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Abstract. An analogue of the Berezin-Toeplitz star product, familiar
from deformation quantization, is studied in the setting of real bounded
symmetric domains. The analogue turns out to be a certain invariant oper-
ator, which one might call star restriction, from functions on the complex-
ification of the domain into functions on the domain itself. In particular,
we establish the usual (i.e. semiclassical) asymptotic expansion of this star
restriction, and describe real-variable analogues of several other results.
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Symbols and quantizations

Quantization (operator calculus):

f function on Ω 7−→ Qf ∈ Op(H)

Ω = manifold, H = Hilbert space.

Usually also
Q1 = I.

Dequantization (symbol calculus): opposite direction,

T ∈ Op(H) 7−→ T̃ function on Ω.
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Quantization in physics

Traditional: Ω = symplectic manifold,

[Qf , Qg] =
ih

2π
Q{f,g} (+O(h2)),

irreducibility.

Here {·, ·} = Poisson bracket; h → 0 Planck’s constant.

Geometric quantization — no-go theorems.

Deformation quantization — star product ∗:

QfQg =: Qf∗g,

at least in some asymptotic sense as h ↘ 0.
(View f,g as formal power series in h.)
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Toeplitz quantization

For a Kähler manifold Ω, with Kähler form ω,

take a real-valued potential Φ for ω

(i.e. ∂2Φ
∂zj∂zk

= gjk, the metric associated to ω);

and consider the subspace L2
hol of all holomorphic functions in L2 on Ω

with respect to the measure e−Φ/h ∧nω.

Let P : L2 → L2
hol be the orthogonal projection.

A Toeplitz operator with symbol f ∈ L∞(Ω) is the operator on L2
hol

defined by
Tf : u 7−→ P (fu).

All these objects (L2, L2
hol, P, Tf ) depend on h, h > 0.

(Obvious variant if the potential Φ exists only locally — spaces of holo-
morphic L2 sections of suitable line-bundles, which exist provided ω sat-
isfies the appropriate integrality conditions, and h can then only assume
the discrete set of values h = 1/m, m = 1, 2, 3, . . . .)
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Theorem. f 7→ Tf is a deformation quantization in the above sense.

=⇒ (Berezin-) Toeplitz quantization.

[Klimek-Lesniewski 1992] — disc, Riemann surfaces
[Coburn 1992] — Euclidean Cn

[Bordemann-Meinrenken-Schlichenmaier 1994] — compact manifolds
([Karabegov 1996] — separation of variables)

[M.E. 1997–2002] — pseudoconvex domains with Kähler metric
...

Also generalizations beyond Kähler case — spin structures etc.
[Ma, Marinescu, . . . ].



6

Operator fields

Operator field:
Ω 3 z 7−→ Qz ∈ Op(H).

Gives rise to operator calculus by

f 7−→ Qf :=
∫

Ω

f(z) Qz dz

for a measure dz on Ω (e.g. the symplectic volume ωn).

[Gracia-Bondia] (quantizers), [Ali-Doebner] (prime quantization)
representation theory [Harish-Chandra], time-frequency analysis
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Toeplitz operators and operator fields

Let Ω be a domain in Cn and dµ(z) a measure on Ω continuous w.r.t. the
Lebesgue measure dz. Consider the space

H = L2
hol(Ω, dµ)

of all holomorphic functions on Ω square-integrable w.r.t. µ.
Then the evaluation functionals

H 3 f 7−→ f(z) ∈ C

are continuous, hence are given by scalar product with some Kz ∈ H:

f(z) = 〈f, Kz〉 =
∫

Ω

f(x)K(z, x) dµ(x), K(z, x) := Kx(z) = Kz(x).

One calls H a Bergman space and K(z, x) the (weighted) Bergman kernel.

Toeplitz operator on the Bergman space with symbol f :

Tf : H → H, Tfφ := P (fφ),

where P : L2(Ω, dµ) → H = L2
hol(Ω, dµ) is the orthogonal projection.
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Notation: normalized reproducing kernels

kz :=
Kz

‖Kz‖ =
K(·, z)

K(z, z)1/2
.

