Toeplitz quantization on real symmetric domains

MirosLAV ENGLIS (Prague)

[joint work with HARALD UPMEIER (Marburg)]

ABSTRACT. An analogue of the Berezin-Toeplitz star product, familiar
from deformation quantization, is studied in the setting of real bounded
symmetric domains. The analogue turns out to be a certain invariant oper-
ator, which one might call star restriction, from functions on the complex-
ification of the domain into functions on the domain itself. In particular,
we establish the usual (i.e. semiclassical) asymptotic expansion of this star
restriction, and describe real-variable analogues of several other results.



SYMBOLS AND QUANTIZATIONS

Quantization (operator calculus):
f function on Q — Qs € Op(H)

() = manifold, H = Hilbert space.

Usually also
Q1 =1.

Dequantization (symbol calculus): opposite direction,

T € Op(H) — T function on .



QUANTIZATION IN PHYSICS

Traditional: 2 = symplectic manifold,
th 9
Q1 Qo] =5 Qur.y  (HO(7)),
irreducibility.
Here {-,-} = Poisson bracket; h — 0 Planck’s constant.
GEOMETRIC QUANTIZATION — no-go theorems.

DEFORMATION QUANTIZATION — star product *:

Qf@g = Qf*ga

at least in some asymptotic sense as h \, O.

(View f,g as formal power series in h.)



TOEPLITZ QUANTIZATION

For a Kahler manifold €2, with Kahler form w,

take a real-valued potential ® for w

. 82¢ o _ . . .
(i.e. 5e05 =I5k the metric associated to w);

and consider the subspace L? ; of all holomorphic functions in L? on {2
with respect to the measure e~ ®/" A" w.

Let P: L? — L? | be the orthogonal projection.

A Toeplitz operator with symbol f € L>(Q) is the operator on L%
defined by

Ty : uv— P(fu).
All these objects (L?, L? |, P, T¢) depend on h, h > 0.

(Obvious variant if the potential ® exists only locally — spaces of holo-
morphic L? sections of suitable line-bundles, which exist provided w sat-
isfies the appropriate integrality conditions, and h can then only assume
the discrete set of values h =1/m, m=1,2,3,....)



Theorem. f — T} is a deformation quantization in the above sense.

—> (Berezin-) Toeplitz quantization.

[Klimek-Lesniewski 1992] — disc, Riemann surfaces
[Coburn 1992] — Euclidean C™
[Bordemann-Meinrenken-Schlichenmaier 1994] — compact manifolds

([Karabegov 1996] — separation of variables)
[MLE. 1997-2002] — pseudoconvex domains with Kahler metric

Also generalizations beyond Kéahler case — spin structures etc.
[Ma, Marinescu, . ..].



OPERATOR FIELDS

Operator field:

23z +— Q. € Op(H).

Gives rise to operator calculus by
f— Q= [ ) Q. a

for a measure dz on 2 (e.g. the symplectic volume w™).

[Gracia-Bondia] (quantizers), [Ali-Doebner] (prime quantization)

representation theory [Harish-Chandral, time-frequency analysis



TOEPLITZ OPERATORS AND OPERATOR FIELDS

Let €2 be a domain in C™ and du(z) a measure on {2 continuous w.r.t. the
Lebesgue measure dz. Consider the space

H = Lij (2, dpa)

of all holomorphic functions on €2 square-integrable w.r.t. L.
Then the evaluation functionals

H>f — f(z)eC

are continuous, hence are given by scalar product with some K, € H:

16 =0 = [ f@KGa)du).  K(ow) = Kolz) = Kofa).

One calls H a Bergman space and K (z, x) the (weighted) Bergman kernel.

Toeplitz operator on the Bergman space with symbol f:
Ty:H — H, Tip = P(f¢),
where P : L?(Q,dp) — H = L (9, du) is the orthogonal projection.




NOTATION: normalized reproducing kernels
K, o K<7 Z)

k, = = .
K- K(2,2)Y/2

(“coherent states”)

Fact: f+— T is given by the rank-one operator field
T, = (k)b

with respect to the measure K(z, z) du(z).

Proof: For any u,v € H,

(Tyu, v) fu),v) = (fu v)

/ 1z ()

— [ 1) KN o) dut2)
— [ FE ) ) K2, 2) du),



EQUIVARIANCE

Assume that G is a group of transformations of Q (symmetries),
G>g:Q—Q,
and U is a (projective) unitary representation of G on H:
U: g— U, €Op(H).

