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Abstract

We analyse some special random matrices and the distribution of the corresponding
eigenvalues as the matrices’ dimensions tend towards infinity. This will be done from
an experimental point of view with the use of SageMath.

Based on the observations we can make from our experiments’ outcomes, we shall
establish some conjectures.
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1 Marčenko–Pastur Law

In this section we consider random matrices X of the form

X = (xij) ∈MN×M (R),

whose entries xij are all independent and identically distributed (i.i.d.), as well as
the corresponding random matrices

Y := X ·X> ∈MN (R).

N and M are natural numbers that should be thought of as tending towards infinity.

Let λ1 . . . , λN ∈ C be the N eigenvalues of Y . Roughly speaking, our goal will be
to predict the distribution of these N eigenvalues of Y.

Let us start by noticing that the λi are actually all non-negative, real numbers. This
claim is justified by the following proposition.

Proposition 1. Let A be a real, symmetric matrix. Then the eigenvalues of A are
real. Moreover, if A equals B · B> for a real matrix B, then the eigenvalues of A
are non-negative real numbers.

Proof. Let λ ∈ C be an eigenvalue of A, corresponding to a complex, non-zero
eigenvector v. We denote the norm of v by |v|. We obtain(

λ− λ
)
|v|2 =

(
λ− λ

)
v>v

=
[
λv> − λv>

]
v

=
[
v>λ− λv>

]
v

=
[
v>A−Av>

]
v (as λv = Av)

=

[(
A>v

)>
− (Av)>

]
v

=
[
(Av)> − (Av)>

]
v (as A> = A)

= 0,

and since |v|2 > 0, we conclude that λ− λ = 0, that is, λ is real.

Now, assume A equals B ·B> for some real matrix B. Let λ be an eigenvalue of A.
Clearly A> = A, therefore λ is real by above. Next, let v be a non-zero eigenvector
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corresponding to λ. Since A and λ are real, we can also assume that v is real. Now

λ|v|2 = λv>v

= v>λv

= v>Av

= v>BB>v

=
(
B>v

)> (
B>v

)
=
∣∣∣B>v∣∣∣2

≥ 0.

We showed λ|v|2 ≥ 0. As v is a non-zero vector, |v|2 is positive. We can conclude
that λ ≥ 0, as desired.

1.1 When the dimensions’ ratio tends towards a con-
stant

We have already mentioned above that we want to make N and M tend towards
infinity. Firstly, we will assume that M and N tend to infinity at roughly the same
speed, in the sense that

M

N
→ c

as M,N → ∞, where c is some positive real number. This can be obtained by
making M depend on N , for example by choosing M = bcNc. This choice of M will
hold throughout this whole section 1.1.

What we now do is generate some random matrices X, then compute the eigenvalues
of Y = X ·X> and represent them in a histogram. This is possible because Y is a
symmetric matrix, and therefore only has real eigenvalues. Below the first examples
we briefly explain how a histogram should be read.

For now, we choose the entries xij of X to be standard normally distributed (that
is, xij ∼ N (0, 1)) and select a constant c equal to 4, as well as N equal to 1 000
respectively 3 000. Recall that we want to simulate N → ∞, and should therefore
choose great values for N . The corresponding histograms are the following:

Observe that even though we chose different values for N , the histogram’s shapes
remain roughly the same. The same phenomenon can be observed with the following
histograms, corresponding to the value c = 8 and N = 1 000, 3 000.
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In section 1.1.2, we will study more closely the histograms’ shapes. For the moment,
let us only predict that it can be described solely in terms of c. We will later on see
that the variation σ2 of the xij also plays a (minor) role.

Let us now explain how to read one of above’s histograms. For this, take a look
at the first example. The initial bin (bar) has a height of 37, and ranges on the
x-axis over the interval [1 000, 1 250] (roughly). This means that 37 out of Y ’s 1 000
eigenvalues λi lie in the mentioned interval. The remaining bins can be interpreted
analogously.

Notice that none of the eigenvalues of Y is negative, as we deduced from proposition
1. However, considering the histograms, the lower bound of 0 is not very satisfying:
The eigenvalues actually lie far away from 0, and their distance to the origin appears
to increase as N gets bigger. Driven by this dissatisfaction, we seek to find an
estimation for the extreme (smallest and greatest) eigenvalues of Y.

