Toeplitz quantization on real symmetric domains

Miroslav Engliš (Prague)
[joint work with Harald Upmeier (Marburg)]

Abstract. An analogue of the Berezin-Toeplitz star product, familiar from deformation quantization, is studied in the setting of real bounded symmetric domains. The analogue turns out to be a certain invariant operator, which one might call star restriction, from functions on the complexification of the domain into functions on the domain itself. In particular, we establish the usual (i.e. semiclassical) asymptotic expansion of this star restriction, and describe real-variable analogues of several other results.

Quantization (operator calculus):

$$
f \text { function on } \Omega \longmapsto Q_{f} \in \mathrm{Op}(H)
$$

$\Omega=$ manifold, $H=$ Hilbert space.
Usually also

$$
Q_{1}=I .
$$

Dequantization (symbol calculus): opposite direction,

$$
T \in \mathrm{Op}(H) \longmapsto \widetilde{T} \text { function on } \Omega .
$$

QUANTIZATION IN PHYSICS

Traditional: $\Omega=$ symplectic manifold,

$$
\left[Q_{f}, Q_{g}\right]=\frac{i h}{2 \pi} Q_{\{f, g\}} \quad\left(+O\left(h^{2}\right)\right)
$$

irreducibility.

Here $\{\cdot, \cdot\}=$ Poisson bracket; $h \rightarrow 0$ Planck's constant.
Geometric quantization - no-go theorems.
Deformation quantization - star product $*$:

$$
Q_{f} Q_{g}=: Q_{f * g}
$$

at least in some asymptotic sense as $h \searrow 0$.
(View f, g as formal power series in h.)

ToEplitz QUANTIZATION

For a Kähler manifold Ω, with Kähler form ω,
take a real-valued potential Φ for ω
(i.e. $\frac{\partial^{2} \Phi}{\partial z_{j} \partial \bar{z}_{k}}=g_{j \bar{k}}$, the metric associated to ω);
and consider the subspace $L_{\text {hol }}^{2}$ of all holomorphic functions in L^{2} on Ω with respect to the measure $e^{-\Phi / h} \wedge^{n} \omega$.
Let $P: L^{2} \rightarrow L_{\text {hol }}^{2}$ be the orthogonal projection.
A Toeplitz operator with symbol $f \in L^{\infty}(\Omega)$ is the operator on $L_{\text {hol }}^{2}$ defined by

$$
T_{f}: u \longmapsto P(f u) .
$$

All these objects $\left(L^{2}, L_{\text {hol }}^{2}, P, T_{f}\right)$ depend on $h, h>0$.
(Obvious variant if the potential Φ exists only locally - spaces of holomorphic L^{2} sections of suitable line-bundles, which exist provided ω satisfies the appropriate integrality conditions, and h can then only assume the discrete set of values $h=1 / m, m=1,2,3, \ldots$)

Theorem. $f \mapsto T_{f}$ is a deformation quantization in the above sense.
\Longrightarrow (Berezin-) Toeplitz quantization.
[Klimek-Lesniewski 1992] — disc, Riemann surfaces
[Coburn 1992] - Euclidean C ${ }^{n}$
[Bordemann-Meinrenken-Schlichenmaier 1994] - compact manifolds ([Karabegov 1996] - separation of variables)
[M.E. 1997-2002] - pseudoconvex domains with Kähler metric

Also generalizations beyond Kähler case - spin structures etc. [Ma, Marinescu, ...].

OPERATOR FIELDS

Operator field:

$$
\Omega \ni z \longmapsto Q_{z} \in \mathrm{Op}(H)
$$

Gives rise to operator calculus by

$$
f \longmapsto Q_{f}:=\int_{\Omega} f(z) Q_{z} d z
$$

for a measure $d z$ on Ω (e.g. the symplectic volume ω^{n}).
[Gracia-Bondia] (quantizers), [Ali-Doebner] (prime quantization) representation theory [Harish-Chandra], time-frequency analysis

ToEplitz operators and operator fields

Let Ω be a domain in \mathbf{C}^{n} and $d \mu(z)$ a measure on Ω continuous w.r.t. the Lebesgue measure $d z$. Consider the space

$$
H=L_{\mathrm{hol}}^{2}(\Omega, d \mu)
$$

of all holomorphic functions on Ω square-integrable w.r.t. μ. Then the evaluation functionals

$$
H \ni f \longmapsto f(z) \in \mathbf{C}
$$

are continuous, hence are given by scalar product with some $K_{z} \in H$:

$$
f(z)=\left\langle f, K_{z}\right\rangle=\int_{\Omega} f(x) K(z, x) d \mu(x), \quad K(z, x):=K_{x}(z)=\overline{K_{z}(x)}
$$

One calls H a Bergman space and $K(z, x)$ the (weighted) Bergman kernel.
Toeplitz operator on the Bergman space with symbol f :

$$
T_{f}: H \rightarrow H, \quad T_{f} \phi:=P(f \phi)
$$

where $P: L^{2}(\Omega, d \mu) \rightarrow H=L_{\text {hol }}^{2}(\Omega, d \mu)$ is the orthogonal projection.

