
Stock Trading

Mathématiques Expérimentales

2020

Béatrice Bach
Anne Fisch

2

Contents

1 Linear Regression 5

1.1 Gradient Descent . 5
1.2 Ordinary least square . 7
1.3 Advantages and Disadvantages 10
1.4 Some Extras . 11

2 Random Forest 12

2.1 Decision Tree - Example . 12
2.2 Decision Tree . 14
2.3 From Decision Tree to Random Forest 16
2.4 Random Forest . 18
2.5 Advantages and Disadvantages 19
2.6 Some Extras . 19

3 Examples 20

3.1 Net�ix . 20
3.2 Bitcoin . 22

4 References 24

3

Abstract

The goal of this project is to get to know the basics of stock trading

and to get in touch with di�erent methods that try to predict the stock

market. As a �nal product, we create programs written in Python that

will complete our theoretical researches on a practical term.

Note that all of the graphs and schemes are made by ourselves

unless something else is speci�cally indicated.

4

1 Linear Regression

The basic idea of simple linear regression is to analyse two separate variables
in order to de�ne a linear relationship between them. In fact we are search-
ing for a regression line which minimizes the distance from itself to each
point of the graph and thus provides a way to forecast trends. One of the
variables (the one on the x-axis) is used to predict the data and is called the
independent variable. The other one (on the y-axis) is called the dependent
variable and is the one which is being predicted. Mathematically speaking,
simple linear regression consist in �nding a straight line which models the
points of a given data the best. Such a regression line satis�es the following
equation:

y = ax+ b+ ε, (1)

where y are the real values/observations, a is the slope of the regression line,
b is the y-intercept and ε is the error term which we are trying to minimize.
The sign of a depends on the type of relationship between x and y. The sign
of a is positive if the y-values increase with the x-values, which is represented
by a regression line that slopes upwards and is called a positive relationship.
Whereas the sign of a is negative if the y-values decrease while the x-values
increase, which is represented by a regression line that slopes downwards.
There also may be no relationship if a= 0. In this case we would have a �at
regression line.
Since we want to �nd the best matching regression line, we need to �nd the
best values for a and b. To do so, there exist di�erent regression models.
Two of them are now explained in more detail.

1.1 Gradient Descent

In order to �nd the best values of a and b, we start by choosing a and
b randomly and choose a good learning rate α. The method consists in
minimizing the di�erence between the predicted values and the observed
ones by updating the values of a and b. For this, we de�ne a function,
known as "`cost function"' or "`mean squared error function"', by squaring
the di�erence between the predicted and the real values, summing them
all together and dividing them though the number of summed values (The
number of summed values n depends on the type of gradient descent we use):

J(a, b) =
1

n

n∑
i=1

(axi + b− yi)2

In order to minimize this cost function, we calculate the gradients of it. So
let's calculate the partial derivatives of J with respect to a and b:

∂J

∂a
=

1

n

n∑
i=1

2(axi + b− yi)xi =
2

n

n∑
i=1

(axi + b− yi)xi

5

∂J

∂b
=

1

n

n∑
i=1

2(axi + b− yi) =
2

n

n∑
i=1

(axi + b− yi)

Now we have to update a and b by the gradient descent update rule, using
the learning rate α:

anew = a− α∂J
∂a

bnew = b− α∂J
∂b

Finally we need to rename a = anew and b = bnew. This procedure is being
repeated until the minima is found or no further improvement is possible.
(The learning rate α is a parameter which determines the size of improve-
ment step to take on each iteration. So it is important to choose the learning
rate wisely. If α is small, the minimum which is found, is more precise but
it takes longer to get it. If the α is large, the minimum is found sooner but
there is a risk that the minima is being overshot)

There are three types of Gradient Descent algorithms:

1. Batch gradient descent:
By using batch gradient descent (BGD), the gradients of all the training
examples are calculated and then the average of those gradients is
taken to update our parameters a and b (n is in this case the number
of training examples in the dataset). So for each iteration we only have
one step of gradient descent. If the dataset is big, it may not �t in the
memory. Thus this method is computationally very intense and may
be very slow. That is why this type is used with smaller data sets.

