Holomorphic functions and subelliptic heat kernels over lie groups.

Later parts of the talk describes work with Leonard Gross, Laurent Saloff-Coste.

Bruce Driver

Department of Mathematics, 0112
University of California at San Diego, USA
http://math.ucsd.edu/~driver

GEOQUANT

University of Luxembourg, September 8, 2009

Some papers

- D., Gross, Saloff-Coste. Holomorphic functions and subelliptic heat kernels over Lie groups. J. European Mathematical Society, 11, 941-978 (2009).
- D., Gross, Saloff-Coste. Surjectivity of the Taylor map for complex nilpotent Lie groups. Math. Proc. Camb. Phil. Soc., 146, 177-195. (2009)
- D., Gross, Saloff-Coste. Growth of Taylor coefficients over complex homogeneous spaces. Preprint.

Basic Notation

- $(G, o)=$ a pointed complex manifold
- $\mathcal{H}(G):=\{f: G \rightarrow \mathbb{C} \mid f$ is holomorphic $\}$
- λ be a measure on G,

$$
\begin{aligned}
(f, g)_{L^{2}(\lambda)} & :=\int_{G} f \cdot \bar{g} d \lambda \\
\|f\|_{L^{2}(\lambda)}^{2} & :=(f, f)_{L^{2}(\lambda)}=\int_{G}|f|^{2} d \lambda \\
\mathcal{H} L^{2}(G) & :=\left\{f \in \mathcal{H}(G):\|f\|_{L^{2}(\lambda)}<\infty\right\}
\end{aligned}
$$

Fock, Kakutani, Itô, Segal, Bargmann, Gross, Hall

- Suppose $G=$ Compact type Lie group and $o=e$
- \mathcal{D}_{t} is a space of derivatives of holomorphic functions
- $T f:=\{$ "derivatives" of f at $e\}$

$$
\begin{equation*}
\mathcal{A} \circ e^{t \Delta / 2} \quad \mathcal{H} \mathrm{~L}^{2}\left(G^{\mathbb{C}}, \mu_{t}\right) \quad T \tag{1}
\end{equation*}
$$

Two Basic Questions

Let

$$
\mathcal{D}:=\{\text { "derivatives" of } f \text { at } o: f \in \mathcal{H}(G)\}
$$

be the derivative space associated to $\mathcal{H}(G)$ and let $T: \mathcal{H}(G) \rightarrow \mathcal{D}$ be the "Taylor map;"

$$
T f:=\{\text { "derivatives" of } f \text { at } o\} .
$$

1. Characterize the derivative space, \mathcal{D}.
2. Find the norm, $\|\cdot\|_{\mathcal{D}}$, on \mathcal{D} such that

$$
\int_{G}|f|^{2} d \lambda=\|T f\|_{\mathcal{D}}^{2} \text { for all } f \in \mathcal{H}(G) .
$$

- We will begin with the case, $G=\mathbb{C}$ and $o=0$.

The Case $G=\mathbb{C}$

- Let $G=\mathbb{C}$ and $o=0$
- $z=x+i y$
- $d m(z)=d x d y$
- $d \lambda=\rho(z) d m(z)$ with $\rho \in C(\mathbb{C},(0, \infty))$.

Notation (Taylor map). Given a function, f, which is holomorphic near 0 , let

$$
T f=\left\{f^{(n)}(0)\right\}_{n=0}^{\infty} \in \mathbb{C}^{\mathbb{N}_{0}} .
$$

Notation (Derivative Space). Let

$$
\mathcal{D}:=\left\{\alpha:=\left\{\alpha_{n}\right\}_{n=0}^{\infty} \subset \mathbb{C}: \limsup _{n \rightarrow \infty}\left|\frac{\alpha_{n}}{n!}\right|^{1 / n}=0\right\} .
$$

Theorem 1 (Taylor's Theorem \& Root Test). If $f \in \mathcal{H}(\mathbb{C})$ then

- The Root Test: $T f \in \mathcal{D}$,
- Taylor's Theorem: $T: \mathcal{H}(\mathbb{C}) \rightarrow \mathcal{D}$ is a linear isomorphism with inverse,

$$
T^{-1}(\alpha)(z)=\sum_{n=0}^{\infty} \frac{\alpha_{n}}{n!} z^{n} \text { for all } z \in \mathbb{C} .
$$

Goals

1. Develop some basic properties of $\mathcal{H} L^{2}(\lambda)$.
2. Identify the norm on \mathcal{D} which makes

$$
\left.T\right|_{\mathcal{H} L^{2}(\lambda)}: \mathcal{H} L^{2}(\lambda) \rightarrow \mathcal{D} \quad \text { isometric. }
$$

3. Characterize the image, $T\left(\mathcal{H} L^{2}(\lambda)\right) \subset \mathcal{D}$, of the Taylor map.

Complex Analysis Basics

- $\partial_{x}:=\frac{\partial}{\partial x}$ and $\partial_{y}:=\frac{\partial}{\partial y}$.
- $\partial:=\partial_{z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)$ and $\bar{\partial}:=\partial_{\bar{z}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)$ so
- $\partial_{x}=\partial+\bar{\partial}$ and $\partial_{y}=i(\partial-\bar{\partial})$.
- If $\Delta:=\partial_{x}^{2}+\partial_{y}^{2}$, then

$$
\Delta=(\partial+\bar{\partial})^{2}-(\partial-\bar{\partial})^{2}=4 \partial \bar{\partial} .
$$

Corollary 2. If $f \in \mathcal{H}(\mathbb{C})$, then $|f|^{2}$ is sub-harmonic,

$$
\Delta|f|^{2}=4|\partial f|^{2}=4\left|\partial_{x} f\right|^{2} \geq 0 .
$$

Proof: The Cauchy Riemann equations imply,

$$
\bar{\partial} f=0 \text { and } \partial \bar{f}=0
$$

and therefore,

$$
\Delta|f|^{2}=4 \partial \bar{\partial}(f \bar{f})=4 \partial f \bar{\partial} \bar{f} .
$$

Pointwise Bounds

Notation. For every $\varepsilon>0$, let

$$
\rho_{\varepsilon}(z):=\min \{\rho(w): w \in D(z, \varepsilon)\} .
$$

Theorem 3 (Crude Pointwise Bounds). Suppose that $g \geq 0$ is a sub-harmonic (i.e. $\Delta g \geq 0$), then

$$
\begin{equation*}
g(z) \leq\|g\|_{L^{1}(\lambda)} \frac{1}{\pi \varepsilon^{2}} \frac{1}{\rho_{\varepsilon}(z)} \forall z \in \mathbb{C} . \tag{2}
\end{equation*}
$$

In particular if $f \in \mathcal{H}(\mathbb{C})$, then

$$
\begin{equation*}
|f(z)|^{2} \leq \frac{1}{\pi \varepsilon^{2}}\|f\|_{L^{2}(\lambda)}^{2} \frac{1}{\rho_{\varepsilon}(z)} \forall z \in \mathbb{C} \tag{3}
\end{equation*}
$$

Proof: By the mean value inequality (42),

$$
\begin{aligned}
g(z) \leq & f_{D(z, \varepsilon)} g(w) d m(w) \\
& =\int_{D(z, \varepsilon)} g(w) \frac{1}{\rho(w)} \rho(\omega) d m(w) \\
\leq & \frac{1}{\rho_{\varepsilon}(z)} f_{D(z, \varepsilon)} g(w) \rho(\omega) d m(w) \\
& =\frac{1}{\pi \varepsilon^{2}} \frac{1}{\rho_{\varepsilon}(z)}\|g\|_{L^{1}(\lambda)} .
\end{aligned}
$$

For Eq. (3), apply (2) with $g(z):=|f(z)|^{2}$.

