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Basic Notation

• (G, o) = a pointed complex manifold

• H (G) := {f : G→ C| f is holomorphic}

• λ be a measure on G,

(f, g)L2(λ) :=

∫
G

f · ḡ dλ

‖f‖2
L2(λ) := (f, f )L2(λ) =

∫
G

|f |2 dλ

HL2 (G) :=
{
f ∈ H (G) : ‖f‖L2(λ) <∞

}
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Fock, Kakutani, Itô, Segal, Bargmann, Gross,
Hall

• Suppose G =Compact type Lie group and o = e

• Dt is a space of derivatives of holomorphic functions

• Tf := {“derivatives” of f at e}

T ◦ et∆/2
L2(G, pt) −−−−−−−−− −→ Dt

↘ ↗

A ◦ et∆/2 HL2(GC, µt) T

(1)
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Two Basic Questions

Let

D := {“derivatives” of f at o : f ∈ H (G)}

be the derivative space associated toH (G) and let T : H (G)→ D be the “Taylor
map;”

Tf := {“derivatives” of f at o} .

1. Characterize the derivative space, D.

2. Find the norm, ‖·‖D , on D such that

∫
G

|f |2 dλ = ‖Tf‖2
D for all f ∈ H (G) .

• We will begin with the case, G = C and o = 0.
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The Case G = C

• Let G = C and o = 0

• z = x + iy

• dm (z) = dxdy

• dλ = ρ (z) dm (z) with ρ ∈ C (C, (0,∞)) .

ρ ∈ C (C, (0,∞))

Bruce Driver 6 University of Luxembourg, September 8, 2009



Notation (Taylor map). Given a function, f, which is holomorphic near 0, let

Tf =
{
f (n) (0)

}∞
n=0
∈ CN0.

Notation (Derivative Space). Let

D :=

{
α := {αn}∞n=0 ⊂ C : lim sup

n→∞

∣∣∣αn
n!

∣∣∣1/n = 0

}
.

Theorem 1 (Taylor’s Theorem & Root Test). If f ∈ H (C) then

• The Root Test: Tf ∈ D,

• Taylor’s Theorem: T : H (C)→ D is a linear isomorphism with inverse,

T−1 (α) (z) =

∞∑
n=0

αn
n!
zn for all z ∈ C.
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Goals

1. Develop some basic properties ofHL2 (λ) .

2. Identify the norm on D which makes

T |HL2(λ) : HL2 (λ)→ D isometric.

3. Characterize the image, T
(
HL2 (λ)

)
⊂ D, of the Taylor map.
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Complex Analysis Basics

• ∂x := ∂
∂x and ∂y := ∂

∂y .

• ∂ := ∂z = 1
2

(
∂
∂x − i

∂
∂y

)
and ∂̄ := ∂z̄ = 1

2

(
∂
∂x + i ∂∂y

)
so

• ∂x = ∂ + ∂̄ and ∂y = i
(
∂ − ∂̄

)
.

• If ∆ := ∂2
x + ∂2

y , then

∆ =
(
∂ + ∂̄

)2 −
(
∂ − ∂̄

)2
= 4∂∂̄.

Corollary 2. If f ∈ H (C) , then |f |2 is sub-harmonic,

∆ |f |2 = 4 |∂f |2 = 4 |∂xf |2 ≥ 0.

Proof: The Cauchy Riemann equations imply,

∂̄f = 0 and ∂f̄ = 0

and therefore,
∆ |f |2 = 4∂∂̄

(
f f̄
)

= 4∂f ∂̄f̄ .

Q.E.D.
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Pointwise Bounds
Notation. For every ε > 0, let

ρε (z) := min {ρ (w) : w ∈ D (z, ε)} .
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Theorem 3 (Crude Pointwise Bounds). Suppose that g ≥ 0 is a sub-harmonic (i.e.
∆g ≥ 0), then

g (z) ≤ ‖g‖L1(λ)

1

πε2

1

ρε (z)
∀ z ∈ C. (2)

In particular if f ∈ H (C) , then

|f (z)|2 ≤ 1

πε2
‖f‖2

L2(λ)

1

ρε (z)
∀ z ∈ C. (3)

Proof: By the mean value inequality (42),

g (z) ≤
∫
−

D(z,ε)

g (w) dm (w)

=

∫
−

D(z,ε)

g (w)
1

ρ (w)
ρ (ω) dm (w)

≤ 1

ρε (z)

∫
−

D(z,ε)

g (w) ρ (ω) dm (w)

=
1

πε2

1

ρε (z)
‖g‖L1(λ) .

