Bergman kernel and Geometric quantization (joint with Weiping Zhang)

Xiaonan Ma

Université Paris 7
University of Lexembourg, Sepember 7, 2009

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Geometric quantization
Quantization commutes with reduction Non-compact case : Vergne's conjecture

Pre-quantum line bundle

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Geometric quantization

Pre-quantum line bundle

- (X, ω) a compact symplectic manifold.

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Pre-quantum line bundle

- (X, ω) a compact symplectic manifold.
- $\left(L, h^{L}\right)$ a Hermitian line bundle over X carrying an Hermitian connection ∇^{L} such that

$$
\frac{\sqrt{-1}}{2 \pi}\left(\nabla^{L}\right)^{2}=\omega
$$

L the pre-quantum line bundle on (X, ω).

Quantization on symplectic manifolds

 Bergman kernel and qeometric quantizationGeometric quantization
Quantization commutes with reduction Non-compact case : Vergne's conjecture

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

operators

- J an almost complex structure on $T X$ such that

$$
g^{T X}(v, w)=\omega(v, J w)
$$

defines a J-invariant Riemmannian metric on $T X$.

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

operators

- J an almost complex structure on $T X$ such that

$$
g^{T X}(v, w)=\omega(v, J w)
$$

defines a J-invariant Riemmannian metric on $T X$.

- spin c Dirac operator

$$
D^{L}: \Omega^{0, \frac{\text { even }}{\text { odd }}}(X, L) \rightarrow \Omega^{0, \text {, odd }} \text { even }(X, L)
$$

Self-adjoint first order elliptic operator.

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

operators

- J an almost complex structure on $T X$ such that

$$
g^{T X}(v, w)=\omega(v, J w)
$$

defines a J-invariant Riemmannian metric on $T X$.

- spin c Dirac operator

$$
D^{L}: \Omega^{0, \frac{\text { even }}{\text { odd }}}(X, L) \rightarrow \Omega^{0, \text {, odd }} \text { even }(X, L)
$$

Self-adjoint first order elliptic operator.

- $D_{ \pm}^{L}:=\left.D^{L}\right|_{\Omega^{0}, \text { even }} ^{\text {od }}(X, L)$.

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

operators

- J an almost complex structure on $T X$ such that

$$
g^{T X}(v, w)=\omega(v, J w)
$$

defines a J-invariant Riemmannian metric on $T X$.

- spin^{c} Dirac operator

$$
D^{L}: \Omega^{0, \frac{\text { even }}{\text { odd }}}(X, L) \rightarrow \Omega^{0, \frac{\text {, odd }}{\text { even }}}(X, L)
$$

Self-adjoint first order elliptic operator.

- $D_{ \pm}^{L}:=\left.D^{L}\right|_{\Omega^{0}, \text { even }} ^{\text {odd }}(X, L)$.
- When (X, ω, J) is Kähler, and L holomorphic line bundle over X,

$$
D^{L}=\sqrt{2}\left(\bar{\partial}^{L}+\left(\bar{\partial}^{L}\right)^{*}\right) .
$$

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Index of D^{L}

- $\operatorname{Ker}\left(D_{+}^{L}\right), \operatorname{Ker}\left(D_{-}^{L}\right)$ are finite dimensional.

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Index of D^{L}

- $\operatorname{Ker}\left(D_{+}^{L}\right), \operatorname{Ker}\left(D_{-}^{L}\right)$ are finite dimensional.
- Quantization space of L is the formal difference

$$
Q(L):=\operatorname{Ind}\left(D^{L}\right)=\operatorname{Ker}\left(D_{+}^{L}\right)-\operatorname{Ker}\left(D_{-}^{L}\right) .
$$

It does not depend on the choice of J and the metric and connection on L.

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Index of D^{L}

- $\operatorname{Ker}\left(D_{+}^{L}\right), \operatorname{Ker}\left(D_{-}^{L}\right)$ are finite dimensional.
- Quantization space of L is the formal difference

$$
Q(L):=\operatorname{Ind}\left(D^{L}\right)=\operatorname{Ker}\left(D_{+}^{L}\right)-\operatorname{Ker}\left(D_{-}^{L}\right) .
$$

It does not depend on the choice of J and the metric and connection on L.

- When (X, ω, J) is Kähler and L is holomorphic, then

$$
Q(L)=H^{0, \text { even }}(X, L)-H^{0, \text { odd }}(X, L) .
$$

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Index of D^{L}

- $\operatorname{Ker}\left(D_{+}^{L}\right), \operatorname{Ker}\left(D_{-}^{L}\right)$ are finite dimensional.
- Quantization space of L is the formal difference

$$
Q(L):=\operatorname{Ind}\left(D^{L}\right)=\operatorname{Ker}\left(D_{+}^{L}\right)-\operatorname{Ker}\left(D_{-}^{L}\right) .
$$

It does not depend on the choice of J and the metric and connection on L.