1.1.1 Estimating the extreme eigenvalues

We shall start by estimating Y ’s greatest eigenvalue λmax. For this, let us first fix
the constant c and vary N . As above, we choose the xij to be standard normally
distributed for our current tests. The following gives an insight on the dependence
of λmax on N , where c has (arbitrarily) been chosen to equal 4.

N λmax

500 4 514.1
1 000 9 005.1
1 500 13 393.0
2 000 17 999.7
2 500 22 441.3
3 000 26 969.4

We notice that λmax is roughly proportional to N . This observation can also be
made when choosing different values for c. Phrased differently, λmax

N should not
depend on N anymore. Just to be on the safe side, let us check that this assumption
holds, this time choosing c = 8, and slightly different values for N .
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N λmax
N

3 000 5.79
5 000 5.82
7 000 5.81

Indeed, our conjecture appears to be legitimate (just keep in mind that this is of
course still not a valid proof). For the following, we will therefore not analyse λmax

anymore, but rather λmax
N , while choosing some fixed value for N , say N = 2 000.

Next, we vary c.

c λmax
N

1 3.96
2 5.82
3 7.48
4 8.97

One might observe that inputting perfect squares c results in λmax
N being close to a

perfect square as well. Let us further investigate.

c λmax
N

[
λmax
N

]
12 3.96 22

22 8.97 32

32 16.02 42

42 24.94 52

The last column rounds the values of the second column to the nearest integer. We
shall make the following observation: If c = a2, then λmax

N ≈ (a + 1)2. In other
words,

λmax

N
≈
(√
c+ 1

)2
,

that is,
λmax ≈ N

(√
c+ 1

)2
.

To see that this approximation holds even for values of c that are not perfect
squares, let us choose c = 5 and N = 3 000. We predict that λmax lies close to

3 000
(√

5 + 1
)2 ≈ 31 416. Indeed, the experimental value equals approximately

31 341, which corresponds to a relative mistake of around 0.25%.

With exactly the same methods as above, we can also estimate the difference in the
extreme eigenvalues, that is, λmax − λmin, where λmin is, as expected, the smallest
eigenvalue of Y. We obtain the approximation

λmax − λmin ≈ 4N
√
c.
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Isolating λmin in above estimation leads to

λmin ≈ λmax − 4N
√
c

≈ N
(√
c+ 1

)2 − 4N
√
c

= N
(√
c− 1

)2
.

Let us summarize our observations so far. The greatest respectively smallest eigen-
value of Y are approximated as follows:

λmax/min ≈ N
(√
c± 1

)2
.

Keep in mind that this is valid for when the xij are standard normally distributed.
We will generalise this result later in 1.1.3.

1.1.2 Describing the histograms’ shapes

For this section, let us again choose the xij to be standard normally distributed. Our
goal will be to describe the shape of the histograms by the curve of a function. For
this, let us recall that the eigenvalues of Y (mostly) lie in the range [λmin, λmax]. If we
subtract this interval’s smallest value from Y ’s eigenvalues, then divide the obtained
values by the length of the interval, we obtain values in the range [0, 1], while not
changing the overall shape of the corresponding histogram (since the eigenvalues are
only transformed by an affine function). For simplicity, let us give these values a
special name.

Definition 2. If λ is an eigenvalue of Y, we call
λ−N(

√
c−1)

2

4N
√
c

a normalized eigenvalue

of Y.

We shall take a look at the histograms of the normalized eigenvalues of Y . Below
are examples for (N, c) ∈ {(2 000, 2), (1 500, 8)}.

As expected, the histograms are mostly contained between x = 0 and x = 1.

Next, in order to simplify the problem even further, we want the histograms to have
a constant area equal to 1. For this, it is useful to know that in all of above exam-
ples, the histograms consisted of b

√
Nc bins, where b·c denotes the floor function.

Hence, every normalized eigenvalue of Y contributes to an area of 1
b
√
Nc , that is, 1

divided by the width of a bin in the histogram. Knowing that Y has N eigenvalues,
we conclude that the histograms corresponding to the normalized eigenvalues of Y
have a total area of N · 1

b
√
Nc = N

b
√
Nc . Therefore, by dividing the height of each bin
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by N
b
√
Nc , the obtained histograms has an area of 1, as desired.

