Exercise 1 (Iwasawa decomposition and Siegel set in dimension 2) 1. Prove that

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} : z \mapsto \frac{az+b}{cz+d}$$

yields an action of $SL_2(\mathbb{R})$ on Poincaré upper half-plane

$$\mathbb{H} = \{ z \in \mathbb{C} : \operatorname{Im}(z) > 0 \}$$

2. Deduce from 1. the Iwasawa decomposition

$$\operatorname{SL}_2(\mathbb{R}) = \left\{ \begin{pmatrix} 1 & x \\ & 1 \end{pmatrix} : x \in \mathbb{R} \right\} \cdot \left\{ \begin{pmatrix} \lambda \\ & 1/\lambda \end{pmatrix} : \lambda > 0 \right\} \cdot \operatorname{SO}_2.$$

3. Using the transformations $S = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$ et $T = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$ prove that

$$\{z = x + iy \in \mathbb{H} : |x| \leq 1/2, |z| \ge 1\}$$

is a fundamental domain for the action of $SL_2(\mathbb{Z})$ on \mathcal{H} .

4. Deduce from 3. that

$$\operatorname{SL}_2(\mathbb{R}) = \operatorname{SL}_2(\mathbb{Z}) \cdot \left\{ \begin{pmatrix} 1 & x \\ & 1 \end{pmatrix} : |x| \leq 1/2 \right\} \cdot \left\{ \begin{pmatrix} \lambda \\ & 1/\lambda \end{pmatrix} : \lambda^2 \ge \sqrt{3}/2 \right\} \cdot \operatorname{SO}_2.$$

5. Prove Hermite-Mahler criterion for lattices in \mathbb{R}^2 .

Exercise 2 (Iwasawa decomposition and Siegel sets in general) Consider the groups $G = GL_m(\mathbf{R})$ and

$$K = \mathcal{O}(m) = \{g \in \mathrm{GL}_m(\mathbf{R}) \mid {}^t gg = I_m\}$$

Let $A \subset G$ be the subgroup of diagonal matrices with positive diagonal coefficients. Let $N \subset G$ be the subgroup of upper triangular matrices whose diagonal coefficients are all equal to 1.

1. Let (f_1, \ldots, f_m) be a basis of \mathbf{R}^m . Prove that there exists one and only one orthonormal basis (e_1, \ldots, e_m) of \mathbf{R}^m such that for all $i \in \{1, \ldots, m\}$, we have

$$f_i = \alpha_{i,1}e_1 + \alpha_{i,2}e_2 + \dots + \alpha_{i,i}e_i$$

with $\alpha_{i,1}, \alpha_{i,2}, \ldots \alpha_{i,i}$ real numbers such that $\alpha_{i,i} > 0$. Prove moreover that the vectors e_i and the coefficients $\alpha_{i,j}$ depend continuously of (f_1, \ldots, f_m) .

2. Prove that the map

$$K \times A \times N \to G; \quad (k, a, n) \mapsto kan$$

is a homeomorphism. This is the Iwasawa decomposition.

3. Let $\Phi: G \to \mathbf{R}$, $\Phi(g) = ||g(\varepsilon_1)||$, where $|| \cdot ||$ is the norm associated to the canonical scalar product $\langle \cdot, \cdot \rangle$ of \mathbf{R}^m . Compute $\Phi(g)$ in terms of a unique matrix coefficient of one of the factors of the Iwasawa decomposition of g.

4. Let $\Gamma = \operatorname{GL}_m(\mathbf{Z})$. Prove by induction on $m \ge 1$ that

for all
$$g \in G$$
, the restriction $\Phi|_{g\Gamma}$ of Φ to $g\Gamma$
reaches his minimum at a point in $S^{(m)}_{\frac{2}{\sqrt{3}},\frac{1}{2}}$. (**)

Where

$$\mathcal{S}_{t,u}^{(m)} = KA_t N_u$$

is a Siegel domain with

$$A_t = \{ a \in A \mid \frac{a_{i,i}}{a_{i+1,i+1}} \leqslant t \text{ for all } 1 \leqslant i \leqslant m-1 \},$$

and

$$N_u = \{ n \in N \mid |n_{i,j}| \leq u \text{ for all } 1 \leq i < j \leq m \}.$$

5. Prove that, for all $t \ge \frac{2}{\sqrt{3}}$ and for $u \ge \frac{1}{2}$, we have

$$G = \mathcal{S}_{t,u}^{(m)} \,\Gamma. \tag{*}$$

6. Prove Hermite's inequality: for all $g \in G$, we have

$$\min_{x \in \mathbf{Z}^m \setminus \{0\}} ||g(x)|| \leq \left(\frac{2}{\sqrt{3}}\right)^{\frac{m-1}{2}} |\det(g)|^{\frac{1}{m}}.$$

7. Compare (*) with Question 4 of Exercise 1.

Exercise 3 1. Show that the set of solutions of the 'Pell-Fermat equation'

$$x^{2} - ay^{2} = 1, \ (x, y) \in \mathbb{Z}^{2}$$

is in bijection with the set

$$\operatorname{SL}_2(\mathbb{Z}) \cap \operatorname{O}(q_a),$$

where $q_a = x^2 - ay^2$.