(“coherent states”)

Fact: f 7→ Tf is given by the rank-one operator field

Tz := 〈·, kz〉kz

with respect to the measure K(z, z) dµ(z).

Proof: For any u, v ∈ H,

〈Tfu, v〉 = 〈P (fu), v〉 = 〈fu, v〉

=
∫

f(z)u(z)v(z) dµ(z)

=
∫

f(z)〈u, Kz〉〈Kz, v〉 dµ(z)

=
∫

f(z)〈u, kz〉〈kz, v〉K(z, z) dµ(z). ¤
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Equivariance

Assume that G is a group of transformations of Ω (symmetries),

G 3 g : Ω → Ω,

and U is a (projective) unitary representation of G on H:

U : g 7→ Ug ∈ Op(H).

The quantization is called equivariant if

Qf◦g = U∗
g QfUg.

On the level of operators fields: if

Qf =
∫

Ω

f(z)Qz dµ(z)

where dµ is G-invariant, equivariance corresponds to

Qg(z) = UgQzU
∗
g .
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Equivariance of Toeplitz quantization: for holomorphic transformations g
preserving the Kähler metric, there are the representations of the form

Ug : f 7−→ f ◦ g−1 ·mg

with some “multipliers” mg (typically, powers of the Jacobian of g).

With respect to these, Toeplitz quantization is equivariant.

Tf◦g = U∗
g TfUg

More specifically,
Tz = 〈·, kz〉kz

is an equivariant operator field, and

Kh(z, z) e−Φ/h ∧nω

is invariant under such transformations g.
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When the equivariance is most prominent: if the symmetries are rich —
in particular, if G acts on Ω transitively (homogeneous spaces), or if even
the isotropy groups are large (symmetric spaces/domains).

In particular, if G acts on Ω transitively then from

Qg(z) = UgQzU
∗
g .

it follows that any equivariant operator field (and, hence, also the equi-
variant quantization induced by it) is uniquely determined by the single
operator Q0 for any fixed base-point 0 ∈ Ω. Namely, if z ∈ Ω, by tran-
sitivity there is g ∈ G with g(0) = z, and then

Qz = Qg(0) = UgQ0U
∗
g .

Furthermore, Q0 must be invariant under the elements fixing 0, i.e.

(∗) Q0 = UgQ0U
∗
g for all g with g(0) = 0.

Applies, in particular, to symmetric domains. An equivariant quan-
tization on such domain is thus completely determined by the single
operator Q0, satisfying (∗). We say that it is generated by Q0.
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Reformulation of equivariance in the language of representation theory:
the quantization

f 7→ Qf , Func(Ω) → Op(H),
intertwines two representations of G, namely, the representation on func-
tions given by composition:

f 7−→ f ◦ g,

and the representation on operators by conjugation:
X 7−→ U∗

g XUg.

Aim of this talk: extension to real, rather than complex, manifolds.
Flavour: more representation theory than physics.

Objects:
complex symmetric domains real symmetric domains
(equivariant) operator fields (equivariant) function fields

(Toeplitz) quantization (Toeplitz) extension
star product star restriction.
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Bounded symmetric domains

(Hermitian symmetric spaces of non-compact type)

Domains Ω ⊂ Cd such that ∀x, y ∈ Ω ∃φ ∈ G = {the group of all
biholomorphic self-maps} interchanging x and y, satisfying φ = φ−1 and
having only isolated fixed-points.

Has Harish-Chandra realization as circular, convex domain containing 0.

The group G then operates transitively, and if we denote by K the
stabilizer of 0

K = {g ∈ G : g(0) = 0},
then G is a semisimple Lie group, K a maximal compact subgroup, and
Ω ∼= G/K.

In fact K⊂U(d).
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Jordan-theoretic description:
Cd =: Z has a structure of Hermitian Jordan triple,
Ω = the unit ball of Z,
K = the group of all automorphisms of Z.

Polar decomposition: ∃e1, . . . , er ∈ Z (r = rank) such that any z ∈ Z
can be written in the form

z = k(t1e1 + t2e2 + · · ·+ trer),

with k ∈ K and unique t1 ≥ t2 ≥ · · · ≥ tr ≥ 0; z ∈ Ω if and only if
t1 < 1.