Equivalently, we can transform the histograms of Y ’s normalized eigenvalues into
a set of points (namely the two-dimensional points given by the centre of the top
segment of each bin), then divide the height of these points by N

b
√
Nc to obtain a

list L(Y ). Here is an example where we start with a histogram of Y ’s normalised
eigenvalues (left), then transform it into the corresponding list L(Y ), whose points
have been plotted (right).

The next step is to notice that the obtained points appear to lie on the curve of a
function

x 7→
√
P2(x)

P1(x)
,

where P2(x) is a polynomial of degree 2, and P1(x) is a polynomial of degree 1.

For example, let us consider the curves of the functions x 7→
√
−x2+3x−2
4x− 19

5

respectively

x 7→
√
−x2+7x−12
x− 5

2

.

Both appear to have great similarities with above histograms (or equivalently, with
the corresponding plots of L(Y )).

Therefore, let us assume that the points of L(Y ) indeed lie on the curve of a function

of the form x 7→
√
P2(x)

P1(x)
. Notice that our histograms suggest that these curves should

have vertical half-tangents at x = 0 and x = 1, that is, P2(x) should have x = 0 and
x = 1 as zeroes, or equivalently, P2(x) = αx(1−x) for some 0 6= α ∈ R. Notice that
α > 0, otherwise

√
P2(x) =

√
αx(1− x) wouldn’t be defined for 0 < x < 1. Now√

P2(x)

P1(x)
=

√
α
√
x(1− x)

P1(x)
=

√
x(1− x)

α−1/2P1(x)
,
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where the denominator is again just a polynomial of degree 1. Therefore, we can

assume that the points of L(Y ) lie on the curve of a function x 7→
√
x(1−x)
P1(x)

, where

P1(x) = ax+ b for some a, b ∈ R, a 6= 0.

At this point, we want to mention that a, b and P1(x) of course depend on the
parameter c (as we can deduce from the histograms). Therefore, let us change the
notation slightly: Write ac and bc instead of a and b, and

gc(x) :=

√
x(1− x)

acx+ bc
.

Remember that our goal is to find an exact expression for gc(x) in dependence of
c > 0. For this, it would be useful if we only had to work with a single parameter,
instead of two parameters ac and bc.

Fortunately, this can be done by using the following. We transformed the histograms
so that the range on the x-axis corresponds to the interval [0, 1], and the new area
equals 1. This means that the points of L(Y ) should lie on a curve gc whose integral
from 0 to 1 equals 1, that is, ∫ 1

0
gc(x) dx = 1.

Under assumption that 0 < ac < 1 and bc > 0 (which turns out to be alright for
most cases), we can use SageMath to get an exact expression of the left-hand side
of above equality, namely,∫ 1

0
gc(x) dx =

π

2a2c

(
ac + 2bc − 2

√
(ac + bc)bc

)
.

As this integral should be equal to 1, we obtain an easy expression for bc in terms
of ac.

Proposition 3. If
∫ 1
0

√
x(1−x)
acx+bc

dx = 1 for 0 < ac < 1 and bc > 0, then

bc =
(π − 2ac)

2

8π
.

Proof. We set the expression given by SageMath equal to 1, and solve it for bc:

π

2a2c

(
ac + 2bc − 2

√
(ac + bc)bc

)
= 1

=⇒ ac + 2bc − 2
√

(ac + bc)bc =
2a2c
π

=⇒ 2
√

(ac + bc)bc = ac + 2bc −
2a2c
π

=⇒ 4acbc + 4b2c = a2c + 4b2c +
4a4c
π2

+ 4acbc −
4a3c
π
− 8a2cbc

π

=⇒ 0 = 1 +
4a2c
π2
− 4ac

π
− 8bc

π
=⇒ 8πbc = π2 + 4a2c − 4πac

=⇒ 8πbc = (π − 2ac)
2

=⇒ bc =
(π − 2ac)

2

8π
,

as claimed.
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Therefore, we can now write

gc(x) =

√
x(1− x)

acx+ (π−2ac)2
8π

.