The quantization is called equivariant if

Qfog — Ug*Qng'

On the level of operators fields: if
Qs = [ 1)@ du(z)

where dyu is G-invariant, equivariance corresponds to

Qg(z) — UngUg*




Equivariance of Toeplitz quantization: for holomorphic transformations g
preserving the Kahler metric, there are the representations of the form

U, : f|—>fog_1-mg
with some “multipliers” m, (typically, powers of the Jacobian of g).
With respect to these, Toeplitz quantization is equivariant.
Trog =U,TyU,

More specifically,
Tz — <'7 kz>kz

is an equivariant operator field, and
Kin(z,2) e ®/P Amw

is invariant under such transformations g.



When the equivariance is most prominent: if the symmetries are rich —
in particular, if G acts on € transitively (homogeneous spaces), or if even
the isotropy groups are large (symmetric spaces/domains).

In particular, if G acts on (2 transitively then from

Qg(z) - UngU;

it follows that any equivariant operator field (and, hence, also the equi-
variant quantization induced by it) is uniquely determined by the single
operator Qg for any fixed base-point 0 € (2. Namely, if z € 2, by tran-
sitivity there is g € G with g(0) = z, and then

Q. = Qg = UyQoUj.
Furthermore, )y must be invariant under the elements fixing 0, i.e.
(%) Qo = UyQoU,; for all g with g(0) = 0.

Applies, in particular, to symmetric domains. An equivariant quan-
tization on such domain is thus completely determined by the single
operator (g, satisfying (). We say that it is generated by Q.



Reformulation of equivariance in the language of representation theory:
the quantization

f—Qy, Func(Q2) — Op(H),
intertwines two representations of G, namely, the representation on func-
tions given by composition:
fr—1Tfeuy,
and the representation on operators by conjugation:
X — U, XU,.

AIM OF THIS TALK: extension to real, rather than complex, manifolds.

Flavour: more representation theory than physics.

Objects:
complex symmetric domains real symmetric domains
(equivariant) operator fields (equivariant) function fields
(Toeplitz) quantization (Toeplitz) extension

star product star restriction.



BOUNDED SYMMETRIC DOMAINS

(Hermitian symmetric spaces of non-compact type)

Domains  C C? such that Vz,y € Q 3¢ € G = {the group of all
biholomorphic self-maps} interchanging x and y, satisfying ¢ = ¢~* and
having only isolated fixed-points.

Has Harish-Chandra realization as circular, convex domain containing 0.

The group G then operates transitively, and if we denote by K the
stabilizer of 0

K ={g€G:g(0)=0},

then G is a semisimple Lie group, K a maximal compact subgroup, and

Q=G/K.

In fact KCU(d).



Jordan-theoretic description:
C? =: Z has a structure of Hermitian Jordan triple,
() = the unit ball of Z,
K = the group of all automorphisms of Z.

Polar decomposition: Jey,...,e,. € Z (r = rank) such that any z € Z
can be written in the form

2z =k(tie1 +toea + -+ tre,),
with £ € K and unique t; > to > --- > t,. > 0; z € Q if and only if
t1 < 1.

Jordan determinant: polynomial on Z x Z, holomorphic in z, 3, uniquely
determined by

r

h(zz) =] -8

j=1



Bergman kernels on symmetric domains: the Bergman kernel
K(z,y) = ¢ h(z,y)~",
c=vol(Q), pe{2,3,4,...} — genus.
Furthermore, if we consider the measures
duy(z) :==c, h(z,2)" " Pdz,

where ¢, is normalizing constant to make p, (£2) = 1, then the Bergman

spaces
H” hol (Q dﬂu)

are nontrivial for all ¥ > p — 1 and have reproducing kernels

Ky (z,y) = h(z,y)™".



Invariant measure:
du(z) = h(z,2) Pdz
is the (unique) G-invariant measure on ).
Representation of GG: The operators
Uy f(2) = flg7"(2) - Ty (2)"/?P,

where J, denotes the complex Jacobian of g, are a projective unitary
representation of G on H".



Toeplitz calculi on bounded symmetric domains: equivariant, and
generated by the operator

To = (-, ko)ko = (-, 1)1,
i.e. by the rank-one projection onto the constants.
Toeplitz star product:
Tyvg = T5Ty,

asymptotically as v — +o0. [Bortwick-Lesniewski-Upmeier]
(So h = 1/v \, 0 plays the role of Planck constant.)