Liouville's Theorem

Definition 4. Let $\mathcal{H} \mathcal{P}(\mathbb{C})$ denote the space of holomorphic polynomials. Further let,

$$
\mathcal{H} \mathcal{P}_{k}=\{p \in \mathcal{H} \mathcal{P}(\mathbb{C}): \operatorname{deg}(p) \leq k\}=\left\{p(z)=\sum_{n=0}^{k} a_{n} z^{k}: a_{n} \in \mathbb{C}\right\}
$$

Corollary 5 (Louiville's Theorem). Suppose there exists $c<\infty$ and $n \in \mathbb{N}_{0}$ such that

$$
\rho(z) \geq \frac{c}{|z|^{2 n}+1} \text { for all } z \in \mathbb{C}
$$

Then $\mathcal{H} L^{2}(\rho)=\mathcal{H} \mathcal{P}_{k}$ for some $k<n$ where $\mathcal{H} \mathcal{P}_{k}:=\{0\}$ if $k \leq 0$.

Figure 1: Here, $\rho(z)=10 /\left(1+0.1 \cdot|z|^{2}\right)$ and $\mathcal{H} L^{2}(\lambda) \cong \mathbb{C}$.

Proof: Use the pointwise bounds along with Cauchy estimates (see 44).

A Non-Uniform Decay Example

Figure 2: Plot of $d \lambda_{c} / d m$ for $c=2$.

- For $c>0$, let

$$
d \lambda_{c}(z)=\frac{1}{\pi} \exp \left(-\left((1-c) x^{2}+(1+c) y^{2}\right)\right) d x d y
$$

- If $c>1, \mathcal{H} L^{2}\left(\lambda_{c}\right)$ does not contain any polynomials other than 0 .
- Nevertheless, $\operatorname{dim} \mathcal{H} L^{2}\left(\lambda_{c}\right)=\infty$ since

$$
\mathcal{H} L^{2}\left(\lambda_{0}\right) \ni f(z) \rightarrow e^{\frac{c}{z^{2}}} f(z) \in \mathcal{H} L^{2}\left(\lambda_{c}\right)
$$

is unitary.

$\mathcal{H} L^{2}(\lambda)$ is a Hilbert Space

Theorem $6\left(\mathcal{H} L^{2}(\lambda)\right.$ is Hilberitan). $\mathcal{H} L^{2}(\lambda)$ is a closed subspace of $L^{2}(\lambda)$ and hence is a Hilbert space.

Proof: For $\varepsilon, r>0$ let

$$
C(r, \varepsilon):=\frac{1}{\pi \varepsilon^{2}} \cdot \sup _{|w| \leq r} \frac{1}{\rho_{\varepsilon}(w)}=\frac{1}{\pi \varepsilon^{2}} \cdot \frac{1}{\min _{|w| \leq r+\varepsilon} \rho_{\varepsilon}(w)}
$$

Then by the pointwise bounds,

$$
\sup _{|w| \leq r}|f(w)|^{2} \leq C(r, \varepsilon)\|f\|_{L^{2}(\lambda)}^{2} \text { for all } f \in \mathcal{H} L^{2}(\lambda)
$$

So if $\left\{f_{n}\right\}_{n=1}^{\infty} \subset \mathcal{H} L^{2}(\lambda)$ and $f_{n} \rightarrow f \in L^{2}(\lambda)$, we have,

$$
\sup _{|w| \leq r}\left|f_{n}(w)-f_{m}(w)\right|^{2} \leq C(r, \varepsilon)\left\|f_{n}-f\right\|_{L^{2}(\lambda)}^{2} \rightarrow 0 \text { as } m, n \rightarrow \infty
$$

So $\left\{f_{n}\right\}_{n=1}^{\infty}$ is uniformly convergent on compacts and therefore $f \in \mathcal{H}(\mathbb{C})$.
Q.E.D.

The Reproducing Kernel

Theorem 7. There exists a unique function, $k(z, w)=k_{\lambda}(z, w) \in \mathbb{C}$ such that for all $w \in \mathbb{C}$, there exists a unique $k(\cdot, w) \in \mathcal{H} L^{2}(\lambda)$ such that

$$
\begin{equation*}
f(w)=(f, k(\cdot, w))_{L^{2}(\lambda)} \forall f \in \mathcal{H} L^{2}(\lambda) . \tag{4}
\end{equation*}
$$

Moreover (see 45)

1. $k(w, z)=(k(\cdot, z), k(\cdot, w))$ and hence $\overline{k(w, z)}=k(z, w)$.
2. $k(z, \bar{w})$ is a holomorphic function of (z, w).
3. If $\left\{\varphi_{n}\right\}_{n=0}^{\infty} \subset \mathcal{H} L^{2}(\lambda)$ is any orthonormal basis, then

$$
\begin{equation*}
k(z, w)=\sum_{n=0}^{\infty} \varphi_{n}(z) \overline{\varphi_{n}(w)} \tag{5}
\end{equation*}
$$

The sum is absolutely convergent.
4. For all $w, z \in \mathbb{C}$,

$$
\begin{aligned}
\|k(\cdot, z)\|_{L^{2}(\lambda)}^{2} & =k(z, z) \leq \frac{1}{\pi \varepsilon^{2}} \frac{1}{\rho_{\varepsilon}(z)} \text { and } \\
|k(z, w)| & \leq \sqrt{k(z, z) \cdot k(w, w)} \leq \frac{1}{\pi \varepsilon^{2}} \frac{1}{\sqrt{\rho_{\varepsilon}(z) \cdot \rho_{\varepsilon}(w)}}
\end{aligned}
$$

Optimal Pointwise Bounds

Corollary 8 (Optimal Pointwise Bounds). For all $f \in \mathcal{H} L^{2}(\lambda)$,

$$
|f(w)|^{2} \leq k(w, w)\|f\|_{L^{2}(\lambda)}^{2} \text { for all } w \in \mathbb{C}
$$

These pointwise bounds are optimal.
Proof: By the Cauchy-Schwarz inequality,

$$
\begin{aligned}
|f(w)|^{2} & =\left|(f, k(\cdot, w))_{L^{2}(\lambda)}\right|^{2} \\
& \leq\|k(\cdot, w)\|_{L^{2}(\lambda)}^{2}\|f\|_{L^{2}(\lambda)}^{2}=k(w, w)\|f\|_{L^{2}(\lambda)}^{2} .
\end{aligned}
$$

The function $f(z):=k(z, w)$ saturates this inequality.

The Radial Symmetric Case

Theorem 9. Suppose that $\rho(z)=\rho(|z|)$ and $\mathcal{H} \mathcal{P} \subset \mathcal{H} L^{2}(\lambda)$, i.e.

$$
a_{n}^{2}:=\int_{\mathbb{C}}|z|^{2 n} \rho(z) d m(z)<\infty \text { for all } n \in \mathbb{N}_{0} .
$$

Then

1. $\left\{\frac{z^{n}}{a_{n}}\right\}_{n=0}^{\infty}$ forms an orthonormal basis for $\mathcal{H} L^{2}(\lambda)$.
2. For any $f \in \mathcal{H} L^{2}(\lambda)$,

$$
f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^{n}
$$

converges pointwise and $L^{2}(\lambda)$.