Jordan determinant: polynomial on Z×Z, holomorphic in x, y, uniquely
determined by

h(z, z) =
r∏

j=1

(1− t2j ).
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Bergman kernels on symmetric domains: the Bergman kernel

K(x, y) = c h(x, y)−p,

c = vol(Ω), p ∈ {2, 3, 4, . . . } — genus.

Furthermore, if we consider the measures

dµν(z) := cν h(z, z)ν−p dz,

where cν is normalizing constant to make µν(Ω) = 1, then the Bergman
spaces

Hν := L2
hol(Ω, dµν)

are nontrivial for all ν > p− 1 and have reproducing kernels

Kν(x, y) = h(x, y)−ν .
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Invariant measure:

dµ(z) = h(z, z)−p dz

is the (unique) G-invariant measure on Ω.

Representation of G: The operators

Ugf(z) := f(g−1(z)) · Jg−1(z)ν/2p,

where Jg denotes the complex Jacobian of g, are a projective unitary
representation of G on Hν .



17

Toeplitz calculi on bounded symmetric domains: equivariant, and
generated by the operator

T0 = 〈·, k0〉k0 = 〈·,1〉1,

i.e. by the rank-one projection onto the constants.

Toeplitz star product:

Tf∗g = TfTg,

asymptotically as ν → +∞. [Bortwick-Lesniewski-Upmeier]

(So h = 1/ν ↘ 0 plays the role of Planck constant.)
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Example of BSD: unit ball of m× n complex matrices,

Imn := {Z ∈ Cm×n : ‖Z‖Cn→Cm < 1}.

Group of motions/stabilizer: G = SU(m,n), K = U(m)× U(n).

[For n = 1, the unit ball of Cm; for m = n = 1, the unit disc.]

Genus p = m + n; Jordan determinant: h(x, y) = det(I − xy∗).

Weighted Bergman spaces/kernels: holomorphic function square-integrable
with respect to cν det(I − zz∗)ν−m−n; reproducing kernels:

Kν(x, y) = det(I − xy∗)−ν . ¤
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Classification: by Cartan, any BSD is (biholomorphic to) a Cartesian
product of the “building blocks” (Cartan domains):

• Imn = Um,n(C)/Um(C)× Un(C) = {Z ∈ Cm×n : I − Z∗Z > 0}
(matrix balls);

• IIm = Sp2m(R)/Um(C) = {Z ∈ Imm : Zt = Z}
(symmetric matrices);

• IIIm = Om(H)/Um(C) = {Z ∈ Imm : Zt = −Z}
(skew-symmetric matrices);

• IVm = SOm,2/SOn,0 × SO0,2 (Lie balls);
• V = E6(−14)/ Spin10×SO2, V I = E7(−25)/E6 × SO2.

Thus — we have nice equivariant quantizations on these domains in Cn.

(Extends also to compact counterparts — Grassmann manifolds etc.)
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Operator fields on reproducing kernel spaces

Assume we have a Hilbert space H with reproducing kernel,

f(z) = 〈f,Kz〉, f ∈ H, z ∈ Ω.

For any operator on H:

Tf(x) = 〈Tf,Kx〉 = 〈f, T ∗Kx〉 =
∫

Ω

f(y)T ∗Kx(y) dy

⇒ any T is an integral operator, with integral kernel

T̃ (x, y) = T ∗Kx(y) = 〈TKy,Kx〉 = TKy(x).

The correspondence T ←→ T̃ is one-to-one. Furthermore, if H consists
of holomorphic functions (e.g. for Bergman spaces), T̃ is holomorphic
in x, y.
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In the holomorphic case, we can thus identify operators onH with (some)
holomorphic functions on Ω× Ω.

(Here Ω is Ω with the conjugate complex structure.)

Under this identification, operator calculi are just maps

f 7−→ Q̃f , Func(Ω) → Hol(Ω× Ω).

(Similarly, operator fields are maps Ω → Hol(Ω× Ω).)