Example of BSD: unit ball of m x n complex matrices,

In :=4{Z € C™" || Z]|lcn—cm < 1}.
Group of motions/stabilizer: G =SU(m,n), K =U(m) x U(n).
[For n = 1, the unit ball of C™; for m = n = 1, the unit disc.]
Genus p = m + n; Jordan determinant: h(zx,y) = det(I — xzy*).

Weighted Bergman spaces/kernels: holomorphic function square-integrable
with respect to ¢, det(I — zz*)¥~™~"; reproducing kernels:

K, (x,y) =det(I —xy™)™". O



Classification: by Cartan, any BSD is (biholomorphic to) a Cartesian
product of the “building blocks” (Cartan domains):

o L = Upn(C)/Upn(C) x Up(C) = {Z € C™ " . [ — Z*Z > 0}
(matrix balls);

o I1,, = Spon(R)/Un(C)={Z € Ly : Z' = Z}
(symmetric matrices);

o [T, = O0p(H)/Upn(C) ={Z € Lym : Zt = -2}

(skew-symmetric matrices);
Py IVm — SOm,2/SOn,O X 50072 (Lle balls),
o IV = E6(—14)/ Spinlo XSOQ, VI = E7(_25)/E6 X SOQ

Thus — we have nice equivariant quantizations on these domains in C".

(Extends also to compact counterparts — Grassmann manifolds etc.)



OPERATOR FIELDS ON REPRODUCING KERNEL SPACES

Assume we have a Hilbert space H with reproducing kernel,

f(z):<f7Kz>; fGH,ZEQ.

For any operator on H:

Tf(x) = (Tf,K,) = {f,T°K.,) /f VT K, () dy

= any 1’ is an integral operator, with integral kernel

~

T(x,y) = T*Ko(y) = (TKy, Ky) = TKy().

The correspondence T' «— T is one-to-one. Furthermore, if H consists
of holomorphic functions (e.g. for Bergman spaces), T' is holomorphic
in z,79.



In the holomorphic case, we can thus identify operators on ‘H with (some)
holomorphic functions on  x €.

(Here Q is  with the conjugate complex structure.)

Under this identification, operator calculi are just maps
fr— é}, Func(Q2) — Hol(Q x Q).

(Similarly, operator fields are maps Q — Hol(Q x Q).)

How does equivariance show in this picture?



Equivariance:

Qfog — Ug*Qng°

One has (direct computation)

(U;TU9> = (Uy ®U9) T.
Thus equivariant calculi correspond to maps Func(2) — Hol(2 x Q)

satisfying N N
Qrog = Uy @Ug) Q.

What about star products?



Recall: star product was defined (heuristically) by
Qng = Qf*g

—_—

In order to pass to the operator-kernel formalism: need @ (Q,.

Instead of a bilinear map (f, g) — f * g, we can view * as a map
% : Func(Q x Q) — Func(Q), (f®g)— (f*xg)

(where (f ® g)(z,y) := f(x)g(y))-

Observation: for Toeplitz operators,

(Direct computation.) Thus the star-product f * g can be defined by

AXQ - . Q)
Trgg B = Ty

Directly generalizes to any pair of calculi QQXﬁ and Q on  x  resp. €.



Summary: upon identifying operators 1" with their operator kernels T,
the following picture emerged.

Quantization:
f—Qy, Func(Q) — Hol(Q x Q).

Operator field: B
z— Q. 2 — Hol(2 x Q).

Star-product:
f®g— fx*g, Func(Q2 x ) — Func(),
which is a deformation of the pointwise product f ® g — fg.

Equivariance: intertwines the corresponding actions of G.



PASSAGE FROM COMPLEX TO REAL BOUNDED SYMMETRIC DOMAINS

FOR REAL SYMMETRIC DOMAINS: use this operator-kernel formalism,
and replace 2 and €2 x €2 by a real BSD g and its complexification ¢.

“Quantization” (better: “extension”):
f—Qy, Func(Qr) — Hol(Q2¢).

“Operator field” (better: “function field”):

z2— Q,, Qr — Hol(Q¢).

Star-product (better: “star restriction”):

F — #F, Func(Q¢) — Func(Qr);
should be deformation of restriction F' — Flq.