Proof

If $f \in \mathcal{H} L^{2}(\lambda)$, then (using Taylor's theorem to evaluate the angular integral)

$$
\begin{aligned}
\left(f, z^{n}\right) & =\int_{0}^{\infty}\left(\int_{-\pi}^{\pi} f\left(r e^{i \theta}\right) r^{n} e^{-i n \theta} d \theta\right) \rho(r) r d r \\
& =\int_{0}^{\infty}\left(2 \pi r^{2 n} \frac{f^{(n)}(0)}{n!}\right) \rho(r) r d r=a_{n}^{2} \frac{f^{(n)}(0)}{n!} .
\end{aligned}
$$

From this it follows that

$$
\left\{\frac{z^{n}}{a_{n}}\right\}_{n=0}^{\infty} \text { is orthonormal subset of } \mathcal{H} L^{2}(\lambda)
$$

Let $P: \mathcal{H} L^{2}(\lambda) \rightarrow \mathcal{H} L^{2}(\lambda)$ be orthogonal projection onto $\overline{\mathcal{H} \mathcal{P}}$. Then

$$
\operatorname{Pf}=\sum \frac{1}{a_{n}^{2}}\left(f, z^{n}\right) z^{n}=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^{n} \forall f \in \mathcal{H} L^{2}(\lambda)
$$

converges in $L^{2}(\lambda)$ and pointwise to f (by Taylor's theorem) and so $f=P f \in \overline{\mathcal{H} \mathcal{P}}$.

Density of Polynomials

Corollary 10 (Density of Polynomials). When $\rho(z)=\rho(|z|), \mathcal{H} \mathcal{P}$ is dense in $\mathcal{H} L^{2}(\lambda)$.
Proof: See the above proof or see 47 for an alternate proof.
Q.E.D.

Question. Under what conditions on ρ is $\mathcal{H} \mathcal{P}$ is dense in $\mathcal{H} L^{2}(\lambda)$?

Remark. We know (see 53 or 10$) \mathcal{H} \mathcal{P}$ is dense in $\mathcal{H} L^{2}(\lambda)$ if $\rho(z)=\tilde{\rho}(|a z+b|)$ for some $a \neq 0$. It is also true if

$$
\rho(z)=C \exp \left(-\left(a x^{2}+2 b x y+c y^{2}\right)\right)
$$

for some $a, b>0$ and $c \in \mathbb{R}$ such that $b^{2}-a c<0$.

Radial Symmetric Case Summary

Notation. The Taylor map is: $T f:=\alpha \in \mathcal{D}$, where $\alpha_{n}:=f^{(n)}(0)$. Let,

$$
\begin{aligned}
& a_{n}^{2}:=\int_{\mathbb{C}}|z|^{2 n} d \lambda(z), \quad\|\alpha\|_{\rho}^{2}:=\sum_{n=0}\left|\alpha_{n}\right|^{2}\left(\frac{a_{n}}{n!}\right)^{2}, \text { and } \\
& J(\lambda):=\left\{\alpha=\left(\alpha_{0}, \alpha_{1}, \ldots\right) \in \mathbb{C}^{\mathbb{N}_{0}}:\|\alpha\|_{\rho}^{2}<\infty\right\} .
\end{aligned}
$$

Theorem 11 (Radial Case). If $\rho(z)=\rho(|z|)$, then $T: \mathcal{H} L^{2}(\lambda) \rightarrow J(\lambda)$ is unitary. Moreover, for all $f \in \mathcal{H}(\mathbb{C})$,

$$
\int_{\mathbb{C}}|f(z)|^{2} \rho(z) d m(z)=\sum_{n=0}\left|f^{(n)}(0)\right|^{2}\left(\frac{a_{n}}{n!}\right)^{2} \quad(\text { Isometry Property.) }
$$

and

$$
|f(z)|^{2} \leq\|f\|_{L^{2}(\lambda)}^{2}\left(\sum_{n=0}^{\infty} \frac{1}{a_{n}^{2}}|z|^{2 n}\right) . \quad \text { (Optimal Pointwise Bounds.) }
$$

$$
k(z, w)=k_{\lambda}(z, w)=\sum_{n=0}^{\infty} \frac{1}{a_{n}^{2}}(z \bar{w})^{n} \quad \text { (Reproducing Kernel.) }
$$

Proof (Skip)

The fact that $T: \mathcal{H} L^{2}(\lambda) \rightarrow J(\lambda)$ is unitary is a translation of the fact that $\left\{\frac{z^{n}}{a_{n}}\right\}_{n=0}^{\infty}$ is an orthonormal basis for $\mathcal{H} L^{2}(\lambda)$ and the identity,

$$
\left(f, z^{n}\right)=a_{n}^{2} \frac{f^{(n)}(0)}{n!}
$$

To see the isometry property is valid for all $f \in \mathcal{H}(\mathbb{C})$, use $T: \mathcal{H} L^{2}(\lambda) \rightarrow J(\lambda)$ is unitary, Taylor's theorem, and Fatou's lemma, to show;

$$
\begin{aligned}
\int_{\mathbb{C}}|f(z)|^{2} \rho(z) d m(z) & =\int_{\mathbb{C}} \liminf _{N \rightarrow \infty}\left|\sum_{n=0}^{N} \frac{f^{(n)}(0)}{n!} z^{n}\right|^{2} \rho(z) d m(z) \\
& \leq \liminf _{N \rightarrow \infty} \int_{\mathbb{C}}\left|\sum_{n=0}^{N} \frac{f^{(n)}(0)}{n!} z^{n}\right|^{2} \rho(z) d m(z) \\
& =\liminf _{N \rightarrow \infty} \sum_{n=0}^{N} a_{n}^{2}\left|\frac{f^{(n)}(0)}{n!}\right|^{2}=\sum_{n=0}^{\infty} a_{n}^{2}\left|\frac{f^{(n)}(0)}{n!}\right|^{2}
\end{aligned}
$$

Exponential Examples

Notation. For $\kappa>0$, let

$$
\rho_{\kappa}(z):=\frac{\kappa}{2 \pi} \exp \left(-|z|^{\kappa}\right) \text { and } \Gamma(z):=\int_{0}^{\infty} t^{z} e^{-t} \frac{d t}{t}
$$

Theorem 12. If $\rho=\rho_{\kappa}$, then

$$
a_{n}^{2}=\Gamma\left(\frac{2 n+2}{\kappa}\right), \quad k(z, w)=\sum_{n=0}^{\infty} \frac{1}{\Gamma\left(\frac{2 n+2}{\kappa}\right)}(z \bar{w})^{n}
$$

and for all $f \in \mathcal{H}(\mathbb{C})$,

$$
\begin{gathered}
\int_{\mathbb{C}}|f(z)|^{2} \frac{\kappa}{2 \pi} \exp \left(-|z|^{\kappa}\right) d m(z)=\sum_{n=0}\left|f^{(n)}(0)\right|^{2} \frac{\Gamma\left(\frac{2 n+2}{\kappa}\right)}{(n!)^{2}} \\
\text { and } \\
|f(z)|^{2} \leq\|f\|_{L^{2}\left(\rho_{\kappa} d m\right)}^{2}\left(\sum_{n=0}^{\infty} \frac{|z|^{2 n}}{\Gamma\left(\frac{2 n+2}{\kappa}\right)}\right)
\end{gathered}
$$