How does equivariance show in this picture?
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Equivariance:
Qf◦g = U∗

g QfUg.

One has (direct computation)

˜(U∗
g TUg) = (Ug ⊗ Ug) T̃ .

Thus equivariant calculi correspond to maps Func(Ω) → Hol(Ω × Ω)
satisfying

Q̃f◦g = (Ug ⊗ Ug) Q̃f .

What about star products?
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Recall: star product was defined (heuristically) by

QfQg = Qf∗g.

In order to pass to the operator-kernel formalism: need Q̃fQg.

Instead of a bilinear map (f, g) 7→ f ∗ g, we can view ∗ as a map

∗ : Func(Ω× Ω) → Func(Ω), (f ⊗ g) 7→ (f ∗ g)

(where (f ⊗ g)(x, y) := f(x)g(y)).

Observation: for Toeplitz operators,

T̃fTg = TΩ×Ω
f⊗g K.

(Direct computation.) Thus the star-product f ∗ g can be defined by

TΩ×Ω
f⊗g K =: T̃Ω

f∗g.

Directly generalizes to any pair of calculi QΩ×Ω and Q on Ω×Ω resp. Ω.
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Summary: upon identifying operators T with their operator kernels T̃ ,
the following picture emerged.

Quantization:

f 7→ Qf , Func(Ω) → Hol(Ω× Ω).

Operator field:
z 7→ Qz, Ω → Hol(Ω× Ω).

Star-product:

f ⊗ g 7→ f ∗ g, Func(Ω× Ω) → Func(Ω),

which is a deformation of the pointwise product f ⊗ g 7→ fg.

Equivariance: intertwines the corresponding actions of G.
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Passage from complex to real bounded symmetric domains

For real symmetric domains: use this operator-kernel formalism,
and replace Ω and Ω×Ω by a real BSD ΩR and its complexification ΩC.

“Quantization” (better: “extension”):

f 7→ Qf , Func(ΩR) → Hol(ΩC).

“Operator field” (better: “function field”):

z 7→ Qz, ΩR → Hol(ΩC).

Star-product (better: “star restriction”):

F 7→ #F, Func(ΩC) → Func(ΩR);

should be deformation of restriction F 7→ F |ΩR
.

Equivariance: intertwine the corresponding actions of the group.

Example: the Bargmann transform L2(Rn) → L2
hol(C

n, e−|z|
2
dz).
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Real bounded symmetric domains

Setup: ΩC = G/K a complex bounded symmetric domain
z 7→ z# involution (conjugate-linear, z## = z)

such that ΩC
# = ΩC

ΩR := {z ∈ ΩC : z# = z}
GR := {g ∈ G : g(z#) = (gz)#}, KR := GR ∩K

GR reductive, ΩR ' GR/KR — real BSD

Examples:

• ΩC = D, z# = z . . . ΩR = (−1, +1)
• ΩC = Imn, z# = z . . . ΩR = Imn ∩Rm×n

• ΩC = Inn, z# = z∗ . . . ΩR = Iself-adjoint
nn

• ΩC = Cn, z# = z . . . ΩR = Rn

• ΩC = Ω× Ω, (z, w)# = (w, z) . . . ΩR = Ω. ¤
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ΩR GR/KR Σ rR aR bR cR d rC ΩC