For Eq. (3), apply (2) with g (z) := |f (z)|2 . Q.E.D.
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Liouville’s Theorem

Definition 4. LetHP (C) denote the space of holomorphic polynomials. Further let,

HPk = {p ∈ HP (C) : deg (p) ≤ k} =

{
p (z) =

k∑
n=0

anz
k : an ∈ C

}
.

Corollary 5 (Louiville’s Theorem). Suppose there exists c <∞ and n ∈ N0 such that

ρ (z) ≥ c

|z|2n + 1
for all z ∈ C.

ThenHL2 (ρ) = HPk for some k < n whereHPk := {0} if k ≤ 0.

Figure 1: Here, ρ (z) = 10/
(

1 + 0.1 · |z|2
)

andHL2 (λ) ∼= C.

Proof: Use the pointwise bounds along with Cauchy estimates (see 44). Q.E.D.
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A Non-Uniform Decay Example

Figure 2: Plot of dλc/dm for c = 2.

• For c > 0, let

dλc (z) =
1

π
exp
(
−
(
(1− c)x2 + (1 + c) y2

))
dx dy.
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• If c > 1,HL2 (λc) does not contain any polynomials other than 0.

• Nevertheless, dimHL2 (λc) =∞ since

HL2 (λ0) 3 f (z)→ e
c
2z

2
f (z) ∈ HL2 (λc)

is unitary.
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HL2 (λ) is a Hilbert Space

Theorem 6 (HL2 (λ) is Hilberitan).HL2 (λ) is a closed subspace of L2 (λ) and hence is
a Hilbert space.

Proof: For ε, r > 0 let

C (r, ε) :=
1

πε2
· sup
|w|≤r

1

ρε (w)
=

1

πε2
· 1

min|w|≤r+ε ρε (w)
.

Then by the pointwise bounds,

sup
|w|≤r
|f (w)|2 ≤ C (r, ε) ‖f‖2

L2(λ) for all f ∈ HL2 (λ) .

So if {fn}∞n=1 ⊂ HL2 (λ) and fn → f ∈ L2 (λ) , we have,

sup
|w|≤r
|fn (w)− fm (w)|2 ≤ C (r, ε) ‖fn − f‖2

L2(λ) → 0 as m,n→∞.

So {fn}∞n=1 is uniformly convergent on compacts and therefore f ∈ H (C) . Q.E.D.
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The Reproducing Kernel
Theorem 7. There exists a unique function, k (z, w) = kλ (z, w) ∈ C such that for all
w ∈ C, there exists a unique k (·, w) ∈ HL2 (λ) such that

f (w) = (f, k (·, w))L2(λ) ∀ f ∈ HL
2 (λ) . (4)

Moreover (see 45)

1. k (w, z) = (k (·, z) , k (·, w)) and hence k (w, z) = k (z, w) .

2. k (z, w̄) is a holomorphic function of (z, w) .

3. If {ϕn}∞n=0 ⊂ HL2 (λ) is any orthonormal basis, then

k (z, w) =

∞∑
n=0

ϕn (z)ϕn (w). (5)

The sum is absolutely convergent.

4. For all w, z ∈ C,

‖k (·, z)‖2
L2(λ) = k (z, z) ≤ 1

πε2

1

ρε (z)
and

|k (z, w)| ≤
√
k (z, z) · k (w,w) ≤ 1

πε2

1√
ρε (z) · ρε (w)

.
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Optimal Pointwise Bounds

Corollary 8 (Optimal Pointwise Bounds). For all f ∈ HL2 (λ) ,

|f (w)|2 ≤ k (w,w) ‖f‖2
L2(λ) for all w ∈ C.

These pointwise bounds are optimal.

Proof: By the Cauchy-Schwarz inequality,

|f (w)|2 =
∣∣∣(f, k (·, w))L2(λ)

∣∣∣2
≤‖k (·, w)‖2

L2(λ) ‖f‖
2
L2(λ) = k (w,w) ‖f‖2

L2(λ) .