Example $(\kappa=1)$

$$
k(z, w)=\sum_{n=0}^{\infty} \frac{1}{(2 n+1)!}(z \bar{w})^{n}=\frac{\sinh (\sqrt{z \bar{w}})}{\sqrt{z \bar{w}}}
$$

For all $f \in \mathcal{H}(\mathbb{C})$,

$$
\frac{1}{2 \pi} \int_{\mathbb{C}}|f(z)|^{2} \exp (-|z|) d m(z)=\sum_{n=0}\left|f^{(n)}(0)\right|^{2} \frac{(2 n+1)!}{(n!)^{2}},
$$

and

$$
|f(z)|^{2} \leq\|f\|_{L^{2}(\lambda)}^{2} \frac{\sinh (|z|)}{|z|} \leq\|f\|_{L^{2}(\lambda)}^{2} \frac{1}{2|z|} e^{|z|} .
$$

Example $(\kappa=2)$

$$
\begin{aligned}
& d \lambda(z)=\frac{1}{\pi} \exp \left(-|z|^{2}\right) d m(z) \\
& k(z, w)=\sum_{n=0}^{\infty} \frac{1}{n!}(z \bar{w})^{n}=e^{z \bar{w}}
\end{aligned}
$$

For all $f \in \mathcal{H}(\mathbb{C})$,

$$
\frac{1}{\pi} \int_{\mathbb{C}}|f(z)|^{2} \exp \left(-|z|^{2}\right) d m(z)=\sum_{n=0}^{\infty} \frac{1}{n!}\left|f^{(n)}(0)\right|^{2}
$$

and

$$
|f(z)|^{2} \leq\|f\|_{L^{2}(\lambda)}^{2} e^{|z|^{2}}
$$

(Bargmann's Pointwise Bounds)

References: V.A. Fock (1932) [Fock, 1928], Segal [Segal, 1956, Segal, 1962] and Bargmann [Bargmann, 1961]. (See also Gross and Malliavin [Gross \& Malliavin, 1996] for more history.)

Heat Kernel Interpretation for $\kappa=2$

Fact.

$$
\left(e^{t \Delta / 4} g\right)(z)=\int_{\mathbb{C}} \frac{1}{\pi t} \exp \left(-|z-w|^{2} / t\right) g(w) d m(\omega)
$$

In particular taking $t=1$ and $z=0$ implies,

$$
\int_{\mathbb{C}}|f(z)|^{2} \frac{1}{\pi} \exp \left(-|z|^{2}\right) d m(z)=\left(e^{\Delta / 4}|f|^{2}\right)(0)
$$

Recalling that $\Delta=4 \partial \bar{\partial}$ and that $\partial \bar{\partial}|f|^{2}=|\partial f|^{2}$, we have formally,

$$
e^{\Delta / 4}|f|^{2}=e^{\partial \bar{\partial}}|f|^{2}=\sum_{n=0}^{\infty} \frac{1}{n!}(\partial \bar{\partial})^{n}|f|^{2}=\sum_{n=0}^{\infty} \frac{1}{n!}\left|\partial^{n} f\right|^{2}
$$

Combining these last two equations explains why (in this case) that

$$
\int_{\mathbb{C}}|f(z)|^{2} \frac{1}{\pi} \exp \left(-|z|^{2}\right) d m(z)=\sum_{n=0}^{\infty} \frac{1}{n!}\left|f^{(n)}(0)\right|^{2}
$$

The Segal - Bargmann Transform

Theorem 13 (The Segal - Bargmann isometry). For all $f \in L^{2}(\mathbb{R}, d \lambda)$,

$$
\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}}|f(x)|^{2} e^{-x^{2} / 2} d x=\frac{1}{\pi} \int_{\mathbb{C}}\left|\left(e^{\frac{1}{2} \partial_{x}^{2}} f\right)_{a}(z)\right| \exp \left(-\frac{1}{4}|z|^{2}\right) d m(z) .
$$

Also see 52.
Proof: Let us recall,

$$
\partial_{x}^{2}=(\partial+\bar{\partial})^{2}=\partial^{2}+\bar{\partial}^{2}+2 \partial \bar{\partial}
$$

By density of $\mathcal{H} L^{2}(\mathbb{C}, \lambda)$ in $L^{2}(\mathbb{R}, \lambda)$, it suffice to assmue $f \in \mathcal{H} L^{2}(\mathbb{C}, \lambda)$. In this case,

$$
\begin{align*}
\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}}|f(x)|^{2} e^{-x^{2} / 2} d x & =\left(e^{\frac{1}{2} \partial_{x}^{2}}|f|^{2}\right)(0)=\left(e^{\frac{1}{2}\left[\partial^{2}+\bar{\partial}^{2}+2 \partial \bar{\partial}\right]}|f|^{2}\right)(0) \\
& =\left(e^{\partial \bar{\partial}} e^{\frac{1}{2} \partial^{2}} e^{\frac{1}{2} \bar{\partial}^{2}}[f \cdot f]\right)(0)=e^{\partial \bar{\partial}}\left(e^{\frac{1}{2} \partial^{2}} f \cdot e^{\frac{1}{2} \bar{\partial}^{2}} \bar{f}\right) \tag{0}\\
& =e^{\Delta_{\mathbb{C}} / 4}\left(\left|e^{\frac{1}{2} \partial^{2}} f\right|^{2}\right)(0) \\
& =\frac{1}{\pi} \int_{\mathbb{C}}\left|\left(\left.e^{\frac{1}{2} \partial_{x}^{2}} f\right|_{\mathbb{R}}\right)_{a}(z)\right| \exp \left(-\frac{1}{4}|z|^{2}\right) d m(z)
\end{align*}
$$

Q.E.D.

Generalizations to Lie Groups

- $G=$ complex simply connected Lie group
(e.g. $S L(n, \mathbb{C})$)
- $\mathfrak{g}=T_{e} G$ its Lie algebra \quad (e.g. $\left.\operatorname{sl}(n, \mathbb{C})\right)$
- $\mathfrak{g}^{*}=$ the dual space of \mathfrak{g}
- $q=$ a non-negative Hermitian form on $\mathfrak{g}^{*} \quad\left(\right.$ e.g. $\left.q(A, B)=\operatorname{tr}\left(B^{*} A\right)\right)$

Fact. There exists $m \leq \operatorname{dim}_{\mathbb{C}}(\mathfrak{g})$ and a linearly independent set, $\left\{X_{l}\right\}_{l=1}^{m}$, such that

$$
q(\alpha, \beta)=\sum_{l=1}^{m} \alpha\left(X_{l}\right) \overline{\beta\left(X_{l}\right)}
$$

for all $\alpha, \beta \in \mathfrak{g}^{*}$.
Definition 14 (Horizontal subspace). The horizontal subspace associated to q is $H=H(q):=\operatorname{span}\left(X_{l}: 1 \leq l \leq m\right)$ with the inner product: $\left(X_{l}, X_{k}\right)_{H}:=\delta_{l k}$.