Notation: normalized reproducing kernels

$$
k_{z}:=\frac{K_{z}}{\left\|K_{z}\right\|}=\frac{K(\cdot, z)}{K(z, z)^{1 / 2}} .
$$

("coherent states")
Fact: $f \mapsto T_{f}$ is given by the rank-one operator field

$$
T_{z}:=\left\langle\cdot, k_{z}\right\rangle k_{z}
$$

with respect to the measure $K(z, z) d \mu(z)$.
Proof: For any $u, v \in H$,

$$
\begin{aligned}
\left\langle T_{f} u, v\right\rangle & =\langle P(f u), v\rangle=\langle f u, v\rangle \\
& =\int f(z) u(z) \overline{v(z)} d \mu(z) \\
& =\int f(z)\left\langle u, K_{z}\right\rangle\left\langle K_{z}, v\right\rangle d \mu(z) \\
& =\int f(z)\left\langle u, k_{z}\right\rangle\left\langle k_{z}, v\right\rangle K(z, z) d \mu(z)
\end{aligned}
$$

EQUIVARIANCE

Assume that G is a group of transformations of Ω (symmetries),

$$
G \ni g: \Omega \rightarrow \Omega,
$$

and U is a (projective) unitary representation of G on H :

$$
U: g \mapsto U_{g} \in \mathrm{Op}(H)
$$

The quantization is called equivariant if

$$
Q_{f \circ g}=U_{g}^{*} Q_{f} U_{g}
$$

On the level of operators fields: if

$$
Q_{f}=\int_{\Omega} f(z) Q_{z} d \mu(z)
$$

where $d \mu$ is G-invariant, equivariance corresponds to

$$
Q_{g(z)}=U_{g} Q_{z} U_{g}^{*}
$$

Equivariance of Toeplitz quantization: for holomorphic transformations g preserving the Kähler metric, there are the representations of the form

$$
U_{g}: f \longmapsto f \circ g^{-1} \cdot m_{g}
$$

with some "multipliers" m_{g} (typically, powers of the Jacobian of g).
With respect to these, Toeplitz quantization is equivariant.

$$
T_{f \circ g}=U_{g}^{*} T_{f} U_{g}
$$

More specifically,

$$
T_{z}=\left\langle\cdot, k_{z}\right\rangle k_{z}
$$

is an equivariant operator field, and

$$
K_{h}(z, z) e^{-\Phi / h} \wedge^{n} \omega
$$

is invariant under such transformations g.

When the equivariance is most prominent: if the symmetries are rich in particular, if G acts on Ω transitively (homogeneous spaces), or if even the isotropy groups are large (symmetric spaces/domains).

In particular, if G acts on Ω transitively then from

$$
Q_{g(z)}=U_{g} Q_{z} U_{g}^{*}
$$

it follows that any equivariant operator field (and, hence, also the equivariant quantization induced by it) is uniquely determined by the single operator Q_{0} for any fixed base-point $0 \in \Omega$. Namely, if $z \in \Omega$, by transitivity there is $g \in G$ with $g(0)=z$, and then

$$
Q_{z}=Q_{g(0)}=U_{g} Q_{0} U_{g}^{*}
$$

Furthermore, Q_{0} must be invariant under the elements fixing 0 , i.e.
$(*) \quad Q_{0}=U_{g} Q_{0} U_{g}^{*} \quad$ for all g with $g(0)=0$.
Applies, in particular, to symmetric domains. An equivariant quantization on such domain is thus completely determined by the single operator Q_{0}, satisfying $(*)$. We say that it is generated by Q_{0}.

Reformulation of equivariance in the language of representation theory: the quantization

$$
f \mapsto Q_{f}, \quad \operatorname{Func}(\Omega) \rightarrow \operatorname{Op}(H),
$$

intertwines two representations of G, namely, the representation on functions given by composition:

$$
f \longmapsto f \circ g,
$$

and the representation on operators by conjugation:

$$
X \longmapsto U_{g}^{*} X U_{g} .
$$

AIM OF THIS TALK: extension to real, rather than complex, manifolds.
Flavour: more representation theory than physics.
Objects:
complex symmetric domains (equivariant) operator fields
(Toeplitz) quantization
star product
real symmetric domains (equivariant) function fields
(Toeplitz) extension star restriction.

BOUNDED SYMMETRIC DOMAINS

(Hermitian symmetric spaces of non-compact type)

Domains $\Omega \subset \mathbf{C}^{d}$ such that $\forall x, y \in \Omega \exists \phi \in G=$ \{the group of all biholomorphic self-maps\} interchanging x and y, satisfying $\phi=\phi^{-1}$ and having only isolated fixed-points.

Has Harish-Chandra realization as circular, convex domain containing 0.
The group G then operates transitively, and if we denote by K the stabilizer of 0

$$
K=\{g \in G: g(0)=0\}
$$

then G is a semisimple Lie group, K a maximal compact subgroup, and $\Omega \cong G / K$.

In fact $K \subset U(d)$.