The function f (z) := k (z, w) saturates this inequality. Q.E.D.
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The Radial Symmetric Case

Theorem 9. Suppose that ρ (z) = ρ (|z|) andHP ⊂ HL2 (λ) , i.e.

a2
n :=

∫
C
|z|2n ρ (z) dm (z) <∞ for all n ∈ N0.

Then

1.
{
zn

an

}∞
n=0

forms an orthonormal basis forHL2 (λ) .

2. For any f ∈ HL2 (λ) ,

f (z) =

∞∑
n=0

f (n) (0)

n!
zn

converges pointwise and L2 (λ) .
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Proof

If f ∈ HL2 (λ) , then (using Taylor’s theorem to evaluate the angular integral)

(f, zn) =

∫ ∞
0

(∫ π

−π
f
(
reiθ
)
rne−inθdθ

)
ρ (r) rdr

=

∫ ∞
0

(
2πr2nf

(n) (0)

n!

)
ρ (r) rdr = a2

n

f (n) (0)

n!
.

From this it follows that{
zn

an

}∞
n=0

is orthonormal subset ofHL2 (λ) .

Let P : HL2 (λ)→ HL2 (λ) be orthogonal projection ontoHP . Then

Pf =
∑ 1

a2
n

(f, zn) zn =

∞∑
n=0

f (n) (0)

n!
zn ∀ f ∈ HL2 (λ)

converges in L2 (λ) and pointwise to f (by Taylor’s theorem) and so f = Pf ∈ HP .
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Density of Polynomials

Corollary 10 (Density of Polynomials). When ρ (z) = ρ (|z|) ,HP is dense inHL2 (λ) .

Proof: See the above proof or see 47 for an alternate proof. Q.E.D.

Question. Under what conditions on ρ isHP is dense inHL2 (λ)?

Remark. We know (see 53 or 10)HP is dense inHL2 (λ) if ρ (z) = ρ̃ (|az + b|) for
some a 6= 0. It is also true if

ρ (z) = C exp
(
−
(
ax2 + 2bxy + cy2

))
for some a, b > 0 and c ∈ R such that b2 − ac < 0.
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Radial Symmetric Case Summary
Notation. The Taylor map is: Tf := α ∈ D, where αn := f (n) (0) . Let,

a2
n :=

∫
C
|z|2n dλ (z) , ‖α‖2

ρ :=
∑
n=0

|αn|2
(an
n!

)2

, and

J (λ) :=
{
α = (α0, α1, . . . ) ∈ CN0 : ‖α‖2

ρ <∞
}
.

Theorem 11 (Radial Case). If ρ (z) = ρ (|z|) , then T : HL2 (λ)→ J (λ) is unitary.

Moreover, for all f ∈ H (C) ,

∫
C
|f (z)|2ρ (z) dm (z) =

∑
n=0

∣∣∣f (n) (0)
∣∣∣2 (an

n!

)2

(Isometry Property.)

and

|f (z)|2 ≤ ‖f‖2
L2(λ)

( ∞∑
n=0

1

a2
n

|z|2n
)
. (Optimal Pointwise Bounds.)

k (z, w) = kλ (z, w) =

∞∑
n=0

1

a2
n

(zw̄)n (Reproducing Kernel.)
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Proof (Skip)

The fact that T : HL2 (λ)→ J (λ) is unitary is a translation of the fact that
{
zn

an

}∞
n=0

is

an orthonormal basis forHL2 (λ) and the identity,

(f, zn) = a2
n

f (n) (0)

n!
.

To see the isometry property is valid for all f ∈ H (C) , use T : HL2 (λ)→ J (λ) is
unitary, Taylor’s theorem, and Fatou’s lemma, to show;

∫
C
|f (z)|2 ρ (z) dm (z) =

∫
C

lim inf
N→∞

∣∣∣∣∣
N∑
n=0

f (n) (0)

n!
zn

∣∣∣∣∣
2

ρ (z) dm (z)

≤ lim inf
N→∞

∫
C

∣∣∣∣∣
N∑
n=0

f (n) (0)

n!
zn

∣∣∣∣∣
2

ρ (z) dm (z)

= lim inf
N→∞

N∑
n=0

a2
n

∣∣∣∣f (n) (0)

n!

∣∣∣∣2 =

∞∑
n=0

a2
n

∣∣∣∣f (n) (0)

n!