Derivative Spaces

- $q^{\otimes k}=$ the extension of q to $\left(\mathfrak{g}^{\otimes k}\right)^{*}$, i.e.

$$
q^{\otimes k}(\alpha)=\sum_{l_{1}, \ldots, l_{k}=1}^{m}\left|\alpha\left(X_{l_{1}} \otimes \cdots \otimes X_{l_{k}}\right)\right|^{2}
$$

- $T(\mathfrak{g})$ is the tensor algebra over \mathfrak{g} and $T(\mathfrak{g})^{\prime}=\prod_{k=0}^{\infty}\left(\mathfrak{g}^{\otimes k}\right)^{*}$.
- For each $t>0$ define

$$
\begin{equation*}
q_{t}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} q^{\otimes k} \tag{6}
\end{equation*}
$$

- $J=\langle\xi \otimes \eta-\eta \otimes \xi-[\xi, \eta]: \xi, \eta \in \mathfrak{g}\rangle \subset T(\mathfrak{g})$
- $J^{0}=\left\{\alpha \in T(\mathfrak{g})^{\prime}:\left.\alpha\right|_{J} \equiv 0\right\}$ - the "Derivative Space."

$$
J_{t}^{0}:=\left\{\alpha \in J^{0}: q_{t}(\alpha)<\infty\right\} .
$$

Two Algebraic Theorems

Definition 15 (Hörmander's condition). We say q satisfies Hörmander's condition if
Lie $(H(q))=\mathfrak{g}$.
Theorem 16 (D., Gross, Saloff-Coste). The following are equivalent:

1. Hörmander's condition holds, i.e. Lie $(H)=\mathfrak{g}$.
2. $T(\mathfrak{g})=T(H)+J$.
3. for any $t>0,\left.q_{t}\right|_{J_{t}^{0}}$ is an inner product on J_{t}^{0}.

Theorem 17 (D., Gross, Saloff-Coste). If \mathfrak{g} is "stratified," then the finite rank tensors in J^{0} are dense in J_{t}^{0}.

Remark. For general \mathfrak{g} there are typically no finite rank tensors in J^{0}, see [Gross, 1998].

The Heat Kernel

- $\tilde{A}(g)=L_{g *} A$ for all $A \in g$ and $g \in G$
- (Laplacian) $\quad \Delta=\Delta_{q}:=\sum_{l=1}^{m}\left[\tilde{X}_{l}^{2}+\left(\widetilde{X X}_{l}\right)^{2}\right]$
- (Heat Kernel) Let $\rho_{t}: G \rightarrow(0, \infty)$ satisfy,

$$
\left(e^{t \Delta / 4} f\right)(e)=\int_{G} f(g) \rho_{t}(g) d g
$$

where $d g$ denotes a right Haar measure on G.
Fact. The heat kernel, ρ_{t}, satisfies:

$$
\left\{\begin{array}{l}
\partial \rho_{t}(x, \cdot) / \partial t=(1 / 4) \Delta \rho_{t}(x, \cdot) \tag{7}\\
\rho_{t}(x, y) d y \rightarrow \delta_{x}(d y)(\text { weakly }) \text { as } t \rightarrow 0
\end{array}\right.
$$

$\rho_{t} \in C^{\infty}(G,(0, \infty))$ by Hörmander's theorem [Hörmander, 1967].

The Taylor Isomorphism

- Let $\mathcal{H}=$ the holomorphic functions on G
- For $\beta=A_{1} \otimes \cdots \otimes A_{n} \in T(\mathfrak{g})$, let $\tilde{\beta}=\tilde{A}_{1} \ldots \tilde{A}_{n}$
- For $f \in \mathcal{H}$ and $x \in G$, let

$$
\begin{equation*}
\langle\hat{f}(x), \beta\rangle=(\tilde{\beta} f)(x) \forall \beta \in T(\mathfrak{g}) \tag{8}
\end{equation*}
$$

- $\hat{f}(x) \in J^{0}$ is the Taylor coefficient at x.
- Taylor map $(T f:=\hat{f}(e))$,

$$
\begin{equation*}
\mathcal{H} \cap L^{2}\left(G, \rho_{t}\right) \ni f \xrightarrow{T} \hat{f}(e) \in J_{t}^{0} \tag{9}
\end{equation*}
$$

Theorem 18 (D., Gross, Saloff-Coste). If G is simply connected and q satisfies Hörmander's condition, then the Taylor map, $T: \mathcal{H} L^{2}\left(\rho_{t}\right) \rightarrow J_{t}^{0}$ is unitary. Moreover,

$$
\int_{G}|f(g)|^{2} \rho_{t}(g) d g=\|\hat{f}(e)\|_{t}^{2} \text { for all } f \in \mathcal{H}(G)
$$

The "Classical" Example

- $G=\mathbb{C}^{d}$ with additive group structure
- $H=\mathfrak{g}=\mathbb{C}^{d}, X_{l}=e_{l}$ for $l=1,2, \ldots, d=m$
- $q(\alpha)=\sum_{l=1}^{d}\left|\alpha\left(e_{l}\right)\right|^{2}$
- $d(w, z)=|z-w|$
- $\Delta=\sum_{l=1}^{d}\left(\frac{\partial^{2}}{\partial x_{l}^{2}}+\frac{\partial^{2}}{\partial y_{l}^{2}}\right)$ where $z=x+i y$.

$$
\rho_{t}(z)=\left(\frac{1}{\pi t}\right)^{d} \exp \left(-|z|^{2} / t\right)
$$

- J^{0} = Symmetric Tensors $=$ Bosonik FockSpace
- For $f \in \mathcal{H}, \hat{f}(z) \in J^{0}$ since mixed partial derivatives commute.
- References: V.A. Fock (1932) [Fock, 1928], Segal [Segal, 1956, Segal, 1962] and Bargmann [Bargmann, 1961]. (See also Gross and Malliavin [Gross \& Malliavin, 1996] for more history.)
- For proofs, go to 54 and 55.

Some History

The Taylor Isomorphism Theorem 18 was known to hold for non-degenerate q in the following cases:

1. $G=K_{\mathbb{C}}$: Driver [Driver, 1995] (inspired by B. Hall [Hall, 1994])
2. G arbitrary: Driver and Gross [Driver \& Gross, 1997]
3. $G=$ infinite dimensional complex Hilbert-Schmidt orthogonal group: M. Gordina, [Gordina, 2000b] and [Gordina, 2000a]
4. $G=$ invertible operators in a factor of type $I I_{1}: \mathrm{M}$. Gordina in [Gordina, 2002]
5. $G=$ path and loop groups of a "stratified" Lie group: M. Cecil, in [Cecil, 2006].
6. $G=$ infinite dimensional Heisenberg like groups, see
[Driver \& Gordina, 2008b, Driver \& Gordina, 2008a, Driver \& Gordina, 2008c].
7. For the case presented here see, [Driver et al., 2009b], [Driver et al., 2009c], and [Driver et al., 2009a].