Jordan-theoretic description:

$\mathbf{C}^{d}=: Z$ has a structure of Hermitian Jordan triple,
$\Omega=$ the unit ball of Z,
$K=$ the group of all automorphisms of Z.
Polar decomposition: $\exists e_{1}, \ldots, e_{r} \in Z(r=\underline{\text { rank }})$ such that any $z \in Z$ can be written in the form

$$
z=k\left(t_{1} e_{1}+t_{2} e_{2}+\cdots+t_{r} e_{r}\right)
$$

with $k \in K$ and unique $t_{1} \geq t_{2} \geq \cdots \geq t_{r} \geq 0 ; z \in \Omega$ if and only if $t_{1}<1$.

Jordan determinant: polynomial on $Z \times Z$, holomorphic in x, \bar{y}, uniquely determined by

$$
h(z, z)=\prod_{j=1}^{r}\left(1-t_{j}^{2}\right)
$$

Bergman kernels on symmetric domains: the Bergman kernel

$$
K(x, y)=c h(x, y)^{-p}
$$

$c=\operatorname{vol}(\Omega), p \in\{2,3,4, \ldots\}-$ genus.
Furthermore, if we consider the measures

$$
d \mu_{\nu}(z):=c_{\nu} h(z, z)^{\nu-p} d z
$$

where c_{ν} is normalizing constant to make $\mu_{\nu}(\Omega)=1$, then the Bergman spaces

$$
\mathcal{H}^{\nu}:=L_{\mathrm{hol}}^{2}\left(\Omega, d \mu_{\nu}\right)
$$

are nontrivial for all $\nu>p-1$ and have reproducing kernels

$$
K_{\nu}(x, y)=h(x, y)^{-\nu}
$$

Invariant measure:

$$
d \mu(z)=h(z, z)^{-p} d z
$$

is the (unique) G-invariant measure on Ω.
Representation of G : The operators

$$
U_{g} f(z):=f\left(g^{-1}(z)\right) \cdot J_{g^{-1}}(z)^{\nu / 2 p},
$$

where J_{g} denotes the complex Jacobian of g, are a projective unitary representation of G on \mathcal{H}^{ν}.

Toeplitz calculi on bounded symmetric domains: equivariant, and generated by the operator

$$
T_{0}=\left\langle\cdot, k_{0}\right\rangle k_{0}=\langle\cdot, \mathbf{1}\rangle \mathbf{1},
$$

i.e. by the rank-one projection onto the constants.

Toeplitz star product:

$$
T_{f * g}=T_{f} T_{g},
$$

asymptotically as $\nu \rightarrow+\infty$. [Bortwick-Lesniewski-Upmeier] (So $h=1 / \nu \searrow 0$ plays the role of Planck constant.)

Example of BSD: unit ball of $m \times n$ complex matrices,

$$
I_{m n}:=\left\{Z \in \mathbf{C}^{m \times n}:\|Z\|_{\mathbf{C}^{n} \rightarrow \mathbf{C}^{m}}<1\right\} .
$$

Group of motions/stabilizer: $\quad G=S U(m, n), K=U(m) \times U(n)$.
[For $n=1$, the unit ball of \mathbf{C}^{m}; for $m=n=1$, the unit disc.]
Genus $p=m+n$; Jordan determinant: $\quad h(x, y)=\operatorname{det}\left(I-x y^{*}\right)$.
Weighted Bergman spaces/kernels: holomorphic function square-integrable with respect to $c_{\nu} \operatorname{det}\left(I-z z^{*}\right)^{\nu-m-n}$; reproducing kernels:

$$
K_{\nu}(x, y)=\operatorname{det}\left(I-x y^{*}\right)^{-\nu} .
$$

Classification: by Cartan, any BSD is (biholomorphic to) a Cartesian product of the "building blocks" (Cartan domains):

- $I_{m n}=U_{m, n}(\mathbf{C}) / U_{m}(\mathbf{C}) \times U_{n}(\mathbf{C})=\left\{Z \in \mathbf{C}^{m \times n}: I-Z^{*} Z>0\right\}$ (matrix balls);
- $I I_{m}=S p_{2 m}(\mathbf{R}) / U_{m}(\mathbf{C})=\left\{Z \in I_{m m}: Z^{t}=Z\right\}$ (symmetric matrices);
- $I I I_{m}=O_{m}(\mathbf{H}) / U_{m}(\mathbf{C})=\left\{Z \in I_{m m}: Z^{t}=-Z\right\}$ (skew-symmetric matrices);
- $I V_{m}=S O_{m, 2} / S O_{n, 0} \times S O_{0,2} \quad$ (Lie balls);
- $V=E_{6(-14)} / \operatorname{Spin}_{10} \times S O_{2}, V I=E_{7(-25)} / E_{6} \times S O_{2}$.

Thus - we have nice equivariant quantizations on these domains in \mathbf{C}^{n}.
(Extends also to compact counterparts - Grassmann manifolds etc.)