IR
r,r+b Ur,r+b(R)/Ur(R)×Ur+b(R) Dr/Br r 1 b 0 r(r+b) r Ir,r+b

IH
2r,2r+2b Ur,r+b(H)/Ur(H)×Ur+b(H) Cr/BCr r 4 4b 3 4r(r+b) 2r I2r,2r+2b

V O0 U2,2(H)/U2(H)×U2(H) B2 2 3 4 0 16 2 V

IIIR
r Gr(R)/Ur(R) Ar r 1 − − 1

2 r(r+1) r IIIr

IC
r,r Gr(C)/Ur(C) Ar r 2 − − r2 r Ir,r

IIH
2r Gr(H)/Ur(H) Ar r 4 − − r(2r−1) r II2r

V IO0 G4(H)/U4(H) D3 3 4 0 0 27 3 V I

IIIH
2r Sp2r(C)/Ur(H) Cr r 2 0 2 r(2r+1) 2r III2r

IIR
2r+ε O2r+ε(C)/U2r+ε(R) Dr/Br r 2 2ε 0 r(2(r+ε)−1) r II2r+ε

IV R,q
p+q SOp,1×SO1,q/SOp,0×SO0,q D2/A2 2 n/a 0 0 p+q 2 IVp+q

IV R,0
n SOn,1/SOn,0 C1 1 − 0 n−1 n 2 IVn

V O F4(−20)/SO(9) BC1 1 − 8 7 16 2 V

V IO E6(−26)×O(2)/F4×O(1) A3 3 8 − − 27 3 V I

(Will exclude the D2 case in the sequel.)
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Operator calculi on real BSDs

Recall: dµ(z) = h(z, z)−p dz was a G-invariant measure on ΩC.

Fact: dµR := h(x, x)−p/2 dx is an GR-invariant measure on ΩR.

“Operator calculus” on ΩR (rather: operator extension):

A : f 7→ Af , C∞(ΩR) → L2
hol(ΩC), f ◦ g 7→ U∗

g Af .

“Operator field” on ΩR (rather: function field):

x 7→ Ax, ΩR → L2
hol(ΩC), g(x) 7→ UgAx.

Operator field gives rise to operator calculus:

f 7→ Af :=
∫

ΩR

f(x)Ax dµR(x).

Uniquely determined by A0; A0 fixed by all Uk, k ∈ K.
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Example: real Toeplitz calculus — corresponds to the choice

A0 = 1.

This yields the operator field

Ax = Kx/‖Kx‖ =: kx

(the coherent states on ΩR ⊂ ΩC!). Corresponding Toeplitz calculus
(“Toeplitz extension”) — combinations of the coherent states:

Af =
∫

ΩR

f(x) kx dµR(x).

For ΩR = Ω, ΩC = Ω × Ω, with Ω a complex BSD in Cn — yields the
previous (usual) Toeplitz operators.

Example: For ΩR = Rn, ΩC = Cn — yields the Bargmann transform.

Weyl calculus on ΩR — more complicated.
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Star products on real BSDs

Recall: in the complex situation, defined by

TfTg =: Tf∗g,

or
TΩ×Ω

f⊗g K = T̃fTg = T̃Ω
f∗g.

Analogue for real-BSDs:

TΩC

F I = TΩR

#F ,

where
I(z) := K(z, z#)1/2

is the holomorphic function which arises from Ĩ = K. (Or from #1 = 1.)
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Defines “star-restriction”

# : F 7→ #F, Func(ΩC) → Func(ΩR).

Depends on the Planck parameter ν = 1/h through the spaces

Hν ≡ L2
hol(ΩC, dµν), dµν(z) = cν h(z, z)ν dµ(z)

on which the Toeplitz operators TΩC

F , TΩR

#F act.

Main result: existence of semiclassical limit ν → +∞.
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Theorem 1. For any F ∈ C∞(ΩC) ∩ L∞(ΩC),

#F =
∞∑

j=0

ν−j ρLjF,

where ρ is the operator of restriction from ΩC to ΩR, and Lj are some
differential operators which are GR-invariant:

Lj(F ◦ g) = (LjF ) ◦ g ∀g ∈ GR.

Furthermore,
L0 = I,

and Lj involve only holomorphic derivatives, i.e.

Lj(HF ) = HLjF ∀H ∈ Hol .

There is also a (kind of) explicit description for Lj .
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Berezin transform on real symmetric domains

Viewing an operator calculus on a real BSD

A : functions on ΩR → Hol(ΩC)

as a map from L2(ΩR, dµ) into Hν , one can consider the adjoint

A∗ : Hol(ΩC) → functions on ΩR.

(In the original “complex” situation, this is the dequantization map from
operators to functions.)