2. Deduce from the construction of arithmetic groups that, if $a \in \mathbb{N}$ is not a square, Pell–Fermat's equation has an infinite number of solutions.

- **Exercise 4 (Minkowski's lemma)** Let F be a finite subgroup of $GL_N(\mathbb{Z})$. 1. Prove that there exists a F-invariant norm on \mathbb{R}^N such that
 - any vector of \mathbb{Z}^N is of norm ≥ 1 , and
 - $span\{x \in \mathbb{Z}^N \text{ of norm } 1\} = \mathbb{R}^N.$
 - 2. Deduce form 1. that for every $\ell \ge 3$, the 'mod ℓ restriction map'

$$\operatorname{GL}_N(\mathbb{Z}) \to \operatorname{GL}_N(\mathbb{Z}/\ell\mathbb{Z})$$

is injective on F.

3. Give an algebraic direct proof of that.

Exercise 5 (Weil restriction of scalars) Let $G \subset GL(N, \mathbb{C})$ be an algebraic group defined over an algebraic number field $K \subset \mathbb{C}$. Let \mathcal{O} be the ring of integers of K. Let

$$(\tau_1,\ldots,\tau_d)=(\sigma_1,\ldots,\sigma_{r_1},\sigma_{r_1+1},\overline{\sigma}_{r_1+1},\ldots,\sigma_{r_1+r_2},\overline{\sigma}_{r_1+r_2})$$

be the set of the r_1 real and r_2 complex embeddings of K, so that $r_1 + 2r_2 = d = [K : \mathbb{Q}].$

1. Prove that the group

$${}^{\tau_1}G \times \cdots \times {}^{\tau_d}G \subset \mathrm{GL}(N,\mathbb{C})^d$$

is isomorphic to an algebraic group $R_{K/\mathbb{Q}}(G)$ in $\operatorname{GL}(dN,\mathbb{C})$ defined over \mathbb{Q} and such that

$$R_{K/\mathbb{Q}}(G)(\mathbb{Q}) = \{(\tau_1(g), \dots, \tau_d(g)) : g \in G(K)\}.$$

2. Identify the group of real points of $R_{K/\mathbb{Q}}(G)$.

3. Prove that the projection $p: R_{K/\mathbb{Q}}(G) \to \tau_1 G = G$ is defined over K and induces a bijection between $R_{K/\mathbb{Q}}(G)(\mathbb{Q})$ and G(K).

Exercise 6 1. Using the last two exercises, prove Selberg's lemma for arithmetic lattices.

2. What about the general case ? (Hard)

Exercise 7 Prove that there exist non-arithmetic closed hyperbolic manifolds

- 1. in dimension 2, (Easy)
- 2. in dimension 3, (Not easy)
- 3. in arbitrary dimension. (Hard)

Exercise 8 Construct a closed hyperbolic manifold fibering over the circle. (Hard)

Exercise 9 (Falconer slicing Theorem) Let U be a bounded open set in \mathbb{R}^3 of volume 1 and let f be its characteristic function. To any fixed direction $\theta \in \mathbb{S}^2$ we associate the function

$$F_{\theta}: r \mapsto \int_{\Pi(r,\theta)} f$$

where $\Pi(r, \theta)$ denotes the plane orthogonal to θ and at distance r from the origin. 1. Prove that the Fourier transform of F_{θ} is given by

$$\widehat{F}_{\theta}(\xi) = \widehat{f}(\theta, \xi)$$

where \hat{f} is the Fourier transform of f.

- 2. Using the Plancherel formula, prove that $||\widehat{f}||_2 = 1$.
- 3. Deduce from 2. that there exists a direction $\theta_0 \in \mathbb{S}^2$ such that

$$\int_{\mathbf{R}} |\widehat{f}(\theta_0, r)|^2 r^2 dr \leqslant \frac{1}{2\pi}.$$

4. Deduce from 1. and 3. that

$$\int_{\mathbf{R}} |\widehat{F}_{\theta_0}(\xi)|^2 (1+|\xi|^2)^2 d\xi < 5.$$

5. Then prove that

$$\int_{\mathbf{R}} |\widehat{F}_{\theta_0}(\xi)| d\xi \leqslant \left(\int_{\mathbf{R}} |\widehat{F}_{\theta_0}(\xi)|^2 (1+|\xi|^2)^2 d\xi\right)^{1/2} \left(\int_{\mathbf{R}} (1+|\xi|^2)^{-2} d\xi\right)^{1/2} < \sqrt{10}$$

6. Conclude that there exists a family of parallel planes such that each of these planes intersect U in a region of area at most $\sqrt{10}$.

7. Is the corresponding statement true with lines in \mathbb{R}^2 ?