∣∣∣∣2 .
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Exponential Examples

Notation. For κ > 0, let

ρκ (z) :=
κ

2π
exp (− |z|κ) and Γ (z) :=

∫ ∞
0

tze−t
dt

t

Theorem 12. If ρ = ρκ, then

a2
n = Γ

(
2n + 2

κ

)
, k (z, w) =

∞∑
n=0

1

Γ
(

2n+2
κ

) (zw̄)n ,

and for all f ∈ H (C) ,

∫
C
|f (z)|2 κ

2π
exp (− |z|κ) dm (z) =

∑
n=0

∣∣∣f (n) (0)
∣∣∣2 Γ

(
2n+2
κ

)
(n!)2

and

|f (z)|2 ≤ ‖f‖2
L2(ρκdm)

( ∞∑
n=0

|z|2n

Γ
(

2n+2
κ

)) .
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Example (κ = 1)

k (z, w) =

∞∑
n=0

1

(2n + 1)!
(zw̄)n =

sinh
(√

zw̄
)

√
zw̄

For all f ∈ H (C) ,

1

2π

∫
C
|f (z)|2 exp (− |z|) dm (z) =

∑
n=0

∣∣∣f (n) (0)
∣∣∣2 (2n + 1)!

(n!)2 ,

and

|f (z)|2 ≤ ‖f‖2
L2(λ)

sinh (|z|)
|z|

≤ ‖f‖2
L2(λ)

1

2 |z|
e|z|.
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Example (κ = 2)

dλ (z) =
1

π
exp
(
− |z|2

)
dm (z)

k (z, w) =

∞∑
n=0

1

n!
(zw̄)n = ezw̄.

For all f ∈ H (C) ,

1

π

∫
C
|f (z)|2 exp

(
− |z|2

)
dm (z) =

∞∑
n=0

1

n!

∣∣∣f (n) (0)
∣∣∣2 ,

and

|f (z)|2 ≤ ‖f‖2
L2(λ) e

|z|2. (Bargmann’s Pointwise Bounds)

References: V.A. Fock (1932) [Fock, 1928], Segal [Segal, 1956, Segal, 1962] and
Bargmann [Bargmann, 1961]. (See also Gross and Malliavin [Gross & Malliavin, 1996]
for more history.)
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Heat Kernel Interpretation for κ = 2

Fact. (
et∆/4g

)
(z) =

∫
C

1

πt
exp
(
− |z − w|2 /t

)
g (w) dm (ω) .

In particular taking t = 1 and z = 0 implies,∫
C
|f (z)|2 1

π
exp
(
− |z|2

)
dm (z) =

(
e∆/4 |f |2

)
(0) .

Recalling that ∆ = 4∂∂̄ and that ∂∂̄ |f |2 = |∂f |2 , we have formally,

e∆/4 |f |2 = e∂∂̄ |f |2 =

∞∑
n=0

1

n!

(
∂∂̄
)n |f |2 =

∞∑
n=0

1

n!
|∂nf |2 .

Combining these last two equations explains why (in this case) that∫
C
|f (z)|2 1

π
exp
(
− |z|2

)
dm (z) =

∞∑
n=0

1

n!

∣∣∣f (n) (0)
∣∣∣2 .
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The Segal – Bargmann Transform

Theorem 13 (The Segal – Bargmann isometry). For all f ∈ L2 (R, dλ) ,

1√
2π

∫
R
|f (x)|2 e−x2/2dx =

1

π

∫
C

∣∣∣(e1
2∂

2
xf
)
a

(z)
∣∣∣ exp

(
−1

4
|z|2
)
dm (z) .

Also see 52.

Proof: Let us recall,
∂2
x =

(
∂ + ∂̄

)2
= ∂2 + ∂̄2 + 2∂∂̄.

By density ofHL2 (C, λ) in L2 (R, λ) , it suffice to assmue f ∈ HL2 (C, λ) . In this case,

1√
2π

∫
R
|f (x)|2 e−x2/2dx =

(
e

1
2∂

2
x |f |2

)
(0) =

(
e

1
2[∂2+∂̄2+2∂∂̄] |f |2

)
(0)

=
(
e∂∂̄e

1
2∂

2
e

1
2 ∂̄

2 [
f · f̄

])
(0) = e∂∂̄

(
e

1
2∂

2
f · e

1
2 ∂̄

2
f̄
)

(0)

= e∆C/4

(∣∣∣e1
2∂

2
f
∣∣∣2) (0)

=
1

π

∫
C

∣∣∣(e1
2∂

2
xf |R

)
a

(z)
∣∣∣ exp

(
−1

4
|z|2
)
dm (z) .

