments k one wishes to compute as well as the standard deviation s of the random

variables. Indeed, the code allows us to convince ourselves that the moments of the

empirical distribution of the eigenvalues of W
i

converge to the Catalan numbers, which

in their turn represent the moments of the semi-circle distribution. In order to get the

moments, we use the fact that the trace of a symmetric matrix is given by the sum of its

eigenvalues.

The following table will represent the convergence of the moments of the empirical

distribution of the eigenvalues of a sequence (W
i

)

i�1 of Wigner matrices for di↵erent

inputs. For simplicity, the authors chose s = 1.

k-th moment

size

100 500 1000 2000 5000 10000

1 -0.0029 -0.0006 0.0005 -0.0001 0.0005 -0.0002

2 1.0198 1.0054 1.0014 1.0004 1.0002 1.0001

3 0.0141 -0.0123 0.0018 -0.0006 0.0013 -0.0006

4 2.0722 2.0212 1.9998 2.0058 2.0013 2.0004

5 0.0694 -0.0486 0.0072 -0.0043 0.0044 -0.0018

6 5.2511 5.0768 4.9935 5.0213 5.0055 5.0014

7 0.2596 -0.1858 0.0283 -0.0218 0.0169 -0.0063

8 14.8977 14.2741 13.9624 14.0800 14.0229 14.0056

9 0.8952 -0.6908 0.1099 -0.0996 0.0664 -0.0224

10 45.2708 42.9646 41.8283 42.3046 42.0920 42.0240

Since the first Catalan numbers are given by 1, 2, 5, 14, 42 if k is even and 0 if k is odd,

we see that the convergence is verified.

3.2 Matlab-Code

3.2.1 Wigner’s semi-circle law

In order to have a better understanding of Wigner’s semi-circle law, we use MatLab to

construct a histogram of the eigenvalues of a set of Wigner matrices. This provides us a

visualization of the semi-circle law. MatLab’s built-in command ”randn” generates a

random matrix with independent and normally distributed entries. Next, we compute

for various n-sized matrices their normalized eigenvalues, and using the minima and the

maxima of these results, we can plot a nice histogram, visually supported by a

semi-circular curve.

Using this code, we will plot several graphs in order to see when our histograms are

shaped in a nearly perfect semi-circle. While running the program, one is required to

choose the size n of the Wigner matrices, the standard deviation s of the random

variables as well as the width dx of the bars in the histogram. As the variance of the

random variables grows, the radius of the semi-circle increases too. Indeed, the program

will not plot any histogram in case there is a surplus of bars. Therefore, one should be

ready to adapt the width of the bars to the chosen s. The authors recommend picking

dx 2 [0, 1].
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MatLab Code computing Wigner’s semi-circle law

The following illustrations will represent Wigner’s semi-circle law for di↵erent inputs.

Histogram of the normalized eigenvalues from
one realization of 50⇥50 randomWigner matrix
with s = 1

Histogram of the normalized eigenvalues from
one realization of 200⇥200 random Wigner ma-
trix with s = 1
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Histogram of the normalized eigenvalues from
one realization of 1000 ⇥ 1000 random Wigner
matrix with s = 1

Histogram of the normalized eigenvalues from
one realization of 2000 ⇥ 2000 random Wigner
matrix with s = 1

Histogram of the normalized eigenvalues from
one realization of 10000⇥10000 randomWigner
matrix with s = 1

Histogram of the normalized eigenvalues from
one realization of 1000 ⇥ 1000 random Wigner
matrix with s = 2

Histogram of the normalized eigenvalues from
one realization of 1000 ⇥ 1000 random Wigner
matrix with s = 1

2

Histogram of the normalized eigenvalues from
one realization of 1000 ⇥ 1000 random Wigner
matrix with s = 5

The last line of our code above computes the norm of the Wigner matrices. Indeed,

MatLab already possesses a built-in command which computes the operator norm of a

given matrix. The following table gives some examples of computed values in order to
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check Bai-Yin’s upper bound.

size of matrices 50 100 500 1000 2000 5000 10000

operator norm 1.9230 1.9409 1.9656 1.9835 1.9931 1.9957 1.9969

The table confirms Bai-Yin’s theorem as the normalized operator norm of a Wigner

matrix does not exceed 2 when n grows.

3.2.2 Error estimate of Wigner’s semi-circle law

To estimate the error between the empirical distribution of the eigenvalues of the normal-

ized Wigner matrices and the semicircle law we compute for given n the absolute error

between these two and look for the biggest di↵erence. To do this we use Matlab’s built-in

command ”ecdf”, which computes the empirical cumulative distribution function for a

given sample.

Error Code

size of matrices (n) 50 100 500 1000 2000 5000 10000

error (%) 5.83 4.21 2.35 1.89 1.08 0.83 0.14

3.2.3 Observations

For n = 50, we compute an error percentage of 5, 83. Taking n up to 10000, we observe

a convergence to the semi-circular curve with error 0.14.
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3.2.4 Convergence at the extreme eigenvalues

Fix B, E 2 N�1 such that E > B.