- When (X, ω, J) is Kähler and L is holomorphic, then

$$
Q(L)=H^{0, \text { even }}(X, L)-H^{0, \text { odd }}(X, L) .
$$

- Atiyah-Singer : $Q(L)=\int_{X} \operatorname{Td}\left(T^{(1,0)} X\right) \operatorname{ch}(L)$

$$
=\int_{X} \operatorname{det}\left(\frac{e^{\sqrt{-1} R^{T^{(1,0)}} X / 2 \pi}}{1-e^{-\sqrt{-1} R^{T^{(1,0)} X} / 2 \pi}}\right) e^{\omega} .
$$

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Index as a virtual representation

- G compact connected Lie group with Lie algebra \mathfrak{g}.

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Index as a virtual representation

- G compact connected Lie group with Lie algebra \mathfrak{g}.
- G acts on X, and its action lifts on L, and commutes with J, h^{L}, ∇^{L}.

Index as a virtual representation

- G compact connected Lie group with Lie algebra \mathfrak{g}.
- G acts on X, and its action lifts on L, and commutes with J, h^{L}, ∇^{L}.
- $\operatorname{Ker}\left(D_{ \pm}^{L}\right)$ are finite dimensional G-representations.

$$
Q(L)=\operatorname{Ker}\left(D_{+}^{L}\right)-\operatorname{Ker}\left(D_{-}^{L}\right) \in R(G) .
$$

Index as a virtual representation

- G compact connected Lie group with Lie algebra \mathfrak{g}.
- G acts on X, and its action lifts on L, and commutes with J, h^{L}, ∇^{L}.
- $\operatorname{Ker}\left(D_{ \pm}^{L}\right)$ are finite dimensional G-representations.

$$
Q(L)=\operatorname{Ker}\left(D_{+}^{L}\right)-\operatorname{Ker}\left(D_{-}^{L}\right) \in R(G) .
$$

- $\Lambda_{+}^{*} \subset \mathfrak{g}^{*}$ the set of dominant weights, V_{γ}^{G} the irreducible representation of G with highest weight $\gamma \in \Lambda_{+}^{*}$. Then

$$
Q(L)=\bigoplus_{\gamma \in \Lambda_{+}^{*}} Q(L)^{\gamma} \cdot V_{\gamma}^{G} .
$$

Index as a virtual representation

- G compact connected Lie group with Lie algebra \mathfrak{g}.
- G acts on X, and its action lifts on L, and commutes with J, h^{L}, ∇^{L}.
- $\operatorname{Ker}\left(D_{ \pm}^{L}\right)$ are finite dimensional G-representations.

$$
Q(L)=\operatorname{Ker}\left(D_{+}^{L}\right)-\operatorname{Ker}\left(D_{-}^{L}\right) \in R(G) .
$$

- $\Lambda_{+}^{*} \subset \mathfrak{g}^{*}$ the set of dominant weights, V_{γ}^{G} the irreducible representation of G with highest weight $\gamma \in \Lambda_{+}^{*}$. Then

$$
Q(L)=\bigoplus_{\gamma \in \Lambda_{+}^{*}} Q(L)^{\gamma} \cdot V_{\gamma}^{G} .
$$

- $Q(L)^{\gamma}$ the multiplicity of V_{γ}^{G} in $Q(L)$. How to compute $Q(L)^{\gamma}$?

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Symplectic reduction

- Moment map $\mu: X \rightarrow \mathbf{g}^{*}$ is defined by

$$
2 \sqrt{-1} \pi \mu(K)=\nabla_{K^{X}}^{L}-L_{K}, \quad K \in \mathfrak{g} .
$$

K^{X} the vector field on X generated by $K \in \mathfrak{g}$.

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Symplectic reduction

- Moment map $\mu: X \rightarrow \mathbf{g}^{*}$ is defined by

$$
2 \sqrt{-1} \pi \mu(K)=\nabla_{K^{X}}^{L}-L_{K}, \quad K \in \mathfrak{g} .
$$

K^{X} the vector field on X generated by $K \in \mathfrak{g}$.

- One has

$$
i_{K} \times \omega=d \mu(K),
$$

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Symplectic reduction

- Moment map $\mu: X \rightarrow \mathbf{g}^{*}$ is defined by

$$
2 \sqrt{-1} \pi \mu(K)=\nabla_{K^{X}}^{L}-L_{K}, \quad K \in \mathfrak{g} .
$$

K^{X} the vector field on X generated by $K \in \mathfrak{g}$.

- One has

$$
i_{K} \times \omega=d \mu(K),
$$

- For a regular value $\nu \in \mathfrak{g}^{*}$ of μ, symplectic reduction :

$$
X_{\nu}=\mu^{-1}(G \cdot \nu) / G
$$

X_{ν} is a compact symplectic orbifold.
$J, \omega, L \Longrightarrow J_{\nu}, \omega_{\nu}, L_{\nu}$ on X_{ν}.

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Geometric quantization
Quantization commutes with reduction Non-compact case : Vergne's conjecture

Guillemin-Sternberg conjecture I

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Guillemin-Sternberg conjecture I

- If (X, ω, J) is Kähler, L is holomorphic, \Longrightarrow $\left(X_{\nu}, \omega_{\nu}, J_{\nu}\right)$ is Kähler, L_{ν} is holomorphic over X_{ν}.