Q.E.D.
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Generalizations to Lie Groups

• G = complex simply connected Lie group (e.g. SL (n,C))

• g = TeG its Lie algebra (e.g. sl (n,C))

• g∗ = the dual space of g

• q = a non-negative Hermitian form on g∗ (e.g. q (A,B) = tr (B∗A))

Fact. There exists m ≤ dimC (g) and a linearly independent set, {Xl}ml=1 , such that

q (α, β) =

m∑
l=1

α (Xl) β (Xl)

for all α, β ∈ g∗.

Definition 14 (Horizontal subspace). The horizontal subspace associated to q is
H = H (q) := span(Xl : 1 ≤ l ≤ m) with the inner product: (Xl, Xk)H := δlk.
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Derivative Spaces

• q⊗k = the extension of q to (g⊗k)∗, i.e.

q⊗k (α) =

m∑
l1,...,lk=1

|α (Xl1 ⊗ · · · ⊗Xlk)|
2

• T (g) is the tensor algebra over g and T (g)′ = Π∞k=0(g⊗k)∗.

• For each t > 0 define

qt =

∞∑
k=0

tk

k!
q⊗k (6)

• J = 〈ξ ⊗ η − η ⊗ ξ − [ξ, η] : ξ, η ∈ g〉 ⊂ T (g)

• J0 = {α ∈ T (g)′ : α|J ≡ 0} – the “Derivative Space.”

•
J0
t :=

{
α ∈ J0 : qt(α) <∞

}
.
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Two Algebraic Theorems

Definition 15 (Hörmander’s condition). We say q satisfies Hörmander’s condition if
Lie (H (q)) = g.

Theorem 16 (D., Gross, Saloff-Coste). The following are equivalent:

1. Hörmander’s condition holds, i.e. Lie (H) = g.

2. T (g) = T (H) + J.

3. for any t > 0, qt|J0
t

is an inner product on J0
t .

Theorem 17 (D., Gross, Saloff-Coste). If g is “stratified,” then the finite rank tensors in J0

are dense in J0
t .

Remark. For general g there are typically no finite rank tensors in J0, see [Gross, 1998].
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The Heat Kernel

• Ã (g) = Lg∗A for all A ∈ g and g ∈ G

• (Laplacian) ∆ = ∆q :=
∑m

l=1

[
X̃2
l +

(
ĩXl

)2
]

• (Heat Kernel) Let ρt : G→ (0,∞) satisfy,(
et∆/4f

)
(e) =

∫
G

f (g) ρt (g) dg.

where dg denotes a right Haar measure on G.

Fact. The heat kernel, ρt, satisfies: ∂ρt(x, ·)/∂t = (1/4)∆ρt(x, ·)

ρt(x, y)dy → δx(dy) (weakly) as t→ 0.
(7)

ρt ∈ C∞ (G, (0,∞)) by Hörmander’s theorem [Hörmander, 1967].
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The Taylor Isomorphism

• LetH = the holomorphic functions on G

• For β = A1 ⊗ · · · ⊗ An ∈ T (g) , let β̃ = Ã1 . . . Ãn

• For f ∈ H and x ∈ G, let

〈f̂ (x) , β〉 = (β̃f )(x) ∀ β ∈ T (g) . (8)

• f̂ (x) ∈ J0 is the Taylor coefficient at x.

• Taylor map
(
Tf := f̂ (e)

)
,

H∩L2(G, ρt) 3 f
T→f̂ (e)∈ J0

t . (9)

Theorem 18 (D., Gross, Saloff-Coste). If G is simply connected and q satisfies
Hörmander’s condition, then the Taylor map, T : HL2 (ρt)→ J0

t is unitary. Moreover,∫
G

|f (g)|2 ρt (g) dg =
∥∥∥f̂ (e)

∥∥∥2

t
for all f ∈ H (G) .

Bruce Driver 32 University of Luxembourg, September 8, 2009

driveradmin
Rectangle

driveradmin
Rectangle

driveradmin
Rectangle

driveradmin
Highlight



The “Classical” Example

• G = Cd with additive group structure

• H = g = Cd, Xl = el for l = 1, 2, . . . , d = m

• q (α) =
∑d

l=1 |α (el)|2

• d (w, z) = |z − w|

• ∆ =
∑d

l=1

(
∂2

∂x2
l

+ ∂2

∂y2
l

)
where z = x + iy.