2. Stochastic gradient descent:
By using stochastic gradient descent (SGD), one single data point at a
time is considered for updating the parameters (n=1). So �rst we take
one training example, calculate its gradient and update the parameters
before going on to the next training example and repeating the steps.
However, before computing those gradients, we need to shu�e the
dataset. This, and the fact that we consider one data point for each
iteration, implies that the cost function will be �uctuating over the
training examples, which helps to reach a global minima rather than
getting stuck at a local minima. However, since the cost function will
�uctuate over the training examples, it will not necessarily decrease at
the beginning. So this method is used for bigger datasets. Moreover
it converges faster to the minimum than BGD when the dataset is
large because there is much fewer data to manipulate at a single time.
Furthermore since the cost function is �uctuating all the time, it will
mostly not reach the minima but it will end up dancing around it.

6

3. Mini-batch gradient descent:
This type is a combination of the batch gradient descent and the
stochastic gradient descent. It divides the data set into so called mini-
batches which are subsets (also called batches) of the dataset consisting
of a �xed number of training examples which are randomly chosen. The
number of training examples in one mini-batch can be chosen arbitrary
and depends on the size of the di�erent datasets. However in average
the mini-batch size is chosen to be a power of 2 which lies between
64 and 256. For each mini-batch, we calculate the average of all the
gradients of this mini-batch and use this mean gradient to update the
parameters a and b. So by taking those mini-batches, our parameters
are on the one side updated more frequently than by using BGD, which
implies that it converges faster to the minima. And on the other side
the parameters are updated less frequently than by using SGD which
can lead to more stable convergence. So that we get the advantages of
the both preceding methods.

1.2 Ordinary least square

Another model for �nding the best matching linear line is called the Ordinary
Least Square method. This method tries to minimize the total squared error
terms. Those error terms (also called residuals) are the di�erence between
the observed values of y and the predicted values of y based on the regression
line. Since those residuals can be positive or negative, it is easier to take the
square of them. The line which is represented in the following graphic is the
ordinary least square line and denoted by ŷ = âx+ b̂.

Let yi be the real observations and ŷi the predicted values for i ∈ {0, ..., n}.
So we have that

yi = ŷi + εi

7

so that
εi = yi − ŷi

Then the sum of squared residuals is:

n∑
i=0

ε2i =

n∑
i=0

(yi − ŷi)2 =

n∑
i=0

(yi − (âxi + b̂))2

Now this quantity is sought to minimize. To do so, we �rst have to take the
partial derivatives of it with respect to â and b̂:

∂

∂b̂

n∑
i=0

(yi − (âxi + b̂))2 =
n∑

i=0

∂

∂b̂
(yi − (âxi + b̂))2

=
n∑

i=0

2(yi − (âxi + b̂))(−1)

= −2
n∑

i=0

(yi − (âxi + b̂))

∂

∂â

n∑
i=0

(yi − (âxi + b̂))2 =

n∑
i=0

∂

∂â
(yi − (âxi + b̂))2

=

n∑
i=0

2(yi − (âxi + b̂))(−xi)

= −2

n∑
i=0

xi(yi − (âxi + b̂))

Setting the partial derivatives equal to 0 and solve the system for â and b̂{ ∑n
i=0(yi − (âxi + b̂)) = 0 (1)∑n
i=0 xi(yi − (âxi + b̂)) = 0 (2)

From (1) we get:

n∑
i=0

(yi − (âxi + b̂)) = 0

⇒
n∑

i=0

yi − â
n∑

i=0

xi −
n∑

i=0

b̂ = 0

⇒
n∑

i=0

yi − â
n∑

i=0

xi = nb̂

⇒ 1

n

n∑
i=0

yi −
1

n
â

n∑
i=0

xi = b̂

8

By denoting x̄ = 1
n

∑n
i=0 xi and ȳ = 1

n

∑n
i=0 yi, we �nally get:

b̂ = ȳ − âx̄ (3)