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Guillemin-Sternberg conjecture I

- If (X, ω, J) is Kähler, L is holomorphic, \Longrightarrow $\left(X_{\nu}, \omega_{\nu}, J_{\nu}\right)$ is Kähler, L_{ν} is holomorphic over X_{ν}.
- The quantization of L_{ν} is defined by

$$
Q\left(L_{\nu}\right)=\operatorname{Ker}\left(D_{+}^{L_{\nu}}\right)-\operatorname{Ker}\left(D_{-}^{L_{\nu}}\right) .
$$

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Guillemin-Sternberg conjecture I

- If (X, ω, J) is Kähler, L is holomorphic, \Longrightarrow $\left(X_{\nu}, \omega_{\nu}, J_{\nu}\right)$ is Kähler, L_{ν} is holomorphic over X_{ν}.
- The quantization of L_{ν} is defined by

$$
Q\left(L_{\nu}\right)=\operatorname{Ker}\left(D_{+}^{L_{\nu}}\right)-\operatorname{Ker}\left(D_{-}^{L_{\nu}}\right) .
$$

- Guillemin-Sternberg conjecture : For any $\gamma \in \Lambda_{+}^{*}$,

$$
Q(L)^{\gamma}=Q\left(L_{\gamma}\right) .
$$

Equivalently,

$$
Q(L):=\operatorname{Ind}\left(D^{L}\right)=\bigoplus_{\gamma \in \Lambda_{+}^{*}} Q\left(L_{\gamma}\right) \cdot V_{\gamma}^{G} .
$$

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Guillemin-Sternberg conjecture II

- When G is abelian, Meinrenken (JAMS 1996) and Vergne (DMJ 1996).

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Guillemin-Sternberg conjecture II

- When G is abelian, Meinrenken (JAMS 1996) and Vergne (DMJ 1996).
- General G, Meinrenken, Meinrenken-Sjamaar, technique of symplectic cut of Lerman, 1998 Yonglian Tian - Weiping Zhang, Pure analytic approach, 1998, work for a general vector bundle E verifying certain positivity condition. For manifolds with boundary, etc.

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Guillemin-Sternberg conjecture II

- When G is abelian, Meinrenken (JAMS 1996) and Vergne (DMJ 1996).
- General G, Meinrenken, Meinrenken-Sjamaar, technique of symplectic cut of Lerman, 1998 Yonglian Tian - Weiping Zhang,
Pure analytic approach, 1998, work for a general vector bundle E verifying certain positivity condition. For manifolds with boundary, etc.
- Other proofs : Duistermaart-Guillemin-Meinrenken-Wu (for circle actions) and Jeffrey-Kirwan (for non-abelian group actions with certain extra conditions)
Paradan, using the transversal index theory, 2001. Etc...

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Geometric quantization
Quantization commutes with reduction Non-compact case : Vergne's conjecture

Guillemin-Sternberg conjecture III

- Assume (X, ω, J) is Kähler, L holomorphic.

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Guillemin-Sternberg conjecture III

- Assume (X, ω, J) is Kähler, L holomorphic.
- Guillemin-Sternberg, 1982: G acts freely on $\mu^{-1}(0)$, $X_{G}:=X_{0}$.

$$
H^{0,0}(X, L)^{G} \simeq H^{0,0}\left(X_{G}, L_{G}\right)
$$

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Guillemin-Sternberg conjecture III

- Assume (X, ω, J) is Kähler, L holomorphic.
- Guillemin-Sternberg, 1982: G acts freely on $\mu^{-1}(0)$, $X_{G}:=X_{0}$.

$$
H^{0,0}(X, L)^{G} \simeq H^{0,0}\left(X_{G}, L_{G}\right) .
$$

- Teleman, Braverman, Weiping Zhang, 2000 : for any j,

$$
H^{0, j}(X, L)^{G} \simeq H^{0, j}\left(X_{G}, L_{G}\right) .
$$

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Guillemin-Sternberg conjecture III

- Assume (X, ω, J) is Kähler, L holomorphic.
- Guillemin-Sternberg, 1982: G acts freely on $\mu^{-1}(0)$, $X_{G}:=X_{0}$.

$$
H^{0,0}(X, L)^{G} \simeq H^{0,0}\left(X_{G}, L_{G}\right) .
$$

- Teleman, Braverman, Weiping Zhang, 2000 : for any j,

$$
H^{0, j}(X, L)^{G} \simeq H^{0, j}\left(X_{G}, L_{G}\right) .
$$

- Weiping Zhang, 2000 : For any E holomorphic, if 0 is a regular values of μ,

$$
H^{0,0}\left(X, L^{k} \otimes E\right)^{G} \simeq H^{0,0}\left(X_{G}, L_{G}^{k} \otimes E_{G}\right) \text { for } k \gg 1 .
$$

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Geometric quantization

Transversal index

- Assume X is non-compact and $\mu: X \rightarrow \mathfrak{g}^{*}$ is proper.

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Transversal index

- Assume X is non-compact and $\mu: X \rightarrow \mathfrak{g}^{*}$ is proper.
- We can define a transversally elliptic symbol $\sigma_{L, \mu}^{X}$ in the sense of Atiyah (1974).
$\sigma_{L, \mu}^{M}$ has an index :

$$
\operatorname{Ind}\left(\sigma_{L, \mu}^{X}\right)=\bigoplus_{\gamma \in \Lambda_{+}^{*}} \operatorname{Ind}_{\gamma}\left(\sigma_{L, \mu}^{X}\right) \cdot V_{\gamma}^{G}
$$

The set $\left\{\gamma \in \Lambda_{+}^{*}: \operatorname{Ind}_{\gamma}\left(\sigma_{L, \mu}^{X}\right) \neq 0\right\}$ can be infinite.