OpERATOR FIELDS ON REPRODUCING KERNEL SPACES

Assume we have a Hilbert space \mathcal{H} with reproducing kernel,

$$
f(z)=\left\langle f, K_{z}\right\rangle, \quad f \in \mathcal{H}, z \in \Omega
$$

For any operator on \mathcal{H} :

$$
T f(x)=\left\langle T f, K_{x}\right\rangle=\left\langle f, T^{*} K_{x}\right\rangle=\int_{\Omega} f(y) \overline{T^{*} K_{x}(y)} d y
$$

\Rightarrow any T is an integral operator, with integral kernel

$$
\widetilde{T}(x, y)=\overline{T^{*} K_{x}(y)}=\left\langle T K_{y}, K_{x}\right\rangle=T K_{y}(x)
$$

The correspondence $T \longleftrightarrow \widetilde{T}$ is one-to-one. Furthermore, if \mathcal{H} consists of holomorphic functions (e.g. for Bergman spaces), \widetilde{T} is holomorphic in x, \bar{y}.

In the holomorphic case, we can thus identify operators on \mathcal{H} with (some) holomorphic functions on $\Omega \times \bar{\Omega}$.
(Here $\bar{\Omega}$ is Ω with the conjugate complex structure.)
Under this identification, operator calculi are just maps

$$
f \longmapsto \widetilde{Q_{f}}, \quad \operatorname{Func}(\Omega) \rightarrow \operatorname{Hol}(\Omega \times \bar{\Omega}) .
$$

(Similarly, operator fields are maps $\Omega \rightarrow \operatorname{Hol}(\Omega \times \bar{\Omega})$.)
How does equivariance show in this picture?

Equivariance:

$$
Q_{f \circ g}=U_{g}^{*} Q_{f} U_{g} .
$$

One has (direct computation)

$$
\left(\widetilde{U_{g}^{* T U_{g}}}\right)=\left(U_{g} \otimes \bar{U}_{g}\right) \widetilde{T}
$$

Thus equivariant calculi correspond to maps $\operatorname{Func}(\Omega) \rightarrow \operatorname{Hol}(\Omega \times \bar{\Omega})$ satisfying

$$
\widetilde{Q}_{f \circ g}=\left(U_{g} \otimes \bar{U}_{g}\right) \widetilde{Q}_{f} .
$$

What about star products?

Recall: star product was defined (heuristically) by

$$
Q_{f} Q_{g}=Q_{f * g} .
$$

In order to pass to the operator-kernel formalism: need $\widetilde{Q_{f} Q_{g}}$.
Instead of a bilinear map $(f, g) \mapsto f * g$, we can view $*$ as a map

$$
*: \operatorname{Func}(\Omega \times \bar{\Omega}) \rightarrow \operatorname{Func}(\Omega), \quad(f \otimes g) \mapsto(f * g)
$$

(where $(f \otimes g)(x, y):=f(x) g(y))$.
Observation: for Toeplitz operators,

$$
\widetilde{T_{f} T_{g}}=T_{f \otimes g}^{\Omega \times \bar{\Omega}} K .
$$

(Direct computation.) Thus the star-product $f * g$ can be defined by

$$
T_{f \otimes g}^{\Omega \times \bar{\Omega}} K=: \widetilde{T_{f * g}^{\Omega}} .
$$

Directly generalizes to any pair of calculi $Q^{\Omega \times \bar{\Omega}}$ and Q on $\Omega \times \bar{\Omega}$ resp. Ω.

Summary: upon identifying operators T with their operator kernels \widetilde{T}, the following picture emerged.

Quantization:

$$
f \mapsto Q_{f}, \quad \operatorname{Func}(\Omega) \rightarrow \operatorname{Hol}(\Omega \times \bar{\Omega})
$$

Operator field:

$$
z \mapsto Q_{z}, \quad \Omega \rightarrow \operatorname{Hol}(\Omega \times \bar{\Omega})
$$

Star-product:

$$
f \otimes g \mapsto f * g, \quad \operatorname{Func}(\Omega \times \Omega) \rightarrow \operatorname{Func}(\Omega)
$$

which is a deformation of the pointwise product $f \otimes g \mapsto f g$.
Equivariance: intertwines the corresponding actions of G.

PASSAGE FROM COMPLEX TO REAL BOUNDED SYMMETRIC DOMAINS

FOR REAL SYMMETRIC DOMAINS: use this operator-kernel formalism, and replace Ω and $\Omega \times \bar{\Omega}$ by a real $\operatorname{BSD} \Omega_{\mathbf{R}}$ and its complexification $\Omega_{\mathbf{C}}$. "Quantization" (better: "extension"):

$$
f \mapsto Q_{f}, \quad \operatorname{Func}\left(\Omega_{\mathbf{R}}\right) \rightarrow \operatorname{Hol}\left(\Omega_{\mathbf{C}}\right)
$$

"Operator field" (better:"function field"):

$$
z \mapsto Q_{z}, \quad \Omega_{\mathbf{R}} \rightarrow \operatorname{Hol}\left(\Omega_{\mathbf{C}}\right)
$$

Star-product (better: "star restriction"):

$$
F \mapsto \# F, \quad \operatorname{Func}\left(\Omega_{\mathbf{C}}\right) \rightarrow \operatorname{Func}\left(\Omega_{\mathbf{R}}\right)
$$

should be deformation of restriction $\left.F \mapsto F\right|_{\Omega_{\mathbf{R}}}$.
Equivariance: intertwine the corresponding actions of the group.