Substituting (3) in (2), we get:

n∑
i=0

xi(yi − (âxi + ȳ − âx̄)) = 0

⇒
n∑

i=0

xi(yi − ȳ − â(xi − x̄)) = 0

⇒
n∑

i=0

xi(yi − ȳ)−
n∑

i=0

âxi(xi − x̄) = 0

⇒
n∑

i=0

xi(yi − ȳ) = â

n∑
i=0

xi(xi − x̄)

So that we get:

â =

∑n
i=0 xi(yi − ȳ)∑n
i=0 xi(xi − x̄)

=

∑n
i=0(xi − x̄)(yi − ȳ)∑n

i=0(xi − x̄)2

Finally the linear least square regression line is determined by ŷ = âx + b̂
with

â =

∑n
i=0(xi − x̄)(yi − ȳ)∑n

i=0(xi − x̄)2
and b̂ = ȳ − âx̄

Generalisation to the multidimensional case:
This regression line can also be generalized to the multidimensional case.
Now we are no longer speaking of simple linear regression but of multi-
ple linear regression, where we have more than one independent variable.
Let's assume that we have k independent variables and n dependent vari-
ables/observations. The OLS equation will be of the form Ŷ = b̂X, where
b ∈ Rk+1 and X ∈ Rn×(k+1) so that every single observation yi will follow:

yi = εi + b̂0 +
k∑

j=1

b̂jxij for i ∈ {1, ...n}

where ε ∈ Rn. (In the 2-dimensional case we had b̂0 = b̂ and b̂1 = â, so we
need to determine the values of the vector b̂)

9

The whole sample can be expressed in matrix notations as follows:

Y = Xb̂+ ε

where Y ∈ Rn represents the observations on the dependent variable, b̂ ∈
Rk+1 represents the unknown parameters, X ∈ Rn×(k+1) is a matrix where
the �rst columns will only contain ones because the model will mostly contain
a constant term, and ε ∈ Rn represents the errors, so that we have:

y1
y2
...
yn

 =

1 x11 ... x1k
1 x21 ... x2k
...

...
. . .

...
1 xn1 ... xnk

 b̂0

...

b̂k

+

ε1
ε2
...
εn

 (2)

Now, to �nd the parameters of the vector b̂, we need to follow exactly the
same procedure as we did in the two-dimensional case. The vector of resid-
uals is in this case given by:

ε = Y −Xb̂

So the sum of squared residuals is the following scalar product

εT ε = (Y −Xb̂)T (Y −Xb̂)
= Y TY − Y TXb̂− b̂TXTY + b̂TXTXb̂

= Y TY − 2b̂TXTY + b̂TXTXb̂

where we used the fact that Y TXb̂ is a scalar and since the transpose of a
scalar is also a scalar we get that Y TXb̂ = (Y TXb̂)T = b̂TXTY .
Now, setting the partial derivative with respect to b̂ to zero, we get:

∂εT ε

∂b̂
= 0

−2XTY + 2XTXb̂ = 0

XTXb̂ = XTY

Assuming the inverse of XTX exists, we can multiply by this inverse on both
side so that we get

b̂ = (XTX)−1XTY.

1.3 Advantages and Disadvantages

Linear regression method is easy to interpret and to implement. It gives us
a general direction of the stock prices. If we assume that the trend of some
data will continue in the same direction, at least for a while, then we can

10

even extend the regression line and obtain a forecast. However, this method
assumes that the relationship between the input and the output is linear. If
we have for example a V-shaped or a parabola-shaped data series and try to
associate a single regression line to it, we will not get a good approximation
of the stock prices. In those cases we would need to calculate two regression
lines, to get a better approximation of the evaluation of the data.