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Transversal index

- Assume X is non-compact and $\mu: X \rightarrow \mathfrak{g}^{*}$ is proper.
- We can define a transversally elliptic symbol $\sigma_{L, \mu}^{X}$ in the sense of Atiyah (1974).
$\sigma_{L, \mu}^{M}$ has an index :

$$
\operatorname{Ind}\left(\sigma_{L, \mu}^{X}\right)=\bigoplus_{\gamma \in \Lambda_{+}^{*}} \operatorname{Ind}_{\gamma}\left(\sigma_{L, \mu}^{X}\right) \cdot V_{\gamma}^{G}
$$

The set $\left\{\gamma \in \Lambda_{+}^{*}: \operatorname{Ind}_{\gamma}\left(\sigma_{L, \mu}^{X}\right) \neq 0\right\}$ can be infinite.

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Transversal index

- Assume X is non-compact and $\mu: X \rightarrow \mathfrak{g}^{*}$ is proper.
- We can define a transversally elliptic symbol $\sigma_{L, \mu}^{X}$ in the sense of Atiyah (1974).
$\sigma_{L, \mu}^{M}$ has an index :

$$
\operatorname{Ind}\left(\sigma_{L, \mu}^{X}\right)=\bigoplus_{\gamma \in \Lambda_{+}^{*}} \operatorname{Ind}_{\gamma}\left(\sigma_{L, \mu}^{X}\right) \cdot V_{\gamma}^{G}
$$

The set $\left\{\gamma \in \Lambda_{+}^{*}: \operatorname{Ind}_{\gamma}\left(\sigma_{L, \mu}^{X}\right) \neq 0\right\}$ can be infinite.

- In many cases,

$$
\operatorname{Ind}\left(\sigma_{L, \mu}^{X}\right)=\operatorname{Ker}_{L^{2}}\left(D_{+}^{L}\right)-\operatorname{Ker}_{L^{2}}\left(D_{-}^{L}\right) \in R[G]
$$

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Vergne's conjecture

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Vergne's conjecture

- Vergne's conjecture (ICM 2006, plenary lecture) : If $\mu: X \rightarrow \mathfrak{g}^{*}$ is proper and if $\left\{x \in X: \mu^{X}(x)=0\right\}$ is compact, then

$$
\operatorname{Ind}\left(\sigma_{L, \mu}^{X}\right)=\bigoplus_{\gamma \in \Lambda_{+}^{*}} Q\left(L_{\gamma}\right) \cdot V_{\gamma}^{G}
$$

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Vergne's conjecture

- Vergne's conjecture (ICM 2006, plenary lecture) : If $\mu: X \rightarrow \mathfrak{g}^{*}$ is proper and if $\left\{x \in X: \mu^{X}(x)=0\right\}$ is compact, then

$$
\operatorname{Ind}\left(\sigma_{L, \mu}^{X}\right)=\bigoplus_{\gamma \in \Lambda_{+}^{*}} Q\left(L_{\gamma}\right) \cdot V_{\gamma}^{G}
$$

- Ma-Zhang 2008 : Vergne's conjecture holds even when $\left\{x \in X: \mu^{X}(x)=0\right\}$ is non-compact.

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Motivations and results
Scalar curvature on reduction Metric aspect of quantization

Motivations and results

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Motivations and results

- Results : Asymptotic expansion of G-invariant Bergman kernel on a compact symplectic manifold equipped with Hamiltonian action of a compact connected Lie group.

Motivations and results

- Results : Asymptotic expansion of G-invariant Bergman kernel on a compact symplectic manifold equipped with Hamiltonian action of a compact connected Lie group.
- Motivations :

Version from the local index theory for Geometric quantization commutes with reduction?

Motivations and results

- Results : Asymptotic expansion of G-invariant Bergman kernel on a compact symplectic manifold equipped with Hamiltonian action of a compact connected Lie group.
- Motivations:

Version from the local index theory for Geometric quantization commutes with reduction?

- Applications in Donaldson's program?

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Geometric data

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Geometric data

- (X, ω) compact symplectic manifold, $\operatorname{dim}_{\mathbb{R}} X=2 n$.

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Geometric data

- (X, ω) compact symplectic manifold, $\operatorname{dim}_{\mathbb{R}} X=2 n$.
- $\left(L, h^{L}\right)$ Hermitian (complex) line bundle on X.

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Geometric data

- (X, ω) compact symplectic manifold, $\operatorname{dim}_{\mathbb{R}} X=2 n$.
- $\left(L, h^{L}\right)$ Hermitian (complex) line bundle on X.
- $\left(E, h^{E}\right)$ Hermitian (complex) vector bundle on X.

Geometric data

- (X, ω) compact symplectic manifold, $\operatorname{dim}_{\mathbb{R}} X=2 n$.
- $\left(L, h^{L}\right)$ Hermitian (complex) line bundle on X.
- $\left(E, h^{E}\right)$ Hermitian (complex) vector bundle on X.
- ∇^{L}, ∇^{E} Hermitian connections on $\left(L, h^{L}\right),\left(E, h^{E}\right)$.

