CAT(0) cubical complexes

Exercice 1 (M). Prove that a CAT(0) cubical complex whose links are all complete bi-partite graphs is a product of two trees.

Exercice 2 (M). Show that a product of two trees does not embed in \mathbf{R}^3 , even locally.

Exercice 3 (E). Square a surface group.

Exercice 4 (E). Show that the triple space of a group is empty if and only if the group is elementary.

Exercice 5 (M). Show that if a group G acts cocompactly on a CAT(0) cube complex X, then every hyperplane is acted on cocompactly by its stabilizer.

Exercice 6 (E/O). Draw the CAT(0) cube complex associated to all partitions of n points, where n = 1, 2, 3 and 4. Can you give a description for the general case?

Exercise 7 (M). Let L be a discrete collection of lines which has finitely many parallelism classes (for example, think of the plane triangluated by unit isosceles triangles). Consider the set $S = \mathbf{R}^2 - L$. What is the cube complex associated to this space with walls (S, L)?

Exercice 8 (M/H). Let L be a transverse collection of n lines in \mathbf{H}^2 , with n > 1. Then, there exists a number R = R(L) > 0 such any line intersecting all the lines in L, intersects the ball of radius R about the origin.

Exercice 9 (M). The Coxeter group $PGL_2(Z)$ acts by isometries on the upper half-plane preserving a hyperbolic tessellation by isometric triangles, each with one ideal vertex as illustrated on figure 1. This gives the plane a wall space structure, where the walls are the mirrors for the reflections. Describe the associated CAT(0) cube complex.

Exercice 10 (M/H). Show that a codimension one subgroup H in a discrete group G gives G a structure of space with walls.

Exercice 11 (M/H). Let X be a CAT(0) cube complex, $g \in Aut(X)$ and h be a half-space.

- (1) If g skewers h, then g is hyperbolic and any axis for g crosses \hat{h} .
- (2) If g is hyperbolic and the axis of g crosses h, then for some $n \in \mathbb{Z}$, we have that g^n skewers h.

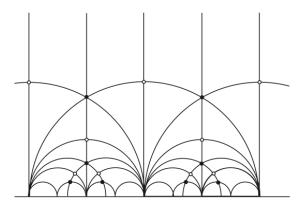


FIGURE 1. The Coxeter complex for the group $\mathsf{PGL}_2(\mathbb{Z})$ embedded in the upper half plane model of the hyperbolic space

Exercice 12 (H). Let X be a CAT(0) cube complex, $g \in Aut(X)$, let g be a hyperbolic isometry of X and let h be a halfspace. Then one of the following holds.

- (1) Some power of g skewers h.
- (2) Some power of g flips h.
- (3) Some power of g stabilizes h.

The first of the above possiblities is when the axis of g meets \hat{h} and the last is when the axis for g lies in a bounded neighborhood of \hat{h} .

Exercice 13 (O). Let G act properly and cocompactly on a product of two trees, does G contain $F_2 \times \mathbb{Z}$? What about $\mathbb{Z}^2 * \mathbb{Z}$?

E=easy, M=medium, most of those are taken from Sageev's course and require to apply the theory, H=hard, O=open,