Isometry Proof

- Working analogously to the " $\kappa=2$ example" above one sees, formally, that

$$
\|f\|_{L^{2}\left(\rho_{t} d m\right)}^{2}=e^{t \Delta / 4}|f|^{2}(e)=\sum_{n=0}^{\infty} \frac{1}{n!} \sum_{l_{1}, \ldots, l_{k}=1}^{m}\left|\tilde{X}_{l_{1}} \ldots \tilde{X}_{l_{k}} f(e)\right|^{2}=\|\hat{f}\|_{t}^{2}
$$

- To make this rigorous takes a fair amount of work and requires:

1. Gaussian heat kernel bounds which involve the "Carnot-Caratheodory" distance on G associated to q (see 56).
2. Good a-priori pointwise bounds for f and there derivatives.
3. Careful attention to the fact that finite rank tensors are not dense in $J_{t}^{0}(\mathfrak{g})$ in general.
4. Similarly we must deal with the complication of not knowing a simple to use dense subset of $\mathcal{H} L^{2}\left(\rho_{t} d m\right)$.

Surjectivity Proof

- The surjectivity proof require the reconstruction of a holomorphic function from its derivatives, $\alpha \in J_{t}^{0}(\mathfrak{g})$.

Notation (Rolling Map). Associated to a finite energy path, $g:[0,1] \rightarrow G$, from e to $z \in G$, let

$$
b(s)=b(g, s):=\int_{0}^{s} L_{g(t)^{-1} *} \dot{g}(t) d t \in \mathfrak{g} .
$$

Figure 3: Cartan's rolling map.

Group Taylor Series

Theorem 19 (A Reconstruction Theorem). Suppose;

1. $g:[0,1] \rightarrow G$ such that $g(0)=e$ and $g(1)=z$,
2. $f \in \mathcal{H}$ or f is holomorphic near $e \in G$,
3. $\Psi(g):=\sum_{n=0}^{\infty} \Psi_{n}(g)$ where

$$
\Psi_{n}(g):=\int_{0 \leq s_{1} \leq \cdots \leq s_{n} \leq 1} d b\left(s_{1}\right) \otimes d b\left(s_{2}\right) \otimes \cdots \otimes d b\left(s_{n}\right)
$$

Then

$$
\begin{equation*}
f(z)=\langle\hat{f}(e), \Psi(g)\rangle=\sum_{n=0}^{\infty}\left\langle\hat{f}(e), \Psi_{n}(g)\right\rangle \tag{10}
\end{equation*}
$$

and if g is horizontal, i.e. $b(s) \in H$, we have the pointwise bounds,

$$
\begin{equation*}
|f(z)|^{2} \leq\|\hat{f}(e)\|_{t}^{2} e^{d_{H}^{2}(e, z) / t} \leq\|\hat{f}(e)\|_{t}^{2} e^{\ell_{H}^{2}(g) / t} \tag{11}
\end{equation*}
$$

An Exponential Path Example

Suppose that $b(s)=s A$ for some $A \in \mathfrak{g}$. Then

$$
g(s)=e^{s A}
$$

and Eq. (10) reduces to the familiar formula,

$$
f\left(e^{A}\right)=\left\langle\hat{f}(e), \sum_{n=0}^{\infty} \frac{1}{n!} A^{\otimes n}\right\rangle=\sum_{n=0}^{\infty} \frac{1}{n!}\left(\tilde{A}^{n} f\right)(e) .
$$

Proof

For $b \in H^{1}(\mathfrak{g})$ (the finite energy paths in \mathfrak{g}) let $g_{t}(b)$ solve (see Figure 3)

$$
\dot{g}_{t}(b)=L_{g_{t}(b) *} \dot{b}(t) \text { with } g_{0}(b)=e .
$$

1. The map $H^{1}(\mathfrak{g}) \ni b \rightarrow g_{1}(b) \in G$ is holomorphic.
2. The map $H^{1}(\mathfrak{g}) \ni b \rightarrow f\left(g_{1}(b)\right) \in \mathbb{C}$ is holomorphic.
3. By Taylor's Theorem,

$$
f\left(g_{1}(b)\right)=\sum_{n=0}^{\infty} \frac{1}{n!} \partial_{b}^{n}\left(f \circ g_{1}\right)(0) .
$$

4. A direct but involved computation shows,

$$
\frac{1}{n!} \partial_{b}^{n}\left(f \circ g_{1}\right)(0)=\left\langle D^{n} f(e), \Psi_{n}(g)\right\rangle=\left\langle\hat{f}(e), \Psi_{n}(g)\right\rangle .
$$

5. The pointwise bounds in (11) follow from (10) and the Cauchy-Schwarz inequality.

Horizontal Reconstruction Theorem

Theorem 20 (Horizontal Reconstruction). Given $\alpha \in J_{t}^{0}$, there exists $f \in \mathcal{H}$ such that $\hat{f}(e)=\alpha$.

Proof Ideas

- We must define f by

$$
\begin{equation*}
f(g(1)):=\langle\alpha, \Psi(g)\rangle \tag{12}
\end{equation*}
$$

for all paths, g, such that $g(0)=e$.

- However, in the degenerate case, we only know a priori that $\langle\alpha, \Psi(g)\rangle$ is well defined when g is horizontal.
- How do we show $g \rightarrow\langle\alpha, \Psi(g)\rangle$ only depends on $g(1)$?
- Answer: we first construct local version of f and then use an analytic continuation argument to patch them together.

Local Reconstruction Theorem

Theorem 21 (Local Reconstruction). There exists open neighborhoods, $0 \in \Omega \subset \mathbb{C}^{d}$ and $e \in U \subset G$ such that:

1. for $z \in \Omega$ there exists a horizontal paths, $g_{z}(t) \in G$, depending holomorphically on z, such that
2. if $\varphi(z):=g_{z}(1)$, then $\varphi: \Omega \rightarrow U$ is biholomoprhic.
3. The function $f: U \rightarrow \mathbb{C}$ defined by

$$
f(\varphi(z)):=\left\langle\alpha, \Psi\left(g_{z}\right)\right\rangle
$$

is holomorphic and $\hat{f}(e)=\alpha$.

Example: Complex Heisenberg Group

$G=\mathbb{C}^{3}$ with group law;

$$
\begin{aligned}
& \left(z_{1}, z_{2}, z_{3}\right) \cdot\left(z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}\right) \\
& =\left(z_{1}+z_{1}^{\prime}, z_{2}+z_{2}^{\prime}, z_{3}+z_{3}^{\prime}+\frac{1}{2}\left(z_{1} z_{2}^{\prime}-z_{2} z_{1}^{\prime}\right)\right) .
\end{aligned}
$$

- $\mathfrak{g}=\mathbb{C}^{3}, H=\mathbb{C}^{2} \times\{0\}, X_{l}=e_{l}$ for $l=1,2$.
- $q(\alpha)=\sum_{l=1}^{2}\left|\alpha\left(e_{l}\right)\right|^{2}$
- $\Delta=\tilde{X}_{1}^{2}+\tilde{X}_{2}^{2}+\tilde{Y}_{1}^{2}+\tilde{Y}_{2}^{2}$ where $Y_{l}=i X_{l}$.

$$
\Delta_{H}=\Delta_{z_{1}}+\Delta_{z_{2}}+\frac{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}}{4} \Delta_{z_{3}}+L \frac{\partial}{\partial x_{3}}+S \frac{\partial}{\partial y_{3}}
$$

- L and S are angular momentum ops. on $\mathbb{C}^{2} \times\{0\}$.