Geometric data

- (X, ω) compact symplectic manifold, $\operatorname{dim}_{\mathbb{R}} X=2 n$.
- $\left(L, h^{L}\right)$ Hermitian (complex) line bundle on X.
- $\left(E, h^{E}\right)$ Hermitian (complex) vector bundle on X.
- ∇^{L}, ∇^{E} Hermitian connections on $\left(L, h^{L}\right),\left(E, h^{E}\right)$.
- Fundamental hypothesis:

$$
\omega=c_{1}\left(L, \nabla^{L}\right)=\frac{\sqrt{-1}}{2 \pi}\left(\nabla^{L}\right)^{2}
$$

Geometric data

- (X, ω) compact symplectic manifold, $\operatorname{dim}_{\mathbb{R}} X=2 n$.
- $\left(L, h^{L}\right)$ Hermitian (complex) line bundle on X.
- $\left(E, h^{E}\right)$ Hermitian (complex) vector bundle on X.
- ∇^{L}, ∇^{E} Hermitian connections on $\left(L, h^{L}\right),\left(E, h^{E}\right)$.
- Fundamental hypothesis:

$$
\omega=c_{1}\left(L, \nabla^{L}\right)=\frac{\sqrt{-1}}{2 \pi}\left(\nabla^{L}\right)^{2} .
$$

- $g^{T X}$ Riemannian metric on $T X, J$ almost complex structure on $T X$, preserves ω and $g^{T X}$.

Geometric data

- (X, ω) compact symplectic manifold, $\operatorname{dim}_{\mathbb{R}} X=2 n$.
- $\left(L, h^{L}\right)$ Hermitian (complex) line bundle on X.
- $\left(E, h^{E}\right)$ Hermitian (complex) vector bundle on X.
- ∇^{L}, ∇^{E} Hermitian connections on $\left(L, h^{L}\right),\left(E, h^{E}\right)$.
- Fundamental hypothesis:

$$
\omega=c_{1}\left(L, \nabla^{L}\right)=\frac{\sqrt{-1}}{2 \pi}\left(\nabla^{L}\right)^{2} .
$$

- $g^{T X}$ Riemannian metric on $T X, J$ almost complex structure on $T X$, preserves ω and $g^{T X}$.
- Simplification : $g^{T X}(\cdot, \cdot)=\omega(\cdot, J \cdot)$.
(Our results work without this assumption).

G-invariant Bergman kernel

- Spinors : $\Lambda^{\prime}:=\Lambda^{\text {even }}\left(T^{*(0,1)} X\right) \oplus \Lambda^{\text {odd }}\left(T^{*(0,1)} X\right)$. $E_{p}:=\Lambda \otimes L^{p} \otimes E$.
Dirac operator $D_{p}: \mathscr{C}^{\infty}\left(X, E_{p}^{ \pm}\right) \longrightarrow \mathscr{C}^{\infty}\left(X, E_{p}^{\mp}\right)$,

$$
D_{p}=\sum_{i} c\left(e_{i}\right) \nabla_{e_{i}}^{E_{p}} .
$$

G-invariant Bergman kernel

- Spinors : $\Lambda^{\prime}:=\Lambda^{\text {even }}\left(T^{*(0,1)} X\right) \oplus \Lambda^{\text {odd }}\left(T^{*(0,1)} X\right)$. $E_{p}:=\Lambda \otimes L^{p} \otimes E$.
Dirac operator $D_{p}: \mathscr{C}^{\infty}\left(X, E_{p}^{ \pm}\right) \longrightarrow \mathscr{C}^{\infty}\left(X, E_{p}^{\mp}\right)$,

$$
D_{p}=\sum_{i} c\left(e_{i}\right) \nabla_{e_{i}}^{E_{p}}
$$

- P_{p}^{G} orthogonal projection from $\mathscr{C}^{\infty}\left(X, E_{p}\right)$ onto $\left(\operatorname{Ker} D_{p}\right)^{G}$.

G-invariant Bergman kernel

- Spinors : $\Lambda^{\prime}:=\Lambda^{\text {even }}\left(T^{*(0,1)} X\right) \oplus \Lambda^{\text {odd }}\left(T^{*(0,1)} X\right)$. $E_{p}:=\Lambda \otimes L^{p} \otimes E$.
Dirac operator $D_{p}: \mathscr{C}^{\infty}\left(X, E_{p}^{ \pm}\right) \longrightarrow \mathscr{C}^{\infty}\left(X, E_{p}^{\mp}\right)$,

$$
D_{p}=\sum_{i} c\left(e_{i}\right) \nabla_{e_{i}}^{E_{p}} .
$$

- P_{p}^{G} orthogonal projection from $\mathscr{C}^{\infty}\left(X, E_{p}\right)$ onto $\left(\operatorname{Ker} D_{p}\right)^{G}$.
- G-invariant Bergman kernel : $P_{p}^{G}\left(x, x^{\prime}\right),\left(x, x^{\prime} \in X\right)$ is the \mathscr{C}^{∞} kernel of P_{p}^{G} associated to $\frac{\omega^{n}}{n!}\left(x^{\prime}\right)$.