ρt (z) =

(
1

πt

)d
exp
(
− |z|2 /t

)
• J0 = Symmetric Tensors

• For f ∈ H, f̂ (z) ∈ J0 since mixed partial derivatives commute.

• References: V.A. Fock (1932) [Fock, 1928], Segal [Segal, 1956, Segal, 1962] and
Bargmann [Bargmann, 1961]. (See also Gross and Malliavin
[Gross & Malliavin, 1996] for more history.)

• For proofs, go to 54 and 55.
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Some History

The Taylor Isomorphism Theorem 18 was known to hold for non-degenerate q in the
following cases:

1. G = KC : Driver [Driver, 1995] (inspired by B. Hall [Hall, 1994])

2. G arbitrary: Driver and Gross [Driver & Gross, 1997]

3. G = infinite dimensional complex Hilbert-Schmidt orthogonal group: M. Gordina,
[Gordina, 2000b] and [Gordina, 2000a]

4. G = invertible operators in a factor of type II1: M. Gordina in [Gordina, 2002]

5. G = path and loop groups of a “stratified” Lie group: M. Cecil, in [Cecil, 2006].

6. G = infinite dimensional Heisenberg like groups, see
[Driver & Gordina, 2008b, Driver & Gordina, 2008a, Driver & Gordina, 2008c].

7. For the case presented here see, [Driver et al., 2009b], [Driver et al., 2009c], and
[Driver et al., 2009a].
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Isometry Proof

• Working analogously to the “κ = 2 example” above one sees, formally, that

‖f‖2
L2(ρtdm) = et∆/4 |f |2 (e) =

∞∑
n=0

1

n!

m∑
l1,...,lk=1

∣∣X̃l1 . . . X̃lkf (e)
∣∣2 =

∥∥∥f̂∥∥∥2

t
.

• To make this rigorous takes a fair amount of work and requires:

1. Gaussian heat kernel bounds which involve the “Carnot-Caratheodory” distance
on G associated to q (see 56).

2. Good a-priori pointwise bounds for f and there derivatives.

3. Careful attention to the fact that finite rank tensors are not dense in J0
t (g) in

general.

4. Similarly we must deal with the complication of not knowing a simple to use dense
subset ofHL2 (ρtdm) .
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Surjectivity Proof

• The surjectivity proof require the reconstruction of a holomorphic function from its
derivatives, α ∈ J0

t (g) .

Notation (Rolling Map). Associated to a finite energy path, g : [0, 1]→ G, from e to
z ∈ G, let

b (s) = b (g, s) :=

∫ s

0

Lg(t)−1∗ġ (t) dt ∈ g.

Figure 3: Cartan’s rolling map.
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Group Taylor Series
Theorem 19 (A Reconstruction Theorem). Suppose;

1. g : [0, 1]→ G such that g (0) = e and g (1) = z,

2. f ∈ H or f is holomorphic near e ∈ G,

3. Ψ (g) :=
∑∞

n=0 Ψn (g) where

Ψn (g) :=

∫
0≤s1≤···≤sn≤1

db (s1)⊗ db (s2)⊗ · · · ⊗ db (sn) .

Then

f (z) =
〈
f̂ (e) ,Ψ (g)

〉
=

∞∑
n=0

〈
f̂ (e) ,Ψn (g)

〉
(10)

and if g is horizontal, i.e. b (s) ∈ H, we have the pointwise bounds,

|f (z)|2 ≤ ‖f̂ (e) ‖2
te
d2
H(e,z)/t ≤ ‖f̂ (e) ‖2

te
`2H(g)/t (11)
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An Exponential Path Example

Suppose that b (s) = sA for some A ∈ g. Then

g (s) = esA

and Eq. (10) reduces to the familiar formula,

f
(
eA
)

=

〈
f̂ (e) ,

∞∑
n=0

1

n!
A⊗n

〉
=

∞∑
n=0

1

n!

(
Ãnf

)
(e) .
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Proof

For b ∈ H1 (g) (the finite energy paths in g) let gt (b) solve (see Figure 3)

ġt (b) = Lgt(b)∗ḃ (t) with g0 (b) = e.