Example: the Bargmann transform $L^{2}\left(\mathbf{R}^{n}\right) \rightarrow L_{\text {hol }}^{2}\left(\mathbf{C}^{n}, e^{-|z|^{2}} d z\right)$.

REAL BOUNDED SYMMETRIC DOMAINS

Setup: $\Omega_{\mathbf{C}}=G / K$ a complex bounded symmetric domain
$z \mapsto z^{\#}$ involution (conjugate-linear, $z^{\# \#}=z$)
such that $\Omega_{\mathbf{C}}{ }^{\#}=\Omega_{\mathbf{C}}$
$\Omega_{\mathbf{R}}:=\left\{z \in \Omega_{\mathbf{C}}: z^{\#}=z\right\}$
$G_{\mathbf{R}}:=\left\{g \in G: g\left(z^{\#}\right)=(g z)^{\#}\right\}, K_{\mathbf{R}}:=G_{\mathbf{R}} \cap K$ $G_{\mathbf{R}}$ reductive, $\Omega_{\mathbf{R}} \simeq G_{\mathbf{R}} / K_{\mathbf{R}}-\underline{\text { real } \mathrm{BSD}}$

Examples:

- $\Omega_{\mathbf{C}}=\mathbf{D}, z^{\#}=\bar{z} \ldots \Omega_{\mathbf{R}}=(-1,+1)$
- $\Omega_{\mathbf{C}}=I_{m n}, z^{\#}=\bar{z} \ldots \Omega_{\mathbf{R}}=I_{m n} \cap \mathbf{R}^{m \times n}$
- $\Omega_{\mathbf{C}}=I_{n n}, z^{\#}=z^{*} \ldots \Omega_{\mathbf{R}}=I_{n n}^{\text {self-adjoint }}$
- $\Omega_{\mathbf{C}}=\mathbf{C}^{n}, z^{\#}=\bar{z} \ldots \Omega_{\mathbf{R}}=\mathbf{R}^{n}$
- $\Omega_{\mathbf{C}}=\Omega \times \bar{\Omega},(z, \bar{w})^{\#}=(w, \bar{z}) \ldots \Omega_{\mathbf{R}}=\Omega$.

$\Omega_{\mathbf{R}}$	$G_{\mathbf{R}} / K_{\mathbf{R}}$	Σ	$r_{\mathbf{R}} a_{\mathbf{R}} b_{\mathbf{R}}$	$c_{\mathbf{R}}$	d	$r_{\mathbf{C}} \Omega_{\mathbf{C}}$			
$I_{r, r+b}^{\mathbf{R}}$	$U_{r, r+b}(\mathbf{R}) / U_{r}(\mathbf{R}) \times U_{r+b}(\mathbf{R})$	D_{r} / B_{r}	r	1	b	0	$r(r+b)$	r	$I_{r, r+b}$
$I_{2 r, 2 r+2 b}^{\mathbf{H}}$	$U_{r, r+b}(\mathbf{H}) / U_{r}(\mathbf{H}) \times U_{r+b}(\mathbf{H})$	$C_{r} / B C_{r}$	r	4	$4 b$	3	$4 r(r+b)$	$2 r$	$I_{2 r, 2 r+2 b}$
$V^{\mathbf{\mathbf { O } _ { 0 }}}$	$U_{2,2}(\mathbf{H}) / U_{2}(\mathbf{H}) \times U_{2}(\mathbf{H})$	B_{2}	2	3	4	0	16	2	V
$I I I_{r}^{\mathbf{R}}$	$G_{r}(\mathbf{R}) / U_{r}(\mathbf{R})$	A_{r}	r	1	-	-	$\frac{1}{2} r(r+1)$	r	$I I I_{r}$
$I_{r, r}^{\mathbf{C}}$	$G_{r}(\mathbf{C}) / U_{r}(\mathbf{C})$	A_{r}	r	2	-	-	r^{2}	r	$I_{r, r}$
$I I_{2 r}^{\mathbf{H}}$	$G_{r}(\mathbf{H}) / U_{r}(\mathbf{H})$	A_{r}	r	4	-	-	$r(2 r-1)$	r	$I I_{2 r}$
$V I_{0}$	$G_{4}(\mathbf{H}) / U_{4}(\mathbf{H})$	D_{3}	3	4	0	0	27	3	$V I$
$I I I_{2 r}^{\mathbf{H}}$	$S p_{2 r}(\mathbf{C}) / U_{r}(\mathbf{H})$	C_{r}	r	2	0	2	$r(2 r+1)$	$2 r$	$I I I_{2 r}$
$I I_{2 r+\varepsilon}^{\mathbf{R}}$	$O_{2 r+\varepsilon}(\mathbf{C}) / U_{2 r+\varepsilon}(\mathbf{R})$	D_{r} / B_{r}	r	2	2ε	0	$r(2(r+\varepsilon)-1)$	r	$I I_{2 r+\varepsilon}$
$I V_{p+q}^{\mathbf{R}, q}$	$S O_{p, 1} \times S O_{1, q} / S O_{p, 0} \times S O_{0, q}$	D_{2} / A_{2}	2	n / a	0	0	$p+q$	2	$I V_{p+q}$
$I V_{n}^{\mathbf{R}, 0}$	$S O_{n, 1} / S O_{n, 0}$	C_{1}	1	-	0	$n-1$	n	2	$I V_{n}$
$V^{\mathbf{O}}$	$F_{4(-20)} / S O(9)$	$B C_{1}$	1	-	8	7	16	2	V
$V I^{\mathbf{O}}$	$E_{6(-26)} \times O(2) / F_{4} \times O(1)$	A_{3}	3	8	-	-	27	3	$V I$