Our goal is now to understand how ac depends on c.

Using the method of least squares for curve fitting and SageMath, we now try to
find ac so that gc(x) expresses the list of points L(Y ) best. Note that the list L(Y )
of course also depends on c, but we omitted the index for ease of notation.

The following table outputs the approximated values of ac in dependence on c, where
we chose N = 2 000. Note that we have already discussed above that ac shouldn’t
depend on N anymore, so that the exact value for N doesn’t play a role.

We first start with a table for c ∈ {1, . . . , 10}:

c 1 2 3 4 5 6 7 8 9 10

ac 1.54 1.09 0.90 0.78 0.70 0.64 0.59 0.55 0.52 0.49

Below is the corresponding table for c ∈ {11, . . . , 20}:

c 11 12 13 14 15 16 17 18 19 20

ac 0.47 0.45 0.43 0.42 0.40 0.39 0.38 0.37 0.36 0.35

Notice that multiplying c by 4 divides ac by 2, multiplying c by 9 divides ac by 3,
and so on. This suggests that ac is proportional to 1√

c
, that is, ac = α√

c
for some

fixed constant α. In order to obtain the value for α, we shall consider the following
table.

c 1 2 3 4 5 6 7 8 9 10

ac
√
c 1.54 1.54 1.55 1.56 1.57 1.57 1.57 1.57 1.57 1.57

π already having appeared in the expression of bc, we conjecture that ac
√
c = π

2
(which equals approximately 1.57). In other words, we assume

ac =
π

2
√
c
,

and therefore

gc(x) =

√
x(1− x)

π
2
√
c
x+

(
π−2 π

2
√
c

)2

8π

=
8c

π
·

√
x(1− x)

4x
√
c+ (

√
c− 1)

2 .
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We will now see that x 7→ gc(x) can indeed describe the list L(Y ) with great success.
The following plottings use N = 2 000, and we selected constants c = 1, 2, . . . , 8. The
first line of plottings corresponds to c = 1 and c = 2, the second one to c = 3 and
c = 4, and so on.

Next, let us extend gc to the whole real line, by defining gc(x) = 0 for any x ∈
R− [0, 1]. Notice that then,

∫ x
0 gc(t) dt is, by construction, a good estimation for the

ratio
number of normalized eigenvalues of Y below x

N
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for any x ∈ R. Phrased differently, we have

N

∫ x

0
gc(t) dt ≈ #

{
1 ≤ i ≤ N :

λi −N (
√
c− 1)

2

4N
√
c

≤ x

}
.

Using this, we can now find an estimation for the number of eigenvalues of Y which
lie below any given x ∈ R:

#{1 ≤ i ≤ N : λi ≤ x} = #

{
1 ≤ i ≤ N :

λi −N (
√
c− 1)

2

4N
√
c

≤ x−N (
√
c− 1)

2

4N
√
c

}

≈ N
∫ x−N(

√
c−1)2

4N
√
c

0
gc(t) dt

=
8Nc

π

∫ x−N(
√
c−1)2

4N
√
c

0

√
t(1− t)

4t
√
c+ (

√
c− 1)

2 dt.

This is a way to describe the distribution of the eigenvalues of Y. We have therefore
reached the original goal that we set ourselves.

The whole phenomenon is described more precisely by the “Marčenko-Pastur law.”
One might be interested in reading more about this in [3].
It turns out that our results are exact for c > 1, but need to be slightly adjusted
when 0 < c ≤ 1. We will however not go into more detail concerning the case
0 < c ≤ 1, as the differences between the theoretical results and our experimental
observations are hard to make visible.

1.1.3 Dependence on distribution

For now, we have always assumed that the entries xij of X are standard normally
distributed. What happens if we change their variance, mean, or even the entire
distribution?

It turns out that the only relevant information about the xij is their variance σ2.
This means that

• changing the mean of the xij , or more generally

• changing the distribution of the xij

doesn’t influence the histogram of Y ’s eigenvalues, as long as the variance of the xij
remains unchanged.