We generate t matrices of size B ⇥ B and store the biggest and the smallest eigenvalues

at the B-st place in an array. Then we repeat this process for (B + 1)⇥ (B + 1),

(B + 2)⇥ (B + 2), and so on until we reach the size E ⇥ E.

Code computing minima / maxima

The minmax function, is a simple function that returns two arrays one containing the

biggest and one containing the smallest eigenvalue for each N ⇥N matrix, from a

beginning size B to a ending size E.

12



Here we are using our MinMax function and plot the result, after observing a

growth-rate of order

p
N , we added the code lines 11� 18 to find a good approximation

of the constant S such that S ⇥
p
N fits the growth of the eigenvalues and we finally

plot our results.

3.3 Observations

We observe that the rate of growth of the biggest eigenvalue of a Wigner matrix is of

order

p
N , which we show for a matrix size up to 200⇥ 200

Wigner Matrix Eigenvalue of order

p
N
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The following table will show us that the growth seems to converge to 2⇥
p
N :

Beginning size End size Smax Smin

10 200 1.9084 -1.8999

10 400 1.933 -1.9321

10 800 1.9549 -1.9552

10 1600 1.9685 -1.9696

10 3200 1.9797 -1.9797

10 6400 1.9863 -1.9867

We can guess from this data, that S
max

and S
min

are converging towards 2 or �2

respectively and indeed this is what the theorem suggests!

3.4 Other models

3.4.1 Circular law

It was conjectured in the early 1950’s that the empirical distribution of the eigenvalues

of an n⇥ n matrix, of independent and identically distributed entries, normalized by a

factor of

1p
n

, converges to the uniform distribution over the unit disc on the complex

plane, which is called the circular law [1] [2]. Only a special case of the conjecture,

where the entries of the matrix are standard complex Gaussian, was known. In 2010

Terence Tao and Van H. Vu proved the circular law under the minimal assumptions

stated below :

Theorem 3.3. (Circular law)

Let (M
n

)

n�1 be a sequence of n⇥ n matrices whose entries are independent and
identically distributed copies of a complex random variable with zero mean and variance
1.
Define X

n

:

=

1p
n

M
n

. Let �1(Xn

), . . . ,�
n

(X
n

) denote the eigenvalues of X
n

. Then the
probability measure

µ
Xn(A) =

#{j  n : �
j

2 A}
n

, A 2 B(C)

converges to the uniform measure on the unit disc.
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A small example with a random Gaussian matrix of size 1000⇥ 1000:

Plot of the eigenvalues on the unit disc
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3.4.2 Marchenko-Pastur law

In this section we consider a particular case of random matrices with dependent entries

and show that the limiting empirical spectral distribution is given by the

Marchenko-Pastur law [8].

We are interested in n⇥m matrices H
n,m

where their entries are independent and

normally distributed complex random variables with zero mean and variance s2. Then
the matrix X

n

:

=

1
m

H
n,m

HT

n,m

is an hermitian matrix, also called sample covariance

matrix. Now we can proceed the same way as in Wigner’s semicircle law and compute

the eigenvalues �1(Xn

), ...,�
n

(X
n

) of X
n

which will be all real and distinct as X
n

is

hermitian. Using this kind of matrices we can formulate the following result:

Theorem 3.4. (Marchenko-Pastur law)

Let (X
n

)

n�1 be a sequence of matrices defined as above. Let �1(Xn

)  ...  �
n

(X
n

) be
the eigenvalues of X

n

. Assume that n,m ! 1 so that n

m

! c 2]0,1[. Then the
probability measure

µ
n

(x) =
# {i 2 {1, ..., n} : �

i

(X
n

)  x}
n

converges to the Marchenko-Pastur law distribution

µ
mp

dx =

1

2⇡s2

p
(x� a)(b� x)

cx
1[a,b](x)dx

where a = s2(1�
p
c)2 and b = s2(1 +

p
c)2.
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Similarly as we did with Wigner’s semi-circle law, we use MatLab to construct a

histogram of the eigenvalues of a set of matrices defined as above. This provides us a

visualization of the behaviour of the eigenvalues of a random matrix with dependent

entries.

Marchenko-Pastur law computation

17



n = 50, c = 2 n = 500, c = 2

n = 1000, c = 2 n = 1000, c = 0.8

n = 1000, c = 5

The figures show the Marchenko-Pastur density for di↵erent inputs. We notice that as c
becomes larger the length of the density’s support increases. The convergence is again

fast since at already n = 500 the empirical distribution comes very close to the

representation of the Marchenko-Pastur density function.
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4 Conclusion

The main purpose of the research project was studying the Wigner semi-circle law, one

of the most famous and important theorems in the random matrix theory. The work

was written to be self-contained and accordingly, there was an e↵ort to include all the

related computations along with graphical representations where appropriate.

This research project gives just an insight of the applications of random matrices. That

being so, Wigner’s semi-circle law was highly influential for future results.
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