G-invariant Bergman kernel

- Spinors : $\Lambda^{\prime}:=\Lambda^{\text {even }}\left(T^{*(0,1)} X\right) \oplus \Lambda^{\text {odd }}\left(T^{*(0,1)} X\right)$. $E_{p}:=\Lambda \otimes L^{p} \otimes E$.
Dirac operator $D_{p}: \mathscr{C}^{\infty}\left(X, E_{p}^{ \pm}\right) \longrightarrow \mathscr{C}^{\infty}\left(X, E_{p}^{\mp}\right)$,

$$
D_{p}=\sum_{i} c\left(e_{i}\right) \nabla_{e_{i}}^{E_{p}} .
$$

- P_{p}^{G} orthogonal projection from $\mathscr{C}^{\infty}\left(X, E_{p}\right)$ onto $\left(\operatorname{Ker} D_{p}\right)^{G}$.
- G-invariant Bergman kernel : $P_{p}^{G}\left(x, x^{\prime}\right),\left(x, x^{\prime} \in X\right)$ is the \mathscr{C}^{∞} kernel of P_{p}^{G} associated to $\frac{\omega^{n}}{n!}\left(x^{\prime}\right)$.
- $P_{p}^{G}\left(x, x^{\prime}\right)$ "concentrates" to $P_{G, p}\left(x_{0}, x_{0}^{\prime}\right)$, the Bergman kernel on X_{G} when $p \rightarrow \infty$?

G-invariant Bergman kernel

- Spinors : $\Lambda^{\prime}:=\Lambda^{\text {even }}\left(T^{*(0,1)} X\right) \oplus \Lambda^{\text {odd }}\left(T^{*(0,1)} X\right)$. $E_{p}:=\Lambda \otimes L^{p} \otimes E$.
Dirac operator $D_{p}: \mathscr{C}^{\infty}\left(X, E_{p}^{ \pm}\right) \longrightarrow \mathscr{C}^{\infty}\left(X, E_{p}^{\mp}\right)$,

$$
D_{p}=\sum_{i} c\left(e_{i}\right) \nabla_{e_{i}}^{E_{p}} .
$$

- P_{p}^{G} orthogonal projection from $\mathscr{C}^{\infty}\left(X, E_{p}\right)$ onto $\left(\operatorname{Ker} D_{p}\right)^{G}$.
- G-invariant Bergman kernel : $P_{p}^{G}\left(x, x^{\prime}\right),\left(x, x^{\prime} \in X\right)$ is the \mathscr{C}^{∞} kernel of P_{p}^{G} associated to $\frac{\omega^{n}}{n!}\left(x^{\prime}\right)$.
- $P_{p}^{G}\left(x, x^{\prime}\right)$ "concentrates" to $P_{G, p}\left(x_{0}, x_{0}^{\prime}\right)$, the Bergman kernel on X_{G} when $p \rightarrow \infty$?
- Scalar curvature of X_{G} from $P_{p}^{G}\left(x, x^{\prime}\right)$?

Application of Dai-Liu-Ma's formula

$$
\begin{aligned}
& \quad\left|\frac{1}{p^{n}} P_{p}(0, Z)-\sum_{r=0}^{k} p^{-r / 2} J_{r}(\sqrt{p} Z) e^{-\frac{\pi}{2} p|Z|^{2}}\right| \\
& \leq C p^{-(k+1) / 2}(1+|\sqrt{p} Z|)^{N} e^{-\sqrt{C^{\prime \prime} p}|Z|} \\
& \quad J_{0}=I_{\mathbb{C} \otimes E}, \text { projection from } \Lambda\left(T^{*(0,1)} X\right) \otimes E \text { to } \mathbb{C} \otimes E .
\end{aligned}
$$

Application of Dai-Liu-Ma's formula

$$
\begin{aligned}
& -\left|\frac{1}{p^{n}} P_{p}(0, Z)-\sum_{r=0}^{k} p^{-r / 2} J_{r}(\sqrt{p} Z) e^{-\frac{\pi}{2} p|Z|^{2}}\right| \\
& \leq C p^{-(k+1) / 2}(1+|\sqrt{p} Z|)^{N} e^{-\sqrt{C^{\prime \prime} p}|Z|} .
\end{aligned}
$$

$J_{0}=I_{\mathbb{C} \otimes E}$, projection from $\Lambda^{\prime}\left(T^{*(0,1)} X\right) \otimes E$ to $\mathbb{C} \otimes E$.

- $P_{p}^{G}\left(x, x^{\prime}\right)=\int_{G}(1, g) \cdot P_{p}\left(x, g^{-1} x^{\prime}\right) d g$.

Application of Dai-Liu-Ma's formula

- $\left|\frac{1}{p^{n}} P_{p}(0, Z)-\sum_{r=0}^{k} p^{-r / 2} J_{r}(\sqrt{p} Z) e^{-\frac{\pi}{2} p|Z|^{2}}\right|$

$$
\leq C p^{-(k+1) / 2}(1+|\sqrt{p} Z|)^{N} e^{-\sqrt{C^{\prime \prime} p}|Z|}
$$

$J_{0}=I_{\mathbb{C} \otimes E}$, projection from $\Lambda\left(T^{*(0,1)} X\right) \otimes E$ to $\mathbb{C} \otimes E$.