1.4 Some Extras

The Ordinary Least Square method and the Gradient Descent method seems
to be very similar. By using the OLS method, we �nd the parameters a and
b by using �x formulas, whereas GD depends on many factors so that we
construct the parameters a and b which are close to the real ones but not
exactly the same. This implies that we get more precise values by using the
OLS method than by using the GD method in the two-dimensional case.
However, if we move on to the multidimensional case, we see that by using
the OLS method, we assume that the matrix XTX is invertible, if that is
not the case, we can not use this method. In this case we need to use the
GD method in order to �nd the best matching linear regression line. If
this matrix is invertible, it may be very computationally intense to calculate
the inverse of this matrix since X has k + 1 columns and n lines. So after
computing the matrix XTX, we need to invert this (k+ 1)× (k+ 1) matrix,
which is again very computationally intense since k is often an integer bigger
than 1000.
As a result, we see that even if the OLS method is more precise and faster in
the two-dimensional case, the GD method may be the best method for the
multidimensional case as it is faster and computationally less intense.

11

2 Random Forest

Random forest is a popular model because of its �exibility and simplicity. It
promises quality results, meaning that the predictions of a random forest are
often close to the reality. It is thus a powerful machine learning algorithm
which can be used for both regression and classi�cation tasks. A random
forest is composed of multiple decision trees. To better understand how the
concept works, we will start by explaining decision trees since they are the
fundamental building block of random forests.

2.1 Decision Tree - Example

Decision trees use di�erent pieces of information in order to predict a possible
outcome. To better understand the functioning of such a decision tree we
will start by giving an example which is close to our everyday life and easy
to follow.
We will try to predict tomorrow's maximum temperature in Belval.

Data extracted from this website

We start by setting up an initial range. We will take the range from 0° to
30° Celsius since all our maximum temperature values lie between those two
values. To predict tomorrow's maximum temperature in Belval it would be
useful to �nd out more information. A good question to start with would
be regarding the season. We could ask if it's winter since this allows us to
reduce our range to 0° − 10° Celsius. We then could ask last year's maximum
temperature of tomorrow's date. The information we gain from the answer
allows us to again reduce our range, but it may not be enough to already
make a prediction. A last question we could therefore ask is what today's
maximum temperature is. In this way, we'll know if it's warmer or colder

12

https://www.worldweatheronline.com/lang/fr/belval-weather-averages/luxembourg/lu.aspx

than last year and we could do a prediction based on this. We could of
course ask more and more questions, but let's settle with these three. The
questions are indeed high value questions since they greatly reduce the scope
of our estimate.
We can retain that in order to arrive at an estimate, we need to use a series
of questions which each narrow our possible values until we feel con�dent
enough to make a prediction.
The following picture shows a temperature prediction decision tree. The
last row represents the predictions this tree will make, so as an example if
the season is winter and last year's maximum temperature for tomorrow's
date was 5° Celsius and today's temperature is 3° Celsius, then this tree will
predict that tomorrow's temperature will be 2° Celsius.

This task is called a regression task. It is a way of predicting a value, in
this case tomorrow's maximum temperature. The other class of problems is
called classi�cation where targets are a discrete class label. In this case we
could for example want to predict if it's going to be sunny or cloudy.

13

2.2 Decision Tree

We can observe that each individual tree is composed by branches, nodes
and leaves. We will begin with some basic de�nitions to simplify the lecture:

� The root node represents the entire sample. This sample gets divided
into two or more homogeneous sets.

� Dividing a node into two or more sub-nodes is called splitting.

� A decision node splits a sub-node into further sub-nodes.

� When a node does not split we call it a leaf or terminal node. Each
leaf node in the tree speci�es a value to be returned by the function.

� The opposite process of splitting is called pruning. This means that
we remove sub-nodes of a decision node.

� A branch is a sub section of an entire tree.

� A parent node is a node which is divided into sub-nodes whereas
sub-nodes are the child nodes of the parent nodes.