For example, compare the following two histograms of Y ’s normalized eigenvalues.
For the first one, we chose the xij to be Poisson-distributed with parameter λ = 1
(which implies a variance of σ2 = 1 and a mean of µ = 1); for the second one, we
chose the xij to be standard normally distributed (with variance σ2 = 1 and mean
µ = 0). We selected N = 1 000.
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No noteworthy difference can be observed, as described above. Many other tests
showed similar results.

Next, we are interested in changing the variance. For this, consider the histograms
of Y ’s eigenvalues, where we choose the xij to be normally distributed with mean
µ = 0 and variances σ2 = 1 (top left), σ2 = 2 (top right), σ2 = 3 (bottom left),
σ2 = 4 (bottom right). We select N = 2 000 and c = 4, but similar observations
hold for other values of course.

Observe that the overall shape remains the same, while λmin and λmax change.
Notice that λmax/min appear to be proportional to σ2. This leads to a more general
definition of normalized eigenvalues for Y .

Definition 4. If λ is an eigenvalue of Y = XX>, and X’s entries have a variance

of σ2, we call
λ−σ2N(

√
c−1)

2

4σ2N
√
c

a normalized eigenvalue of Y.

This also leads to a more general approximation of the number of eigenvalues of Y
lying below some x ∈ R:

#{1 ≤ i ≤ N : λi ≤ x} ≈
8Nc

π

∫ x−σ2N(
√
c−1)2

4σ2N
√
c

0

√
t(1− t)

4t
√
c+ (

√
c− 1)

2 dt.
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It remains to see what happens when the xij don’t have a variance. Let us choose
the xij to be standard Cauchy distributed. This makes sure that the variance of the
xij is inexistent. Below we choose c = 3 and N = 3 000.

This suggests that the eigenvalues of Y are in this case not bounded and their dis-
tribution cannot be described using above methods.

To finish the section 1.1, we shall recapitulate our results in a final conjecture.

Conjecture 5. Let X = (xij) ∈ MN×M (R) be a random matrix with i.i.d. entries
xij of variance σ2. Let λ1, . . . , λN be the eigenvalues of Y = XX>. If M,N → ∞
such that M

N → c for c ∈ R>0, then

#{1 ≤ i ≤ N : λi ≤ x} ≈
8Nc

π

∫ x−σ2N(
√
c−1)2

4σ2N
√
c

0

√
t(1− t)

4t
√
c+ (

√
c− 1)

2 dt.

1.2 When the dimensions’ ratio tends towards infinity
or zero

We shall now be interested in what happens when M
N → ∞ respectively M

N → 0.
For this, we should have a closer look at

gc(x) =
8c

π
·

√
x(1− x)

4x
√
c+ (

√
c− 1)

2 .

When M
N →∞, we might think of it as considering the previous case of M

N → c, but
letting c tend towards ∞. Now consider

g∞(x) := lim
c→∞

gc(x)

= lim
c→∞

8c

π
·

√
x(1− x)

4x
√
c+ (

√
c− 1)

2

=
8

π
lim
c→∞

√
x(1− x)

4x√
c

+
(

1− 1√
c

)2
=

8

π

√
x(1− x).
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This curve corresponds to a half-ellipse, suggesting that the histogram of Y ’s eigen-
values corresponds to a half-ellipse as well.

This is also what we observe experimentally. For example, one might chooseM = N2

(implying M
N → ∞ when N → ∞) and the entries of X to be standard normally

distributed. Now choosing N = 1 000 gives us the following histogram, which does
indeed resemble a half-ellipse.

Similarly, one can consider gc(x) when c→ 0+:

g0+(x) := lim
c→0+

gc(x)

= lim
c→0+

8c

π
·

√
x(1− x)

4x
√
c+ (

√
c− 1)

2

= 0.

Now notice that gc is a function whose integral from 0 to 1 equals 1, and therefore,
as g0+(x) = 0, the maximal height of gc on the interval [0, 1] should tend towards
infinity when c → 0+. We see this as an indication that the distribution of the
eigenvalues of Y does not converge.

