Lattice Reduction

Lattice reduction is a powerful tool to find short vectors in lattices. Mostly known in this area is the so-called LLL algorithm of Lenstra, Lenstra and Lovasz. Roughly speaking, given a basis of a lattice, the LLL algorithm outputs a reduced basis for the same lattice, with the difference that this reduced basis has plenty of advantages and many applications in number theory and in cryptography.

A first goal of this project would be to understand reduced bases from an algorithmic point of view, and test various examples. In a second time, one could use the LLL algorithm as a black-box (there are many good implementations of the algorithm in various languages) to study some of its applications such as

A more detailed description of the project is available here.

Schedule: Winter semester 2018/2019

Difficulty level: EML 2 (especially for students in their 3rd semester).