14

The above example shows us the structure of a decision tree. We quickly
realize that the questions asked are under a True or False form. For each
True or False answer there are separate branches. For every value we should
reach a prediction, under the condition that the object to which we apply
the decision tree contains all the necessary data to answer the questions.
Note that two splits at each node are fully su�cient since the tree can have
an in�nite depth. Each question narrows our possible values until the model
gets strong and con�dent enough to make single predictions. The model
determines the order as well as the content of the questions.
During training, the model is �tted with any historical data that is relevant to
the problem domain and the value we want the model to predict. The model
learns any relationships between the data and the target variable. After this
training phase, the decision tree produces a similar tree calculating the best
questions in the best order in pursuance of the most accurate estimation
possible. The prediction will therefore be an estimate based on the train
data that it has been trained on.
One important asset of a decision tree is how it learns everything about the
problem from the data we provide. The model must be taught about all
the relationships there exist. The random forest is a supervised machine
learning model and tries to map data to outputs in the training phase of
model building.
Note that when we ask the decision tree to make a prediction, it needs to get
the same data as used during training. This means that we need to acquire
the data in an accessible format containing all the necessary information. It
then gives us an estimate based on the structure it has learned.
We can say that the decision tree learns through experience, of course with-
out any previous knowledge. Therefore, after enough training with quality
data, the decision tree will know how to map a set of features to targets and
make an adequate prediction. We can resume the concept of a decision tree
as a �owchart of questions leading to a prediction.
Now raises the question on how such a simple yet successful form of machine
learning "learns" and �nally builds such a decision tree. The decision tree
represents a function which takes an input and returns an output ("the
decision"). The attributes are considered as a part of the input. As we
explained above, we will have a training and a testing set. Each object in
this training set is of the form (x, y) where x is a vector of values for the input
attributes and y is the value we want to predict. The decision tree algorithm
wants to build a small and e�cient tree. Therefore, it adopts a greedy
divide-and-conquer method, meaning that it always tests the most important
attribute �rst. The most important attribute is the one that makes the most
di�erence to the classi�cation of an example of the training set. By this
divide-and-conquer method, the alogrithm divides the problem into smaller
subproblems, which then can be solved recursively. This procedure also
underlines the importance of the training set. It is crucial for constructing

15

the tree, since a tree consists of just tests on attributes in the splitting nodes,
values of the attributes on the branches and output values on the leaf nodes.
The learning algorithm in fact looks at the data from the training set and
the decision tree will be consistent with all the examples from this exact
training set. This also implies that the decision tree is bound to make some
mistakes for cases it has not encountered in the training set. This greedy
search we have just explained is used in decision tree learning to minimize
the depth of the �nal tree.

2.3 From Decision Tree to Random Forest

The predictions we did above are probably wrong. They have variance be-
cause they will be widely spread around the right value. To create an ac-
curate prediction we would need to use hundreds or thousands of di�erent
decision trees. This is the fundamental idea of random forests. They combine
many decision trees into a single model and combined together the predic-
tions will be closer to the true value. One decision tree contains a limited
scope of information whereas the combination of many decision trees pro-
vides much greater information. A random forest is therefore better than a
single decision tree. It is the diversity of di�erent information that makes
the random forest more robust.
In fact, each decision tree in the forest considers a random subset of features
when forming questions. It then only has access to a random set of the
training data points. This implies that the errors of the models are not cor-
related with each other because they are based on di�erent random subsets.
By combining, we increase the diversity in the forest and hence make the
overall prediction more robust. We therefore have to keep in mind that the
number of decision trees is important and has an impact on the accuracy of
our predicted result.
This leads us to the following structure of a random forest:

16

Our �rst step to create a random forest consists in selecting random
samples from the training data set.

↓
The algorithm will then construct a decision tree for every sample and get
the prediction result from every decision tree. Note that each tree sees only

a subset of all the features.
↓

The prediction result will be the average of all the individual decision trees
estimates if it is a regression problem. If we work with classi�cation, we
perform a majority voting for the predicted class and our �nal prediction

result will be obtained by the most voted prediction result.