One should always keep in mind that all the arguments in this section were based on
experiments and intuition. They should be seen as an explanation of some potential
phenomenon, but surely not as rigorous proofs.
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2 Circular Law

In this chapter, we consider random matrices A of the form

A = (aij) = X + iY,

where X = (xij) and Y = (yij) are real random matrices of size N . Additionally,
we assume that {xij}Ni,j=1 and {yij}Ni,j=1 are two families of i.i.d. random variables,
respectively. As before, we want to think of N as tending towards infinity.
The goal will be to see how the eigenvalues λ1, . . . , λN of A are distributed. A be-
ing complex, there is no reason to assume that any of its eigenvalues are real. We
therefore wish to obtain the distribution of A’s eigenvalues in the complex plane.

To get experimental results, we use many of the methods from chapter 1. Therefore,
in order to avoid repetition, we will focus on the outcomes rather than the detailed
description of the way we proceed.

Before we start experimenting, we shall generalize the notion of expectation and
variance to complex random variables.

Definition 6. (i) If x and y are real random variables (defined on the same prob-
ability space), then a = x+ iy is called a complex random variable.

(ii) If a = x + iy is a complex random variable and µx = E[x], µy = E[y] exist,
then the expectation of a is defined as

E[a] := µx + iµy.

(iii) If it exists, the variance of a complex random variable a is defined as

Var(a) := E
[
|a− E[a]|2

]
.

Proposition 7. If a = x+ iy is a complex random variable, then

Var(a) = Var(x) + Var(y).

Proof. In fact,

Var(a) = E
[
|a− E[a]|2

]
= E

[
|x+ iy − E[x]− iE[y]|2

]
= E

[
|(x− E[x]) + i (y − E[y])|2

]
= E

[
(x− E[x])2 + (y − E[y])2

]
= E

[
(x− E[x])2

]
+ E

[
(y − E[y])2

]
= Var(x) + Var(y),
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as desired.

We are now ready to examine the distribution of A’s eigenvalues.

2.1 Complex standard normal distribution

Our first goal is to examine the eigenvalues of A when the aij are complex standard
normally distributed.

Definition 8. A complex random variable a = x+iy is said to be complex standard
normally distributed if x and y are independent and normally distributed with mean
0 and variance 1

2 . In that case, we write a ∼ CN (0, 1).

Notice that for a as in definition 8, we indeed have

E[a] = E[x] + iE[y] = 0,

and by proposition 7,

Var(a) = Var(x) + Var(y) =
1

2
+

1

2
= 1,

as suggested by the notation a ∼ CN (0, 1).

We will independently generate random matrices X and Y with i.i.d. entries that
are normally distributed with mean 0 and variance 1

2 , then compute the complex
eigenvalues of A = X + iY and represent them in the complex plane C (or equiva-
lently, in the euclidean plane R2). Notice that this construction of A ensures that
its entries are complex standard normally distributed.

Recall that N denotes the size of the matrices X and Y (and therefore of A).
Choosing N = 500, 1 000, 1 500 gives us the following plots.

The eigenvalues of A appear to lie mostly in a circle of radius
√
N . Phrased differ-

ently, we expect the λi√
N

to lie in a circle of radius 1. Let us check this assumption

for N = 1 500 by plotting the λi√
N

. In red we mark the unit circle centred at 0.
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Our assumption seems to hold.

2.2 Dependence on distribution

The next step is to increase the variance σ2 of the aij . This can be obtained by

choosing the xij and yij to be normally distributed with mean 0 and variance σ2

2 for

varying σ2. This ensures that that Var(aij) = Var(xij) + Var(yij) = σ2

2 + σ2

2 = σ2.
For example, let us choose σ2 = 2, 3, 4 and N = 1 000. The corresponding plottings
of λi√

N
are the following.

One notices that the circle’s radius appears to be proportional to the square root of
the variance σ2, that is, to the standard deviation σ.

We were also able to experimentally observe that, as long as N and σ2 remain
untouched,

• changing the mean of the xij and / or yij

• changing the distribution of the xij and / or yij

• choosing yij to depend on xij (for example, when Y is a multiple of X)

have no effect on the distribution of A’s eigenvalues.

However, it seems to be important to assure that the aij remain independent (the
notion of independence generalizes to complex random variables in the expected
way). For example, one might want to choose Y = X>. As the xij are i.i.d., the yij
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would also be i.i.d. However, notice that the aij aren’t independent anymore (when
N ≥ 2), since aij = iaji. In fact,

aij = xij + iyij

= xij + ixji

= i(xji − ixij)

= i(xji − iyji)

= iaji,

where we used that yij = xji, since Y = X>. Also, to avoid confusion, we want
to point out the difference in typefaces used for the imaginary unit i and the index i.