Equivariance: intertwine the corresponding actions of the group.

Example: the Bargmann transform L2(Rn) — Lﬁol(C”, e_|z|2dz).



REAL BOUNDED SYMMETRIC DOMAINS

Setup: Q¢ = G/K a complex bounded symmetric domain
z +— 2% involution (conjugate-linear, z## = 2)
such that Q¢ = Q¢
Or:={2€Qc:2" =2}
Gr:={g€G:g(z") = (92)"}, Kp = Gr N K
Gr reductive, Qg ~ Gr/Kr — real BSD

Examples:
o Oc=D, 2" =7 ... Or = (—1,+1)
o Oc=1In, 2" =% ... Qr = I, NR™*™
o Oc = Iy, 27 =2 ... Qr = [3cli-adjoint
e Oc=C", z"=%2 ... Qr = R"
¢ Qc=0xQ, z,0)” = (w,z) ... Qrp =Q. O



Qr Gr/Kr by r_R arbrR cr d rc Qc

Iy Urrpb(R)/Up(R)xUryp(R) D./B, v 1 b 0 r(r4+b) 1T I
I3y ortop Urrpo(H) /Up(H)xUr gy (H) Cr/BCr v 4 4b 3 4r(r+b)  2r Ioporyop

Vv ©o Us.2(H)/Us(H) x U (H) Bs 2 3 4 0 16 2V
IITR G- (R)/U,(R) A, r 1 — —  ir(r+1) r III,
Iz, G-(C)/U-(C) A r2 — - r? r oI,
I G,.(H)/U,.(H) A, r 4 — —  r(2r=1) r Il
VI®C0  G4(H)/Us(H) D3 340 0 27 3 VI
I Spa,(C) /U, (H) o r 2 0 2 r(2r+l) 2r I,
ITS . . O2r4c(C)/Uzrtc(R) D./B, 7T 2 2 0 r(2(r+e)—1)r Ilzpyic
V3 S0,1%x801,4/80,,0xS00,q D2/A2 2n/a0 0 p+q 2 IVyi,
IVRY 80,,1/S0,.0 Cy 1 — 0 n—1 n 2 IV,
VO Fy(—20y/SO(9) BC: 1 — 8 7 16 2V
VI® Eg(—26)X0(2)/F4xO(1) As 3 8 — — 27 3 VI

(Will exclude the Dy case in the sequel.)



OPERATOR CALCULI ON REAL BSDs

Recall: du(z) = h(z,2) P dz was a G-invariant measure on Q¢.
Fact: dugr := h(z, x)_p/2 dx is an Gr-invariant measure on )R.

“Operator calculus” on g (rather: operator extension):

A:f Ay, CF(QR) = Lya(Qc),  fog— UjAy.

“Operator field” on Qg (rather: function field):

z— Ay, Qr — Li,(Qc), g(x) — U,A,.

Operator field gives rise to operator calculus:
f = Af = f(:E) Am d,LLR(ZE).
Qr

Uniquely determined by Ag; Ag fixed by all U, k € K.



Example: real Toeplitz calculus — corresponds to the choice

Ag = 1.
This yields the operator field
Ap = Ko /| Ko =: ko

(the coherent states on Qg C Q¢!). Corresponding Toeplitz calculus
(“Toeplitz extension”) — combinations of the coherent states:

Ap = ) f(x) ky dur ().

For Qr = Q, Qc = Q x Q, with Q a complex BSD in C® — yields the
previous (usual) Toeplitz operators.

Example: For Qg = R"”, Qc = C" — yields the Bargmann transform.

Weyl calculus on Qr — more complicated.



STAR PRODUCTS ON REAL BSDs

Recall: in the complex situation, defined by
TyTg =: Tug,

or

OxQr- __ mom 0
Tf®g K = Tng = Tf*g.

ANALOGUE FOR REAL-BSDs:

THeT = TR

>

where
I(z):= K(z,z#)1/2

is the holomorphic function which arises from I = K. (Or from #1 = 1.)



Defines “star-restriction”

#:F— #F, Func(Qc) — Func(QgR).
Depends on the Planck parameter v = 1/h through the spaces

HY = L3 (Qc, dps),  dpu(2) = ¢ h(z,2)” du(2)

on which the Toeplitz operators ngc,Tif; act.

Main result: existence of semiclassical limit v — +o0.