17

2.4 Random Forest

The �rst thing we need to build a random forest is data. We need to make
sure that there is no missing or incorrect data, because this can impact
the analysis. Once we have obtained the raw data it needs some minor
modi�cations in order to put it into machine-understandable terms. We
then need to separate the data into the features and targets. The target is
the value we want to predict. One last step concerning the data preparation
is splitting the data into training and testing set. Note that the sampling
of training observations is random. During training, the model learns how
and what to predict by "seeing" the answers. It tries to learn the relationship
between all the features and the target value. Afterward, when we want to
evaluate the model and ask it to make predictions on the testing set. The
model then only has access to the features and not to the answers. We then
can compare the prediction with the actual answer and judge the accuracy
of the model.
After preparing the data, we �nally start to create and train the model.
We therefore use the Scikit-learn from which we import the random forest
classi�cation (resp. regression) model and �t the model on the training
data. This simple tool allows the model to learn the relationships between
the features and the targets. Recall that each individual tree brings their
own information sources to the problem as they only consider a random
subset of the training data.

After the training phase, we start to look at the accuracy of the model
by comparing its predictions on the test features to the known answers.
Recall that the random forest builds multiple decision trees and merges their
predictions together in order to get a more accurate and stable prediction

18

than relying on individual decision trees.
To improve we can try di�erent hyperparameters. This means that we adjust
the settings to improve performance. The settings are known as hyperparam-
eters, not to be confound with the model parameters learned during training.
The hyperparameters must be set by the data scientist before training. These
settings can include the number of decision trees in the forest and the number
of features considered by each tree when splitting a node.

2.5 Advantages and Disadvantages

Random forest requires only a very few pieces of feature engineering and can
be used for both regression and classi�cation tasks.
Of course a random forest is more complex than a decision tree algorithm
but it is also more robust because of its increased diversity. Recall that
each tree in a random forest learns from a random sample of the training
observations. Each tree might have high variance with respect to a particular
set of the training data but overall, the entire forest will have a signi�cantly
lower variance.
Furthermore, the random forest is less susceptible to over�tting. Over�tting
means that the model does not generalize well from the training data to
the unseen data. So even if a decision tree has a very high accuracy on the
training set, this does not necessarily imply that it also has high accuracy
on the testing set. This phenomenon is known as over�tting and is often a
problem of decision trees but because of the increased diversity of a random
forest, it presents hardly ever a problem to the random forest.

2.6 Some Extras

Bagging is the idea of combining the predictions of di�erent models which
only are somewhat predictive. They are not correlated with each other and
thus have di�erent insights into the relationship of the data. The idea behind
is that every tree has errors but the errors are random. The error of these
trees which all have been trained on a di�erent random subset will average
out to zero and this is why bagging is so important.
Another recurring term when reading about random forest is bootstapping.
Each tree in a random forest learns from a random sample of the training
observations. The samples are drawn with replacement, which is known as
bootstrapping. This means that some samples will be used multiple times
in a single tree.

19

3 Examples

In this section we will apply the methods explained above to a company
in order to predict the stock prices or similar. To do so, we �rst choose a
company, then extract the historical data of the stock prices of this company
from yahoo �nance and use this historical data to make a forecast of the
evolution of the stock prices. This is done by using di�erent programs. The
details of those programs can be found by opening the associated html �le
of the program.

3.1 Net�ix

As a �rst company we chose the well-known streaming service Net�ix. Here
is the output of our �rst program which plots the historical data of the stock
prices of the year 2020.