When choosing Y = X>, the corresponding plot of the λi√
N

(for N = 1 000 and xij

normally distributed with variance 1
2) is the following.

All the points appear to lie on the line given by {x+ ix : x ∈ R}. This phenomenon
can easily be explained. Firstly, observe that aij = iaji for all 1 ≤ i, j ≤ N is

equivalent to the equality iA
>

= A, and therefore we can apply the next proposition.

Proposition 9. If a complex square matrix A satisfies iA
>

= A, then all of A’s
eigenvalues have the same real and imaginary part.

Proof. If iA
>

= A, then A
>

= −iA, so AA
>

= A(−iA) = (−iA)A = A
>
A, that

is, A is normal. By the Spectral Theorem for normal matrices, there is a diagonal
matrix D and a unitary matrix U for which

A = UDU
>
.

Now, as U is unitary
(

that is, U−1 = U
>
)

, we get

D = U
>
AU = U

>
iA
>
U = iU

>
AU
>

= iD
>
.

As an eigenvalue λ of A lies on the diagonal of D, there is k for which λ = Dkk. But

Dkk =
(

iD
>
)
kk

= iDkk,

that is, Im(Dkk) = Re(Dkk), or equivalently, Im(λ) = Re(λ), as claimed.
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We therefore want the aij to be independent as well.

Lastly, we are interested in what happens when we choose distributions for xij or
yij that do not have a finite variance. As an example, we choose the standard
Cauchy distribution for both, and we obtain the following plot of A’s eigenvalues
(for N = 1 500).

This doesn’t follow the circular pattern from above. We obtain similar results if the
entries of one matrix have finite variance, while the entries of the other one don’t.
For example, we might choose the xij to be standard Cauchy distributed, and the
yij to be Poisson distributed with parameter 1

2 . We obtain the following plot of A’s
eigenvalues, again for N = 1 500.

We end this chapter with a recapping conjecture based on our observations.

Conjecture 10. Let A = (aij) ∈ MN (C) be a random complex matrix with i.i.d.
entries aij of variance σ2. As N → ∞, the distribution of the eigenvalues of A

σ
√
N

converges to the uniform distribution in the complex unit disc centred at 0.

Note that dividing A by σ
√
N has the effect of dividing the eigenvalues of A by the

same factor, hence making sure that the obtained values lie (mostly) in the men-
tioned unit disc.

This phenomenon is known as the “circular law.” One might want to read more
about this in [2].
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3 Wigner’s Semicircle Law

We shall finish with the arguably most famous result about random matrices: Wigner’s
Semicircle Law.

In this chapter, we consider real symmetric random matrices A of the form

A = (aij) ∈MN (R),

where the upper triangular matrix entries of A are independent random variables.
Phrased differently,

A =

 a11 · · · a1n
...

. . .
...

a1n · · · ann

,
where the entries aij , i ≤ j, are real independent random variables.

Again, the goal will be to analyse the distribution of A’s eigenvalues as N tends
towards infinity. Firstly, we notice that, as A is symmetric, all of A’s eigenvalues are
real by proposition 1. This allows us to represent them in a histogram, analogously
to the way we did in chapter 1.

3.1 Recap of experimental results

For example, we may choose all the aij to be standard normally distributed. We
obtain the following histogram for N = 3 000.

Notice that the histogram appears to correspond to a half-ellipse. This observation
can be made in many other cases, as we describe next.

If in addition to our original assumptions, we suppose that
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• all the aij have equal variance σ2,

• the aii (A’s diagonal entries) are identically distributed,

• the aij , i 6= j, (A’s remaining entries) are identically distributed,

one notices that the histogram of A’s eigenvalues corresponds to a half-ellipse centred
at the origin, with width 4σ

√
N . In particular, most of A’s eigenvalues lie in the

range
[
−2σ
√
N, 2σ

√
N
]
.

As the methods we used to derive these conjectures are analogous to those used in
the previous chapters, we shall not go into more detail.

