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[A3] - [A5] gives proofs of the main results presented in the course.
[AGL] gives the construction of the Hitchin connection in the case where one

also considers the metaplectic correction.
[A6] and [AG] could be a starting point for a first reading, since they provide an

overview of the results from [A3] - [A5].
The series [AU1] to [AU4] gives a proof that the SU(n)-Reshetikhin-Turaev

TQFT can be obtained from Conformal field theory. Combining this with Laszlo’s
result [La], one gets that the representations obtained from the geometric quantiza-
tion of the moduli space of flat SU(n)-connections on a surface is projectively the
same as the SU(n)-Reshetikhin-Turaev quantum representations of the mapping
class group.

The references [At], [B1], [BHMV1], [BHMV2], [M1], [M2], [RT1], [RT2], [Ro],
[T] and [W1] are TQFT references.

For references on moduli space of flat connections and their algebraic geometric
counter part of moduli space of semi-stable bundles see [AB], [NS1], [NS2] and
references there in.

For discussion of the prequantum line bundle over moduli space see [RSW], [Fr]
and also [DN] which computes the algebraic geometric Picard group of the moduli
spaces of semi-stable bundles also in the singular case.

The Hitchin connection was constructed in [H] from the algebraic geometric point
of view for SU(n) and for general Lie groups in [Fal]. From the point of view of
infinite dimensional reduction from the space of connections in [ADW] and from
the differential geometric point of view in [A4]. See also [R1] for the abelian case.

For general references on Toeplitz operators we refer to [BdMG], [BdMS], [BMS],
[Sch], [Sch1] and [Sch2] and references there in.

For references to the closely related conformal field theory please see [TUY] and
[Se] and references there in.

For a general reference to geometric quantization please see [Wo] and the refer-
ences in there.

[A1] contains a couple of unpublished results. One of them is the study of the
geometric quantization of the n-dimensional torus with respect to general linear
non-negative polarizations. In particular it is proved there that the space of dis-
tributional sections of the k’th power of any prequantum line bundle on the torus,
which are covariant constant along the polarization is finite dimensional of dimen-
sion kn. It also gives an explicit isomorphism between this space and the space of
theta functions.

[A2] does Toeplitz operators very explicitly in the case of a flat torus and provides
an explicit global trivialization of the formal Hitchin Connection in this special case.
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