1. The map H1 (g) 3 b→ g1 (b) ∈ G is holomorphic.

2. The map H1 (g) 3 b→ f (g1 (b)) ∈ C is holomorphic.

3. By Taylor’s Theorem,

f (g1 (b)) =

∞∑
n=0

1

n!
∂nb (f ◦ g1) (0) .

4. A direct but involved computation shows,

1

n!
∂nb (f ◦ g1) (0) = 〈Dnf (e) ,Ψn (g)〉 =

〈
f̂ (e) ,Ψn (g)

〉
.

5. The pointwise bounds in (11) follow from (10) and the Cauchy-Schwarz inequality.
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Horizontal Reconstruction Theorem

Theorem 20 (Horizontal Reconstruction). Given α ∈ J0
t , there exists f ∈ H such that

f̂ (e) = α.

Proof Ideas

• We must define f by
f (g (1)) := 〈α,Ψ (g)〉 (12)

for all paths, g, such that g (0) = e.

• However, in the degenerate case, we only know a priori that 〈α,Ψ (g)〉 is well defined
when g is horizontal.

• How do we show g → 〈α,Ψ (g)〉 only depends on g (1)?

• Answer: we first construct local version of f and then use an analytic continuation
argument to patch them together.
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Local Reconstruction Theorem

Theorem 21 (Local Reconstruction). There exists open neighborhoods, 0 ∈ Ω ⊂ Cd and
e ∈ U ⊂ G such that:

1. for z ∈ Ω there exists a horizontal paths, gz (t) ∈ G, depending holomorphically on
z, such that

2. if ϕ (z) := gz (1) , then ϕ : Ω→ U is biholomoprhic.

3. The function f : U → C defined by

f (ϕ (z)) := 〈α,Ψ (gz)〉

is holomorphic and f̂ (e) = α.

Bruce Driver 41 University of Luxembourg, September 8, 2009

driveradmin
Highlight



Example: Complex Heisenberg Group

G = C3 with group law;

(z1, z2, z3) · (z′1, z′2, z′3)

=

(
z1 + z′1, z2 + z′2, z3 + z′3 +

1

2
(z1z

′
2 − z2z

′
1)

)
.

• g = C3, H = C2 × {0} , Xl = el for l = 1, 2.

• q (α) =
∑2

l=1 |α (el)|2

• ∆ = X̃2
1 + X̃2

2 + Ỹ 2
1 + Ỹ 2

2 where Yl = iXl.

•
∆H = ∆z1 + ∆z2 +

|z1|2 + |z2|2

4
∆z3 + L

∂

∂x3
+ S

∂

∂y3

• L and S are angular momentum ops. on C2 × {0} .
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Heat Kernel and Horizontal Paths

Theorem 22 (Hypoelliptic Heat Kenrel). The heat kernel for the complex Heisenberg
group setup above is given by,

ρt (z) =

(
1

2π

)4 ∫
C

|w|2

sinh2(|w| t/4)

× exp

(
−1

4
|w| coth(|w| t/4)

(
|z1|2 + |z2|2

))
× eiRe(wz̄3)dm (w) .

Figure 4: The path gz for the Heisenberg group. The rectangular region is long and skinny.
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The Taylor map on homogenous spaces

• Let K ⊂ G be a connected, closed, complex subgroup of G, k = Lie(K).

•M = K \GM be the space of right K cosets,

• π : G→M be the associated quotient map,

Notation. The formula,

Ȧ (m) :=
d

dt
|0
(
metA

)
for all m ∈M and A ∈ g (13)

defines a linear map, g 3 A→ Ȧ ∈ Vect (M) , where Vect (M) denotes the linear
space of smooth vector fields on M.We may also define a sub-Laplacian ∆M on M
given by

∆M =

m∑
j=1

(
Ẋj

2 + Ẏ 2
j

)
, where Yj := iXj. (14)

Definition 23. Let λt(dm) be heat kernel measure on M given by

λt(dm) = (π∗ρt)(dm). (15)
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Theorem 24. The family of probability measures {λt : t ∈ (0,∞)}, is the unique family
of probability measures on M such that, for all φ ∈ C∞c (M), the function
t→ λt(φ) :=

∫
M φdλt is continuously differentiable and satisfies

d

dt
λt(φ) =

1

4
λt(∆Mφ) and lim

t↓0
λt(φ) = φ(o). (16)

Definition 25 (G – space Taylor map). For u ∈ H(M), define û ∈ T ′ by;
〈û, 1〉 = u (Ke) and for all n ∈ N,

〈û, ξ1 ⊗ · · · ⊗ ξn〉 = (ξ̇1 · · · ξ̇nu)(Ke) = ξ̃1 . . . ξ̃n [u ◦ π] (e) for all ξj ∈ g. (17)

The mapH(M) 3 u→ û ∈ T ′ is called the Taylor map on M.