It should be pointed out that again, the mean of the aij does not appear to play a
role.

To show how precise above conjecture is, we shall consider an example. Let us
choose the aii to be Poisson distributed with parameter 13, and the aij , i 6= j, to
be normally distributed with mean 100 and variance 13. This guarantees that all of
A’s entries have a variance of σ2 = 13. Note that 13 is just some arbitrary value.
Let us also arbitrarily choose N = 3 000.
Now, we generate the corresponding histogram. We choose b

√
Nc bins for the his-

togram. As the width of each bin now equals 4σ
√
N

b
√
Nc (width of histogram divided by

number of bins), each eigenvalue of A contributes to an area in the histogram of

exactly that amount. This implies that the histogram’s total area equals 4σN
√
N

b
√
Nc .

As the histogram should correspond to a half-ellipse of semi-width w = 2σ
√
N and

some semi-height h, its area is also given by πwh
2 , and thus

4σN
√
N

b
√
Nc

=
πwh

2
=
π · 2σ

√
Nh

2
,

so that h = 4N
πb
√
Nc . This leaves us with the following histogram and half-ellipse.

3.2 Interpretation

Returning to the general case, let us denote the N eigenvalues of A by λ1, . . . , λN .

Then we obtain by above observations for x ∈
[
−2σ
√
N, 2σ

√
N
]
:

number of eigenvalues of A below x

N
≈ area of ellipse from −2σ

√
N to x

area of ellipse from −2σ
√
N to 2σ

√
N
.
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We can rescale the obtained half-ellipse horizontally and vertically, as well as trans-
late it horizontally, to obtain the upper half unit circle, described by the curve of
the function f : [0, 1]→ R, f(t) =

√
t(1− t). As the ellipse ranges from −2σ

√
N to

2σ
√
N , the horizontal rescaling and translation changes values x on the x-axis into

x
4σ
√
N

+ 1
2 . Therefore

area of ellipse from −2σ
√
N to x

area of ellipse from −2σ
√
N to 2σ

√
N

=
area of f from 0 to x

4σ
√
N

+ 1
2

area of f from 0 to 1
.

Notice that we can ignore the vertical rescaling, as it would just multiply numerator
and denominator by the same factor, and could therefore be cancelled out.

Putting everything together, we have

#{1 ≤ i ≤ N : λi ≤ x}
N

≈
area of f from 0 to x

4σ
√
N

+ 1
2

area of f from 0 to 1

=

∫ x

4σ
√
N
+ 1

2

0 f(t) dt∫ 1
0 f(t) dt

.

Using SageMath (or a trigonometric substitution), we can obtain an anti-derivative

for f , namely F : [0, 1]→ R, F (t) =
(2t−1)

√
t(1−t)−arcsin

√
1−t

4 . Hence, we get

#{1 ≤ i ≤ N : λi ≤ x}
N

≈
F
(

x
4σ
√
N

+ 1
2

)
+ π

8

π
8

=
8

π
F

(
x

4σ
√
N

+
1

2

)
+ 1.

Note that none of the our assumptions can be relaxed. For example, if we choose the
aij to be standard Cauchy distributed, we do not obtain a histogram corresponding
to a half ellipse, as shown below, where we choose N = 3 000.

Similarly, it is of great importance to ensure that all the aij have equal variance σ2,
otherwise we cannot conclude in the same way.

To finish this section, we shall summarize our observations in a final conjecture.

Conjecture 11. Let A = (aij) ∈MN (R) be a random symmetric matrix, where

21



• the aij , i ≤ j, are independent and have equal variance σ2,

• the aii respectively the aij , i 6= j, are identically distributed.

If we denote A’s eigenvalues by λ1, . . . λN , then for any x ∈ R, we have

#{1 ≤ i ≤ N : λi ≤ x}
N

≈


0 if x < −2σ

√
N

8
πF
(

x
4σ
√
N

+ 1
2

)
+ 1 if |x| ≤ 2σ

√
N

1 if x > 2σ
√
N

where F (t) =
(2t−1)

√
t(1−t)−arcsin

√
1−t

4 .

The interested reader might want to take a look at [1], which covers this topic in
great detail.
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