(Will exclude the D_{2} case in the sequel.)

OPERATOR CALCULI ON REAL BSDS

Recall: $d \mu(z)=h(z, z)^{-p} d z$ was a G-invariant measure on $\Omega_{\mathbf{C}}$.
Fact: $d \mu_{\mathbf{R}}:=h(x, x)^{-p / 2} d x$ is an $G_{\mathbf{R}}$-invariant measure on $\Omega_{\mathbf{R}}$.
"Operator calculus" on $\Omega_{\mathbf{R}}$ (rather: operator extension):

$$
A: f \mapsto A_{f}, \quad C^{\infty}\left(\Omega_{\mathbf{R}}\right) \rightarrow L_{\mathrm{hol}}^{2}\left(\Omega_{\mathbf{C}}\right), \quad f \circ g \mapsto U_{g}^{*} A_{f}
$$

"Operator field" on $\Omega_{\mathbf{R}}$ (rather: function field):

$$
x \mapsto A_{x}, \quad \Omega_{\mathbf{R}} \rightarrow L_{\mathrm{hol}}^{2}\left(\Omega_{\mathbf{C}}\right), \quad g(x) \mapsto U_{g} A_{x}
$$

Operator field gives rise to operator calculus:

$$
f \mapsto A_{f}:=\int_{\Omega_{\mathbf{R}}} f(x) A_{x} d \mu_{\mathbf{R}}(x)
$$

Uniquely determined by $A_{0} ; A_{0}$ fixed by all $U_{k}, k \in K$.

Example: real Toeplitz calculus - corresponds to the choice

$$
A_{0}=1 .
$$

This yields the operator field

$$
A_{x}=K_{x} /\left\|K_{x}\right\|=: k_{x}
$$

(the coherent states on $\Omega_{\mathbf{R}} \subset \Omega_{\mathbf{C}}$!). Corresponding Toeplitz calculus ("Toeplitz extension") - combinations of the coherent states:

$$
A_{f}=\int_{\Omega_{\mathbf{R}}} f(x) k_{x} d \mu_{\mathbf{R}}(x)
$$

For $\Omega_{\mathbf{R}}=\Omega, \Omega_{\mathbf{C}}=\Omega \times \bar{\Omega}$, with Ω a complex BSD in $\mathbf{C}^{n}-$ yields the previous (usual) Toeplitz operators.
Example: For $\Omega_{\mathbf{R}}=\mathbf{R}^{n}$, $\Omega_{\mathbf{C}}=\mathbf{C}^{n}$ - yields the Bargmann transform.
Weyl calculus on $\Omega_{\mathbf{R}}$ - more complicated.

Star products on real BSDs

Recall: in the complex situation, defined by

$$
T_{f} T_{g}=: T_{f * g}
$$

or

$$
T_{f \otimes g}^{\Omega \times \bar{\Omega}} K=\widetilde{T_{f} T_{g}}=\widetilde{T_{f * g}^{\Omega}}
$$

Analogue for REAL-BSDs:

$$
T_{F}^{\Omega_{\mathrm{C}}} \mathcal{I}=T_{\# F}^{\Omega_{\mathrm{R}}}
$$

where

$$
\mathcal{I}(z):=K\left(z, z^{\#}\right)^{1 / 2}
$$

is the holomorphic function which arises from $\widetilde{I}=K$. (Or from $\# \mathbf{1}=\mathbf{1}$.)

Defines "star-restriction"

$$
\#: F \mapsto \# F, \quad \operatorname{Func}\left(\Omega_{\mathbf{C}}\right) \rightarrow \operatorname{Func}\left(\Omega_{\mathbf{R}}\right)
$$

Depends on the Planck parameter $\nu=1 / h$ through the spaces

$$
\mathcal{H}^{\nu} \equiv L_{\mathrm{hol}}^{2}\left(\Omega_{\mathbf{C}}, d \mu_{\nu}\right), \quad d \mu_{\nu}(z)=c_{\nu} h(z, z)^{\nu} d \mu(z)
$$

on which the Toeplitz operators $T_{F}^{\Omega \mathrm{C}}, T_{\# F}^{\Omega_{\mathrm{R}}}$ act.