- $P_{p}^{G}\left(x, x^{\prime}\right)=\int_{G}(1, g) \cdot P_{p}\left(x, g^{-1} x^{\prime}\right) d g$.
- For $x_{0} \in \mu^{-1}(0), h\left(x_{0}\right):=\sqrt{\operatorname{vol}\left(G x_{0}\right)}$

$$
\left|p^{-n+\frac{\operatorname{dim} G}{2}} h^{2}\left(x_{0}\right) P_{p}^{G}\left(x_{0}, x_{0}\right)-\sum_{r=0}^{k} \mathbf{b}_{r}\left(x_{0}\right) p^{-r}\right| \leq C p^{-k-1}
$$

$\mathbf{b}_{0}=2^{\frac{\operatorname{dim} G}{2}} I_{\mathbb{C} \otimes E}$.
Paoletti (2005) Adv. Math. : If (X, J, ω) Kähler, $E=\mathbb{C} \Rightarrow \mathbf{b}_{0}=1$. Different! Wrong?

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Motivations and results

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Motivations and results

Asymp. expansion of G-invariant Bergman kernel

- Theorem (Ma - Weiping Zhang (2005)). U open neighborhood of $\mu^{-1}(0)$,

$$
P_{p}^{G}\left(x, x^{\prime}\right)=\mathscr{O}\left(p^{-\infty}\right) \quad \text { for any } x \text { or } x^{\prime} \in X \backslash U .
$$

Asymp. expansion of G-invariant Bergman kernel

- Theorem (Ma - Weiping Zhang (2005)). U open neighborhood of $\mu^{-1}(0)$,

$$
P_{p}^{G}\left(x, x^{\prime}\right)=\mathscr{O}\left(p^{-\infty}\right) \quad \text { for any } x \text { or } x^{\prime} \in X \backslash U .
$$

- Theorem (Ma-Zhang (2005)). For $x \in U$, $h(x):=\sqrt{\operatorname{vol}(G x)}$. Asymptotic expansion of $p^{-n+\frac{\operatorname{dim} G}{2}} h(x) h\left(x^{\prime}\right) P_{p}^{G}\left(x, x^{\prime}\right)$ uniformly on $x, x^{\prime} \in U$.

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Asymp. expansion II

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Asymp. expansion II

- $x_{0} \in X_{G}, B=U / G, Z=\left(Z^{0}, Z^{\perp}\right) \in T X_{G} \oplus N_{B}=T B$,

$$
\begin{aligned}
P\left(Z, Z^{\prime}\right)= & \exp \left(-\frac{\pi}{2}\left|Z^{0}-Z^{\prime 0}\right|^{2}-\pi \sqrt{-1}\left\langle J_{x_{0}} Z^{0}, Z^{\prime 0}\right\rangle\right) \\
& \times 2^{\frac{n_{0}}{2}} \exp \left(-\pi\left(\left|Z^{\perp}\right|^{2}+\left|Z^{\prime} \perp\right|^{2}\right)\right),
\end{aligned}
$$

Asymp. expansion II

- $x_{0} \in X_{G}, B=U / G, Z=\left(Z^{0}, Z^{\perp}\right) \in T X_{G} \oplus N_{B}=T B$,

$$
\begin{aligned}
P\left(Z, Z^{\prime}\right)= & \exp \left(-\frac{\pi}{2}\left|Z^{0}-Z^{\prime 0}\right|^{2}-\pi \sqrt{-1}\left\langle J_{x_{0}} Z^{0}, Z^{\prime 0}\right\rangle\right) \\
& \times 2^{\frac{n_{0}}{2}} \exp \left(-\pi\left(\left|Z^{\perp}\right|^{2}+\left|Z^{\prime}\right|^{2}\right)\right),
\end{aligned}
$$

- (Ma-Zhang, CRAS, 2005) \mathcal{Q}_{r} polynomial on Z, Z^{\prime}, $\mathcal{Q}_{0}=I_{\mathbb{C} \otimes E_{B}}$,
$p^{-n+\frac{n_{0}}{2}} h(Z) h\left(Z^{\prime}\right) P_{p}^{G}\left(Z, Z^{\prime}\right)$
$\approx \sum_{r=0}^{k}\left(\mathcal{Q}_{r, x_{0}} P\right)\left(\sqrt{p} Z, \sqrt{p} Z^{\prime}\right) p^{-\frac{r}{2}}+\mathcal{O}\left(p^{(k+1) / 2}\right)$.

Asymp. expansion II

- $x_{0} \in X_{G}, B=U / G, Z=\left(Z^{0}, Z^{\perp}\right) \in T X_{G} \oplus N_{B}=T B$,

$$
\begin{aligned}
P\left(Z, Z^{\prime}\right)= & \exp \left(-\frac{\pi}{2}\left|Z^{0}-Z^{\prime 0}\right|^{2}-\pi \sqrt{-1}\left\langle J_{x_{0}} Z^{0}, Z^{\prime 0}\right\rangle\right) \\
& \times 2^{\frac{n_{0}}{2}} \exp \left(-\pi\left(\left|Z^{\perp}\right|^{2}+\left|Z^{\prime \perp}\right|^{2}\right)\right)
\end{aligned}
$$