In this graph, we can see that the stock prices of Net�ix increased rapidly
from March until July which might be in relation with the Covid-19 pan-
demic. However the stock prices were not only increasing during these four
months, but we have a general upward trend of the stock prices over the
whole year. This implies that we can apply the linear regression models to
our dataset to get a general direction or even a forecast for the stock prices of
Net�ix. Since we can �nd the best matching linear regression line using two
di�erent methods, we wrote two programs, one using the Gradient Descent
method and the other one using the Ordinary Least Square method. The
objective of both programs is to �nd the best matching parameters a and b
and as an output they return the equation of the regression line and plot the
data with the appropriate linear regression line.
Here we can see the output of the program using OLS-method which plots
the graph of the stock prices over the whole year 2020 combined with the

20

best matching linear regression line:

The program using the GD method returns almost the same linear regression
line. However it takes longer to compute it and it is less precise since this
method depends on more factors. Not only the choice of the learning rate
and of the initial parameters a and b is important but also the number of
iterations and the number of gradient descent steps is important. The latter
depends on which method of gradient descent is used.

We also wrote two random forest models, one solving a regression task and
one solving a classi�cation task. The Random Forest Classi�er tries to pre-
dict whether the stock is closing up or down and the Random Forest Regres-
sor tries to predict the closing price. Both random forests seem to be pretty
accurate. They both are easy to write if one is used to the SciKit Learn
metrics. The time consuming part is the data preprocessing, where one adds
relevant information via formulas to the default data.

21

3.2 Bitcoin

As a second company we chose the well-known digital and global money
system currency Bitcoin. Again we use our �st program to plot the historical
data of the stock prices of the year 2020.

In this graph we can see that the stock prices of Bitcoin are rapidly increasing
at the end of the year, whereas there were only little variations during the rest
of the year. To use the linear regression model, we �rst use the OLS-program
to plot the stock prices of Bitcoin over the whole year 2020, associated with
the OLS regression line:

In this graph, we can see that we will not get a good approximation of the
stock prices using this regression line because the di�erence between the

22

variations is to big. So by dividing the dataset into subsets such that we get
more than one regression line, we can approximate the stock prices much
better. By plotting the dataset from October �rst until the end of the year
we get for example the following graph

Here we see, that the regression line is a good approximation of the stock
prices and if we assume that the trend will continue in this direction, we can
even get a good prediction of the stock prices in the near future.

However, both of the Random Forest models maintain their accuracy for this
second example.

23

4 References

https://towardsdatascience.com/introduction-to-machine-learning-algorithms-linear-regression-14c4e325882a

https://towardsdatascience.com/batch-mini-batch-stochastic-gradient-descent-7a62ecba642a

https://medium.com/@kumaranupam2020/difference-between-batch-gradient-descent-bgd-minibatch-gradient-descent-mgd-and-stochastic-657efcb4194b

https://gdcoder.com/random-forest-regressor-explained-in-depth/

https://medium.com/@williamkoehrsen/random-forest-simple-explanation-377895a60d2d

https://www.worldweatheronline.com/lang/fr/belval-weather-averages/luxembourg/

lu.aspx

https://towardsdatascience.com/random-forest-in-python-24d0893d51c0

24

https://towardsdatascience.com/introduction-to-machine-learning-algorithms-linear-regression-14c4e325882a
https://towardsdatascience.com/batch-mini-batch-stochastic-gradient-descent-7a62ecba642a
https://medium.com/@kumaranupam2020/difference-between-batch-gradient-descent-bgd-minibatch-gradient-descent-mgd-and-stochastic-657efcb4194b
https://gdcoder.com/random-forest-regressor-explained-in-depth/
https://medium.com/@williamkoehrsen/random-forest-simple-explanation-377895a60d2d
https://www.worldweatheronline.com/lang/fr/belval-weather-averages/luxembourg/lu.aspx
https://www.worldweatheronline.com/lang/fr/belval-weather-averages/luxembourg/lu.aspx
https://towardsdatascience.com/random-forest-in-python-24d0893d51c0

	Linear Regression
	Gradient Descent
	Ordinary least square
	Advantages and Disadvantages
	Some Extras

	Random Forest
	Decision Tree - Example
	Decision Tree
	From Decision Tree to Random Forest
	Random Forest
	Advantages and Disadvantages
	Some Extras

	Examples
	Netflix
	Bitcoin

	References