Example. For operator calculi arising from an operator field,

A∗F (x) = 〈F,Ax〉.
In the complex case,

A∗T (z) = tr(A∗zT ). ¤

The composed map

B = A∗A : f 7→ Af 7→ A∗Af , functions on ΩR → functions on ΩR,

is called the Berezin transform.
[Berezin] [Unterberger-Upmeier] [Arazy-Orsted]
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Explicitly:

Bf(x) = cν

∫

ΩR

f(ζ)
h(x, x)ν/2h(ζ, ζ)ν/2

h(x, ζ)ν
dµR(ζ).

Example: for the Segal-Bargmann space of ΩR = Rn, ΩC = Cn —
the heat operator, B = e∆/2ν .

Stationary phase method Ã asymptotic expansion:

Bf =
∞∑

j=0

ν−jRjf as ν → +∞,

with GR-invariant differential operators Rj on ΩR, R0 = id.

Let B−1 denote the inverse of the right-hand side in the ring of all formal
power series in ν−1.
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Theorem 2. For F holomorphic,

B#F = F.

That is,
#F = B−1F.

In a certain precise sense, # is thus the “complexification” of the formal
inverse of the Berezin transform B.

(Seems to be a new result even for the complex case.)
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Finer structure of B

Consider the space P of all holomorphic polynomials on Cd ⊃ ΩC.
Fock inner product:

〈p, q〉F := π−d

∫

Cd

p(z)q(z) e−|z|
2
dz = q(∂)p(0).

Under the action p 7→ p ◦ k of KC, Peter-Weyl decomposition:

P =
⊕
m

Pm,

where m = (m1, . . . , mr), m1 ≥ m2 ≥ · · · ≥ mr ≥ 0
(partitions/signatures of length r). [Schmid]

(r = the rank of ΩC)

Pm ⊂ homogeneous polynomials of degree |m| := m1 + · · ·+ mr.
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Recall:
#F =

∑

j

ν−j ρLjF, Bf =
∑

j

ν−jRjf,

with Lj , Rj GR-invariant differential operators on ΩC, ΩR respectively.

Since GR is transitive on ΩR =⇒ ρLj , Rj determined uniquely by
their action at the origin, which is a KR-invariant constant coefficient
differential operator on Cd resp. Rd.

=⇒ Rjf(0) = pj(∇)f(0) for some KR-invariant polynomial pj on Rd;

Lj contains only holomorphic derivatives =⇒ LjF (0) = lj(∂) for some
KR-invariant polynomial lj on Cd.

Peter-Weyl decomposition: pj =
∑

m pj,m (& similarly for lj),

where only those m occur for which PKR
n 6= {0}. (spherical

signatures)

Known: PKR
m = Cφm. (Jack polynomials)
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Altogether: at the origin,

B =
∑

j

ν−jRj =
∑

j

ν−jpj(∇) =
∑

j,m

ν−jpj,m(∇) =:
∑
m

φm(∇)
[ν]m︸ ︷︷ ︸
Bm

.

Similarly,

#F (0) =
∑
m

φm(∂)F (0)
{ν}m︸ ︷︷ ︸
#m

.

A kind of Peter-Weyl components of B, #.

For ΩR = Ω: Bm described by [Arazy-Orsted].
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Theorem 3. For real symmetric domains ΩR not of type A,

Bm =
φm(∇)
[ν]m

is given by

[ν]m =
(2rR/rC)2|m|

dm

(dX

rR

)
m

(νrC + dX − dY

2rR

)
m

,

where dm = dimPn, n being the spherical signature associated to m,
and

dX = rR +
rR(rR − 1)

2
aR, dY = rRcR,

are certain constants depending only on ΩR. (See the table.)

Problems. • root system of type A ?
• #m ? (Unknown except for ΩR=Rn.)
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Concluding remarks

(1) Other complexifications for symmetric spaces:

Ω = G/K Ã GC/KC

“complex crown” (Gindinkin, Kroetz, Olafsson, Faraut, . . . )

GC has no relation to our complexification ΩC of Ω.

(2) Physics applications:

symmetric domains = Riemannian symmetric spaces
Ã symplectic symmetric spaces
WKB-type quantizations (Bieliavsky, Gutt, Pevzner, . . . )

Is there an approach like ours but based on the symplectic structure?
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