Theorem 26 (The quotient Taylor map). For all t > 0, the Taylor map

H(M) ⊃ HL2(M,λt) 3 u→ û ∈ (J + kT )0
t ⊂ T ′

is a unitary map, where

(J + kT )0
t = {α ∈ T ′ : 〈α, J + kT 〉 = {0}} .
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Two examples
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The Grushin complex 2-space

Notation (Complex Heisenberg group). Let HC
3 = C3 with the group law

(z1, z2, z3) · (z′1, z′2, z′3) = (z1 + z′1, z2 + z′2, z3 + z′3 + (1/2)(z1z
′
2 − z2z

′
1)) .

We take

• Let q (α) := |α (e1)|2 + |α (e2)|2 for all α ∈
(
C3
)∗
.

• K = C = {(z1, z2, z3) : z2 = z3 = 0} ⊂ HC
3

•M = K\HC
3
∼= C2 ∼= R4; ξ = (w, z) = (u + iv, x + iy) ∈M ,

• It turns out that

∆M = (∂/∂u)2 + (∂/∂v)2 + (u2 + v2)((∂/∂x)2 + (∂/∂y)2).

• The heat kerne density, λt (ξ) satisfies

c1

V (
√
t)

exp

(
−C1

δ(ξ)2

t

)
≤ λt(ξ) ≤ C2

V (
√
t)

exp

(
−c2

δ(ξ)2

t

)
(18)
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• δ(ξ) is the subelliptic distance between the origin and ξ = (w, z),

c(|u| + |v| +
√
|x| +

√
y|) ≤ δ(ξ) ≤ C(|u| + |v| +

√
|x| +

√
|y|).

• V (r) ' r6, r > 0

•

Ω (m,n) = m! ·
(
|n|1
m1

)
·
(
|n|2 − |m|1

m2

)
·
(
|n|3 − |m|2

m3

)
. . .

(
|n|k − |m|k−1

mk

)
Corollary 27. Suppose that f is a holomorphic function on C2, Then

‖f‖2
t = ‖f̂‖2

t =

∞∑
N=0

tN

N !

∑
(m,n)∈I(N)

Ω2 (m,n)
∣∣∣(∂|n|−|m|w ∂|m|z f

)
(0, 0)

∣∣∣2 . (19)

Example. When f (w, z) = g(z) = z3,the only non-zero derivative at (0, 0) is
(∂3f/∂3z)(0, 0) = 6. So according to Eq. (??),∫

M

(x2 + y2)3λt(dξ) = ‖f̂‖2
t =

61

20
t6. (20)

Example. For f (w, z) = wz3, we have

‖
∫
M

|w|2|z|6λt(dξ) = ‖f̂‖2
t =

277

28
t7. (21)
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A one-dimensional complex G - space

Notation. We let G := C× n C with group law,

(a, b) (a′, b′) = (aa′, ab′ + b)

Take:

• q(α) = |〈α, e1〉|2 + |〈α, e2〉|2 (this is positive!),

• K = C× × {0} , M := K\G ∼= C.

• ∆M =
[
1 + x2 + y2

] (
∂2
x + ∂2

y

)
• The associated heat kernel satisfies,

cε

ln(cosh2
√
t)
e−(1+ε)(sinh−1 |ξ|)2/t ≤ λt(ξ) ≤ Cε

ln(cosh2
√
t)
e−(1−ε)(sinh−1 |ξ|)2/t.

. (22)
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Corollary 28. Suppose that f is a holomorphic function on C, then∫
C
|f (ξ)|2 λt (ξ) dξ = ‖f‖2

t =

∞∑
m=0

cm (t)
∣∣∣f (m) (0)

∣∣∣2 (23)

where

c0 (t) ≡ 1

c1 (t) = et − 1,

c2 (t) =
1

12
e4t − 1

3
et +

1

4

cm (t) '
1√
2πt

em
2t

m2m+1
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