Main result: existence of semiclassical limit $\nu \rightarrow+\infty$.

Theorem 1. For any $F \in C^{\infty}\left(\Omega_{\mathbf{C}}\right) \cap L^{\infty}\left(\Omega_{\mathbf{C}}\right)$,

$$
\# F=\sum_{j=0}^{\infty} \nu^{-j} \rho L_{j} F
$$

where ρ is the operator of restriction from $\Omega_{\mathbf{C}}$ to $\Omega_{\mathbf{R}}$, and L_{j} are some differential operators which are $G_{\mathbf{R}}$-invariant:

$$
L_{j}(F \circ g)=\left(L_{j} F\right) \circ g \quad \forall g \in G_{\mathbf{R}} .
$$

Furthermore,

$$
L_{0}=I,
$$

and L_{j} involve only holomorphic derivatives, i.e.

$$
L_{j}(\bar{H} F)=\bar{H} L_{j} F \quad \forall H \in \mathrm{Hol} .
$$

There is also a (kind of) explicit description for L_{j}.

BEREZIN TRANSFORM ON REAL SYMMETRIC DOMAINS

Viewing an operator calculus on a real BSD

$$
A: \text { functions on } \Omega_{\mathbf{R}} \rightarrow \operatorname{Hol}\left(\Omega_{\mathbf{C}}\right)
$$

as a map from $L^{2}\left(\Omega_{\mathbf{R}}, d \mu\right)$ into \mathcal{H}^{ν}, one can consider the adjoint

$$
A^{*}: \operatorname{Hol}\left(\Omega_{\mathbf{C}}\right) \rightarrow \text { functions on } \Omega_{\mathbf{R}}
$$

(In the original "complex" situation, this is the dequantization map from operators to functions.)

Example. For operator calculi arising from an operator field,

$$
A^{*} F(x)=\left\langle F, A_{x}\right\rangle
$$

In the complex case,

$$
A^{*} T(z)=\operatorname{tr}\left(A_{z}^{*} T\right)
$$

The composed map

$$
B=A^{*} A: f \mapsto A_{f} \mapsto A^{*} A_{f}, \quad \text { functions on } \Omega_{\mathbf{R}} \rightarrow \text { functions on } \Omega_{\mathbf{R}},
$$

is called the Berezin transform.
[Berezin] [Unterberger-Upmeier] [Arazy-Orsted]

Explicitly:

$$
B f(x)=c_{\nu} \int_{\Omega_{\mathbf{R}}} f(\zeta) \frac{h(x, x)^{\nu / 2} h(\zeta, \zeta)^{\nu / 2}}{h(x, \zeta)^{\nu}} d \mu_{\mathbf{R}}(\zeta) .
$$

Example: for the Segal-Bargmann space of $\Omega_{\mathbf{R}}=\mathbf{R}^{n}, \Omega_{\mathbf{C}}=\mathbf{C}^{n}-$ the heat operator, $B=e^{\Delta / 2 \nu}$.

Stationary phase method \rightsquigarrow asymptotic expansion:

$$
B f=\sum_{j=0}^{\infty} \nu^{-j} R_{j} f \quad \text { as } \nu \rightarrow+\infty
$$

with $G_{\mathbf{R}}$-invariant differential operators R_{j} on $\Omega_{\mathbf{R}}, R_{0}=\mathrm{id}$.
Let B^{-1} denote the inverse of the right-hand side in the ring of all formal power series in ν^{-1}.

Theorem 2. For F holomorphic,

$$
B \# F=F \text {. }
$$

That is,

$$
\# F=B^{-1} F .
$$

In a certain precise sense, \# is thus the "complexification" of the formal inverse of the Berezin transform B.
(Seems to be a new result even for the complex case.)

Finer structure of B

Consider the space \mathcal{P} of all holomorphic polynomials on $\mathbf{C}^{d} \supset \Omega_{\mathbf{C}}$. Fock inner product:

$$
\langle p, q\rangle_{F}:=\pi^{-d} \int_{\mathbf{C}^{d}} p(z) \overline{q(z)} e^{-|z|^{2}} d z=\bar{q}(\partial) p(0)
$$

Under the action $p \mapsto p \circ k$ of $K_{\mathbf{C}}$, Peter-Weyl decomposition:

$$
\mathcal{P}=\bigoplus_{\mathbf{m}} \mathcal{P}_{\mathbf{m}}
$$

where $\mathbf{m}=\left(m_{1}, \ldots, m_{r}\right), m_{1} \geq m_{2} \geq \cdots \geq m_{r} \geq 0$ (partitions/signatures of length r). [Schmid]
($r=$ the rank of $\Omega_{\mathbf{C}}$)
$\mathcal{P}_{\mathbf{m}} \subset$ homogeneous polynomials of degree $|\mathbf{m}|:=m_{1}+\cdots+m_{r}$.