Heat Kernel and Horizontal Paths

Theorem 22 (Hypoelliptic Heat Kenrel). The heat kernel for the complex Heisenberg group setup above is given by,

$$
\begin{aligned}
\rho_{t}(z)=\left(\frac{1}{2 \pi}\right)^{4} & \int_{\mathbb{C}} \frac{|w|^{2}}{\sinh ^{2}(|w| t / 4)} \\
& \times \exp \left(-\frac{1}{4}|w| \operatorname{coth}(|w| t / 4)\left(\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}\right)\right) \\
& \times e^{i \operatorname{Re}\left(w \bar{z}_{3}\right)} d m(w)
\end{aligned}
$$

Figure 4: The path g_{z} for the Heisenberg group. The rectangular region is long and skinny.

References

[Bargmann, 1961] Bargmann, V. 1961. On a Hilbert space of analytic functions and an associated integral transform. Comm. pure appl. math., 14, 187-214.
[Cecil, 2006] Cecil, Matthew. 2006. A Taylor isomorphism for path and loop groups. UCSD Ph.D. thesis.
[Driver, 1995] Driver, Bruce K. 1995. On the Kakutani-Itô-Segal-Gross and Segal-Bargmann-Hall isomorphisms. J. funct. anal., 133(1), 69-128.
[Driver \& Gordina, 2008a] Driver, Bruce K., \& Gordina, Maria. 2008a. Heat kernel analysis on infinite-dimensional Heisenberg groups. To appear in j. of functional analysis (arxiv:0805.1650v1 [math.pr]), 56 pages.
[Driver \& Gordina, 2008b] Driver, Bruce K., \& Gordina, Maria. 2008b. Integrated Harnack inequalities on Lie groups. arxiv:0711.4392v2 [math.dg], tbd, 41 pages.
[Driver \& Gordina, 2008c] Driver, Bruce K., \& Gordina, Maria. 2008c. Square-integrable holomorphic functions on an infinite-dimensional Heisneberg type groups.
arxiv:0809.4979v1 [math.pr], 40+pp.
[Driver \& Gross, 1997] Driver, Bruce K., \& Gross, Leonard. 1997. Hilbert spaces of holomorphic functions on complex Lie groups. Pages 76-106 of: New trends in stochastic analysis (charingworth, 1994). River Edge, NJ: World Sci. Publishing.
[Driver et al., 2009a] Driver, Bruce K., Gross, Leonard, \& Saloff-Coste, L. 2009a. Growth of Taylor coefficients over complex homogeneous spaces. Preprint submitted to Tohoku Mathematical Journal, 44 pages.
[Driver et al., 2009b] Driver, Bruce K., Gross, Leonard, \& Saloff-Coste, L. 2009b.
Holomorphic functions and subelliptic heat kernels over Lie groups. J. European Mathematical Society, 11, 941-978.
[Driver et al., 2009c] Driver, Bruce K., Gross, Leonard, \& Saloff-Coste, L. 2009c. Surjectivity of the Taylor map for complex nilpotent Lie groups. Math. Proc. Camb. Phil. Soc., 146, 177-195.
[Fock, 1928] Fock, V. 1928. Verallgemeinerung und lösung der diracschen statistischen gleichung. Zeits. f. phys., 49, 339-357.
[Gordina, 2000a] Gordina, Maria. 2000a. Heat kernel analysis and Cameron-Martin subgroup for infinite dimensional groups. J. funct. anal., 171(1), 192-232.
[Gordina, 2000b] Gordina, Maria. 2000b. Holomorphic functions and the heat kernel measure on an infinite-dimensional complex orthogonal group. Potential anal., 12(4), 325-357.
[Gordina, 2002] Gordina, Maria. 2002. Taylor map on groups associated with a II_{1}-factor. Infin. dimens. anal. quantum probab. relat. top., 5(1), 93-111.
[Gross, 1998] Gross, Leonard. 1998. Some norms on universal enveloping algebras. Canad. j. math., 50(2), 356-377.
[Gross \& Malliavin, 1996] Gross, Leonard, \& Malliavin, Paul. 1996. Hall's transform and the Segal-Bargmann map. Pages 73-116 of: Itô's stochastic calculus and probability theory. Tokyo: Springer.
[Hall, 1994] Hall, Brian C. 1994. The Segal-Bargmann "coherent state" transform for compact Lie groups. J. funct. anal., 122(1), 103-151.
[Hörmander, 1967] Hörmander, Lars. 1967. Hypoelliptic second order differential equations. Acta math., 119, 147-171.
[Segal, 1956] Segal, I. E. 1956. Tensor algebras over Hilbert spaces. I. Trans. amer. math. soc., 81, 106-134.
[Segal, 1962] Segal, I. E. 1962. Mathematical characterization of the physical vacuum for a linear Bose-Einstein field. (Foundations of the dynamics of infinite systems. III). Illinois j. math., 6, 500-523.

The Taylor map on homogenous spaces

- Let $K \subset G$ be a connected, closed, complex subgroup of $G, \mathfrak{k}=\operatorname{Lie}(K)$.
- $M=K \backslash G M$ be the space of right K cosets,
- $\pi: G \rightarrow M$ be the associated quotient map,

Notation. The formula,

$$
\begin{equation*}
\dot{A}(m):=\left.\frac{d}{d t}\right|_{0}\left(m e^{t A}\right) \text { for all } m \in M \text { and } A \in \mathfrak{g} \tag{13}
\end{equation*}
$$

defines a linear map, $\mathfrak{g} \ni A \rightarrow \dot{A} \in \operatorname{Vect}(M)$, where $\operatorname{Vect}(M)$ denotes the linear space of smooth vector fields on M. We may also define a sub-Laplacian Δ_{M} on M given by

$$
\begin{equation*}
\Delta_{M}=\sum_{j=1}^{m}\left(\dot{X}_{j}^{2}+\dot{Y}_{j}^{2}\right), \text { where } Y_{j}:=i X_{j} \tag{14}
\end{equation*}
$$

Definition 23. Let $\lambda_{t}(d m)$ be heat kernel measure on M given by

$$
\begin{equation*}
\lambda_{t}(d m)=\left(\pi_{*} \rho_{t}\right)(d m) \tag{15}
\end{equation*}
$$

Theorem 24. The family of probability measures $\left\{\lambda_{t}: t \in(0, \infty)\right\}$, is the unique family of probability measures on M such that, for all $\phi \in C_{c}^{\infty}(M)$, the function $t \rightarrow \lambda_{t}(\phi):=\int_{M} \phi d \lambda_{t}$ is continuously differentiable and satisfies

$$
\begin{equation*}
\frac{d}{d t} \lambda_{t}(\phi)=\frac{1}{4} \lambda_{t}\left(\Delta_{M} \phi\right) \quad \text { and } \quad \lim _{t \downarrow 0} \lambda_{t}(\phi)=\phi(o) \tag{16}
\end{equation*}
$$

Definition 25 (G - space Taylor map). For $u \in \mathcal{H}(M)$, define $\hat{u} \in T^{\prime}$ by; $\langle\hat{u}, 1\rangle=u(K e)$ and for all $n \in \mathbb{N}$,

$$
\begin{equation*}
\left\langle\hat{u}, \xi_{1} \otimes \cdots \otimes \xi_{n}\right\rangle=\left(\dot{\xi}_{1} \cdots \dot{\xi}_{n} u\right)(K e)=\tilde{\xi}_{1} \ldots \tilde{\xi}_{n}[u \circ \pi](e) \text { for all } \xi_{j} \in \mathfrak{g} . \tag{17}
\end{equation*}
$$