Theorem 1. For any F € C*(Qc) N L™ (Qc),
#F => v pL;F,
§=0

where p is the operator of restriction from Q¢ to Qdr, and L; are some
differential operators which are Gr-invariant:

Li(Fog)=(LjF)og Vge€ Gr.

Furthermore,
Ly =1,

and L; involve only holomorphic derivatives, i.e.

There is also a (kind of) explicit description for L;.



BEREZIN TRANSFORM ON REAL SYMMETRIC DOMAINS

Viewing an operator calculus on a real BSD
A : functions on Qr — Hol(Q¢)
as a map from L?(Qg,du) into H”, one can consider the adjoint
A* : Hol(2¢) — functions on Qg.

(In the original “complex” situation, this is the dequantization map from
operators to functions.)

Example. For operator calculi arising from an operator field,
A*F(x) = (F, Ay).
In the complex case,
A*T(z) =tr(AT). O
The composed map
B=A"A:f— Ay — A"A;, functions on Qg — functions on Qg,

is called the Berezin transform.

[Berezin| [Unterberger-Upmeier| [Arazy-Orsted|



Explicitly:

T. T v/2 v/2
Bfta)=e, [ 1(0 M TS

dpr(C).

Example: for the Segal-Bargmann space of g = R", Qc = C* —
the heat operator, B = e2/2¥,

Stationary phase method ~~ asymptotic expansion:
o
Bf:ZV_Jij as v — 400,
=0
with Gr-invariant differential operators R; on Qgr, Ry = id.

Let B~! denote the inverse of the right-hand side in the ring of all formal

power series in v~ 1.



Theorem 2. For F' holomorphic,
B#F = F.
That is,
#F =B 'F.
In a certain precise sense, # is thus the “complexification” of the formal

inverse of the Berezin transform B.

(Seems to be a new result even for the complex case.)



FINER STRUCTURE OF B

Consider the space P of all holomorphic polynomials on C¢ D Q.
Fock inner product:

P, q)r =7¢ /C ) p(2)q(z) e dz = q(9)p(0).

Under the action p — po k of K¢, Peter-Weyl decomposition:
P =D Pm.
m

where m = (mla"'amr)a mq 2m2 > Zmr ZO
(partitions/signatures of length r). [Schmid]
(r = the rank of Q¢)

Pm C homogeneous polynomials of degree |m| :=mq + - + m,.



Recall: ' |
#F=> v IpL;F,  Bf=)Y vIRf
J J

with L;, R; Gr-invariant differential operators on {1c, {dr respectively.

Since GRr is transitive on dp == pL;, R; determined uniquely by
their action at the origin, which is a Kr-invariant constant coefficient
differential operator on C¢ resp. R?.

= R, f(0) =p;(V)f(0) for some Kgr-invariant polynomial p; on R%;

L; contains only holomorphic derivatives = L;F(0) = [;(0) for some
Kg-invariant polynomial I; on C?.
Peter-Weyl decomposition: Pj = mPim (& similarly for [;),

where only those m occur for which PEr £ {0}. (spherical

signatures)

Known: PrlxiR = Com- (Jack polynomials)



Altogether: at the origin,

B = ZV_jRj = Zl/_jpj(V) = Zy_jpj,m(v =
J J J,m

Similarly,

$m
Z {V}m

#m
A kind of Peter-Weyl components of B, #.

For Qr = Q: By, described by [Arazy-Orsted].




Theorem 3. For real symmetric domains g not of type A,

- []m
is given by
[V] B (2T’R/T’0)2|m| (dX) (VTC +dx — dy>
" dm TR/ m 27‘R m’

where d,, = dimP,, n being the spherical signature associated to m,
and

rr(rr — 1
dx =TrR + R( P; )GJR, dy = rrcr,
are certain constants depending only on QR. (See the table.)

Problems. e root system of type A 7

° #m ? (Unknown except for Qr=R".)



CONCLUDING REMARKS

(1) Other complexifications for symmetric spaces:

QO=G/K ~ GC°/KC€
“complex crown” (Gindinkin, Kroetz, Olafsson, Faraut, ...)

GC has no relation to our complexification Q¢ of €.
(2) Physics applications:
symmetric domains = Riemannian symmetric spaces

~ symplectic symmetric spaces
WKB-type quantizations (Bieliavsky, Gutt, Pevzner, ... )

Is there an approach like ours but based on the symplectic structure?
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