Recall:

$$
\# F=\sum_{j} \nu^{-j} \rho L_{j} F, \quad B f=\sum_{j} \nu^{-j} R_{j} f
$$

with $L_{j}, R_{j} G_{\mathbf{R}}$-invariant differential operators on $\Omega_{\mathbf{C}}, \Omega_{\mathbf{R}}$ respectively.
Since $G_{\mathbf{R}}$ is transitive on $\Omega_{\mathbf{R}} \Longrightarrow \rho L_{j}, R_{j}$ determined uniquely by their action at the origin, which is a $K_{\mathbf{R}}$-invariant constant coefficient differential operator on \mathbf{C}^{d} resp. \mathbf{R}^{d}.
$\Longrightarrow R_{j} f(0)=p_{j}(\nabla) f(0)$ for some $K_{\mathbf{R}}$-invariant polynomial p_{j} on \mathbf{R}^{d};
L_{j} contains only holomorphic derivatives $\Longrightarrow L_{j} F(0)=l_{j}(\partial)$ for some $K_{\mathbf{R}}$-invariant polynomial l_{j} on \mathbf{C}^{d}.

Peter-Weyl decomposition: $\quad p_{j}=\sum_{\mathbf{m}} p_{j, \mathbf{m}} \quad\left(\&\right.$ similarly for $\left.l_{j}\right)$, where only those \mathbf{m} occur for which $\mathcal{P}_{\mathbf{n}}^{K_{\mathbf{R}}} \neq\{0\}$. signatures)

Known: $\mathcal{P}_{\mathbf{m}}^{K_{\mathbf{R}}}=\mathbf{C} \phi_{\mathbf{m}}$.
(Jack polynomials)

Altogether: at the origin,

$$
B=\sum_{j} \nu^{-j} R_{j}=\sum_{j} \nu^{-j} p_{j}(\nabla)=\sum_{j, \mathbf{m}} \nu^{-j} p_{j, \mathbf{m}}(\nabla)=: \sum_{\mathbf{m}} \underbrace{\frac{\phi_{\mathbf{m}}(\nabla)}{[\nu]_{\mathbf{m}}}}_{B_{\mathbf{m}}} .
$$

Similarly,

$$
\# F(0)=\sum_{\mathbf{m}} \underbrace{\frac{\phi_{\mathbf{m}}(\partial) F(0)}{\{\nu\}_{\mathbf{m}}}}_{\#_{\mathbf{m}}} .
$$

A kind of Peter-Weyl components of B, \#.
For $\Omega_{\mathbf{R}}=\Omega: B_{\mathbf{m}}$ described by [Arazy-Orsted].

Theorem 3. For real symmetric domains $\Omega_{\mathbf{R}}$ not of type A,

$$
B_{\mathbf{m}}=\frac{\phi_{\mathbf{m}}(\nabla)}{[\nu]_{\mathrm{m}}}
$$

is given by

$$
[\nu]_{\mathbf{m}}=\frac{\left(2 r_{\mathbf{R}} / r_{\mathbf{C}}\right)^{2|\mathbf{m}|}}{d_{\mathbf{m}}}\left(\frac{d_{X}}{r_{\mathbf{R}}}\right)_{\mathbf{m}}\left(\frac{\nu r_{\mathbf{C}}+d_{X}-d_{Y}}{2 r_{\mathbf{R}}}\right)_{\mathbf{m}}
$$

where $d_{\mathbf{m}}=\operatorname{dim} \mathcal{P}_{\mathbf{n}}, \mathbf{n}$ being the spherical signature associated to \mathbf{m}, and

$$
d_{X}=r_{\mathbf{R}}+\frac{r_{\mathbf{R}}\left(r_{\mathbf{R}}-1\right)}{2} a_{\mathbf{R}}, \quad d_{Y}=r_{\mathbf{R}} c_{\mathbf{R}}
$$

are certain constants depending only on $\Omega_{\mathbf{R}}$. (See the table.)
Problems. • root system of type A ?

- $\#_{\mathrm{m}}$? (Unknown except for $\Omega_{\mathrm{R}}=\mathbf{R}^{n}$.)

CONCLUDING REMARKS

(1) Other complexifications for symmetric spaces:

$$
\begin{aligned}
& \Omega=\underset{\text { "complex crown" (Gindinkin, Kroetz, Olafsson, Faraut, } . . .)}{G / K} G^{\mathbf{C}} / K^{\mathbf{C}} \\
& G^{\mathbf{C}} \text { has no relation to our complexification } \Omega_{\mathbf{C}} \text { of } \Omega
\end{aligned}
$$

(2) Physics applications:
symmetric domains $=$ Riemannian symmetric spaces
\rightsquigarrow symplectic symmetric spaces
WKB-type quantizations (Bieliavsky, Gutt, Pevzner, ...)
Is there an approach like ours but based on the symplectic structure?

REFERENCES

- M. Engliš, H. Upmeier: Toeplitz quantization and asymptotic expansions for real bounded symmetric domains, preprint (2008).
- M. Engliš, H. Upmeier: Toeplitz quantization and asymptotic expansions: geometric construction, SIGMA 5 (2009), 021, 30 pages.

Available from:
http://www.math.cas.cz/~englis/papers.html