The map $\mathcal{H}(M) \ni u \rightarrow \hat{u} \in T^{\prime}$ is called the Taylor map on M.
Theorem 26 (The quotient Taylor map). For all $t>0$, the Taylor map

$$
\mathcal{H}(M) \supset \mathcal{H} L^{2}\left(M, \lambda_{t}\right) \ni u \rightarrow \hat{u} \in(J+\mathfrak{k} T)_{t}^{0} \subset T^{\prime}
$$

is a unitary map, where

$$
(J+\mathfrak{k} T)_{t}^{0}=\left\{\alpha \in T^{\prime}:\langle\alpha, J+\mathfrak{k} T\rangle=\{0\}\right\} .
$$

Two examples

The Grushin complex 2-space

Notation (Complex Heisenberg group). Let $H_{3}^{\mathbb{C}}=\mathbb{C}^{3}$ with the group law

$$
\left(z_{1}, z_{2}, z_{3}\right) \cdot\left(z_{1}^{\prime}, z_{2}^{\prime}, z_{3}^{\prime}\right)=\left(z_{1}+z_{1}^{\prime}, z_{2}+z_{2}^{\prime}, z_{3}+z_{3}^{\prime}+(1 / 2)\left(z_{1} z_{2}^{\prime}-z_{2} z_{1}^{\prime}\right)\right)
$$

We take

- Let $q(\alpha):=\left|\alpha\left(e_{1}\right)\right|^{2}+\left|\alpha\left(e_{2}\right)\right|^{2}$ for all $\alpha \in\left(\mathbb{C}^{3}\right)^{*}$.
- $K=\mathbb{C}=\left\{\left(z_{1}, z_{2}, z_{3}\right): z_{2}=z_{3}=0\right\} \subset H_{3}^{\mathbb{C}}$
- $M=K \backslash H_{3}^{\mathbb{C}} \cong \mathbb{C}^{2} \cong \mathbb{R}^{4} ; \xi=(w, z)=(u+i v, x+i y) \in M$,
- It turns out that

$$
\Delta_{M}=(\partial / \partial u)^{2}+(\partial / \partial v)^{2}+\left(u^{2}+v^{2}\right)\left((\partial / \partial x)^{2}+(\partial / \partial y)^{2}\right)
$$

- The heat kerne density, $\lambda_{t}(\xi)$ satisfies

$$
\begin{equation*}
\frac{c_{1}}{V(\sqrt{t})} \exp \left(-C_{1} \frac{\delta(\xi)^{2}}{t}\right) \leq \lambda_{t}(\xi) \leq \frac{C_{2}}{V(\sqrt{t})} \exp \left(-c_{2} \frac{\delta(\xi)^{2}}{t}\right) \tag{18}
\end{equation*}
$$

- $\delta(\xi)$ is the subelliptic distance between the origin and $\xi=(w, z)$,

$$
c(|u|+|v|+\sqrt{|x|}+\sqrt{y \mid}) \leq \delta(\xi) \leq C(|u|+|v|+\sqrt{|x|}+\sqrt{|y|}) .
$$

- $V(r) \simeq r^{6}, r>0$

$$
\Omega(m, n)=m!\cdot\binom{|n|_{1}}{m_{1}} \cdot\binom{|n|_{2}-|m|_{1}}{m_{2}} \cdot\binom{|n|_{3}-|m|_{2}}{m_{3}} \ldots\binom{|n|_{k}-|m|_{k-1}}{m_{k}}
$$

Corollary 27. Suppose that f is a holomorphic function on \mathbb{C}^{2}, Then

$$
\begin{equation*}
\|f\|_{t}^{2}=\|\hat{f}\|_{t}^{2}=\sum_{N=0}^{\infty} \frac{t^{N}}{N!} \sum_{(m, n) \in I(N)} \Omega^{2}(m, n)\left|\left(\partial_{w}^{|n|-|m|} \partial_{z}^{|m|} f\right)(0,0)\right|^{2} . \tag{1}
\end{equation*}
$$

Example. When $f(w, z)=g(z)=z^{3}$,the only non-zero derivative at $(0,0)$ is $\left(\partial^{3} f / \partial^{3} z\right)(0,0)=6$. So according to Eq. (??),

$$
\begin{equation*}
\int_{M}\left(x^{2}+y^{2}\right)^{3} \lambda_{t}(d \xi)=\|\hat{f}\|_{t}^{2}=\frac{61}{20} t^{6} \tag{20}
\end{equation*}
$$

Example. For $f(w, z)=w z^{3}$, we have

$$
\begin{equation*}
\left\|\int_{M}|w|^{2}|z|^{6} \lambda_{t}(d \xi)=\right\| \hat{f} \|_{t}^{2}=\frac{277}{28} t^{7} \tag{21}
\end{equation*}
$$

A one-dimensional complex ${ }_{G}$ - space

Notation. We let $G:=\mathbb{C}^{\times} \ltimes \mathbb{C}$ with group law,

$$
(a, b)\left(a^{\prime}, b^{\prime}\right)=\left(a a^{\prime}, a b^{\prime}+b\right)
$$

Take:

- $q(\alpha)=\left|\left\langle\alpha, e_{1}\right\rangle\right|^{2}+\left|\left\langle\alpha, e_{2}\right\rangle\right|^{2}$ (this is positive!),
- $K=\mathbb{C}^{\times} \times\{0\}, M:=K \backslash G \cong \mathbb{C}$.
- $\Delta_{M}=\left[1+x^{2}+y^{2}\right]\left(\partial_{x}^{2}+\partial_{y}^{2}\right)$
- The associated heat kernel satisfies,

$$
\begin{equation*}
\frac{c_{\epsilon}}{\ln \left(\cosh ^{2} \sqrt{t}\right)} e^{-(1+\epsilon)\left(\sinh ^{-1}|\xi|\right)^{2} / t} \leq \lambda_{t}(\xi) \leq \frac{C_{\epsilon}}{\ln \left(\cosh ^{2} \sqrt{t}\right)} e^{-(1-\epsilon)\left(\sinh ^{-1}|\xi|\right)^{2} / t} \tag{22}
\end{equation*}
$$

Corollary 28. Suppose that f is a holomorphic function on \mathbb{C}, then

$$
\begin{equation*}
\int_{\mathbb{C}}|f(\xi)|^{2} \lambda_{t}(\xi) d \xi=\|f\|_{t}^{2}=\sum_{m=0}^{\infty} c_{m}(t)\left|f^{(m)}(0)\right|^{2} \tag{23}
\end{equation*}
$$

where

$$
\begin{aligned}
c_{0}(t) & \equiv 1 \\
c_{1}(t) & =e^{t}-1, \\
c_{2}(t) & =\frac{1}{12} e^{4 t}-\frac{1}{3} e^{t}+\frac{1}{4} \\
c_{m}(t) & \gtrsim \frac{1}{\sqrt{2 \pi t}} \frac{e^{m^{2} t}}{m^{2 m+1}}
\end{aligned}
$$