- (Ma-Zhang, CRAS, 2005) \mathcal{Q}_{r} polynomial on Z, Z^{\prime}, $\mathcal{Q}_{0}=I_{\mathbb{C} \otimes E_{B}}$,
$p^{-n+\frac{n_{0}}{2}} h(Z) h\left(Z^{\prime}\right) P_{p}^{G}\left(Z, Z^{\prime}\right)$
$\approx \sum_{r=0}^{k}\left(\mathcal{Q}_{r, x_{0}} P\right)\left(\sqrt{p} Z, \sqrt{p} Z^{\prime}\right) p^{-\frac{r}{2}}+\mathcal{O}\left(p^{(k+1) / 2}\right)$.
- Paoletti (Dec. 2006), for $|Z|,\left|Z^{\prime}\right|<c / \sqrt{p}$, does not correct when X_{G} is an orbifold.

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Motivations and results
Scalar curvature on reduction Metric aspect of quantization

Diagonal asymptotic expansion

Diagonal asymptotic expansion

- $B=U / G, \mathbb{J}_{r, x_{0}}(Z)$ polynomials on Z, for $x_{0} \in X_{G}$, $Z \in N_{G, x_{0}},|Z| \leq \varepsilon_{0}$,

$$
\begin{aligned}
& \left\lvert\, p^{-n+\frac{\operatorname{dim} G}{2}} h^{2}(Z) P_{p}^{G}(Z, Z)\right. \\
& \\
& \left.\quad-\sum_{r=0}^{k} \mathbb{J}_{r, x_{0}}(\sqrt{p} Z) e^{-2 \pi p|Z|^{2}} p^{-\frac{r}{2}} \right\rvert\, \quad \leq C p^{-(k+1) / 2} e^{-\sqrt{C^{\prime \prime}} \sqrt{p}|Z|} .
\end{aligned}
$$

Diagonal asymptotic expansion

- $B=U / G, \mathbb{J}_{r, x_{0}}(Z)$ polynomials on Z, for $x_{0} \in X_{G}$, $Z \in N_{G, x_{0}},|Z| \leq \varepsilon_{0}$,

$$
\begin{aligned}
& \left\lvert\, p^{-n+\frac{\operatorname{dim} G}{2}} h^{2}(Z) P_{p}^{G}(Z, Z)\right. \\
& \\
& \left.\quad-\sum_{r=0}^{k} \mathbb{J}_{r, x_{0}}(\sqrt{p} Z) e^{-2 \pi p|Z|^{2}} p^{-\frac{r}{2}} \right\rvert\, \\
& \leq C p^{-(k+1) / 2} e^{-\sqrt{C^{\prime \prime}} \sqrt{p}|Z|}
\end{aligned}
$$

- $\mathbb{J}_{0, x_{0}}=2^{\frac{\operatorname{dim} G}{2}} I_{\mathbb{C} \otimes E}$.

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Motivations and results
Scalar curvature on reduction Metric aspect of quantization

Idea of the proof

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Idea of the proof

$$
\mathcal{L}_{p}:=D_{p}^{2}-p \sum_{i=1}^{\operatorname{dim} G} L_{K_{i}} L_{K_{i}}
$$

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Idea of the proof

- $\mathcal{L}_{p}:=D_{p}^{2}-p \sum_{i=1}^{\operatorname{dim} G} L_{K_{i}} L_{K_{i}}$.
- Theorem (Ma-Zhang (2005)).

$$
\begin{aligned}
& \operatorname{Ker}\left(\mathcal{L}_{p}\right)=\left(\operatorname{Ker} D_{p}\right)^{G} \\
& \operatorname{Spec}\left(\mathcal{L}_{\mathrm{p}}\right) \subset\{0\} \cup\left[2 \nu p-C_{L},+\infty[.\right.
\end{aligned}
$$

Quantization on symplectic manifolds

Idea of the proof

- $\mathcal{L}_{p}:=D_{p}^{2}-p \sum_{i=1}^{\operatorname{dim} G} L_{K_{i}} L_{K_{i}}$.
- Theorem (Ma-Zhang (2005)).

$$
\begin{aligned}
& \operatorname{Ker}\left(\mathcal{L}_{p}\right)=\left(\operatorname{Ker} D_{p}\right)^{G} \\
& \operatorname{Spec}\left(\mathcal{L}_{\mathrm{p}}\right) \subset\{0\} \cup\left[2 \nu p-C_{L},+\infty[.\right.
\end{aligned}
$$

- Slogan : Spectral gap property \Longrightarrow the problem is local. Work on $G \times \mathbb{R}^{2 n-\operatorname{dim} G}$.

Idea of the proof

- $\mathcal{L}_{p}:=D_{p}^{2}-p \sum_{i=1}^{\operatorname{dim} G} L_{K_{i}} L_{K_{i}}$.
- Theorem (Ma-Zhang (2005)).

$$
\begin{aligned}
& \operatorname{Ker}\left(\mathcal{L}_{p}\right)=\left(\operatorname{Ker} D_{p}\right)^{G} \\
& \operatorname{Spec}\left(\mathcal{L}_{\mathrm{p}}\right) \subset\{0\} \cup\left[2 \nu p-C_{L},+\infty[.\right.
\end{aligned}
$$

- Slogan : Spectral gap property \Longrightarrow the problem is local. Work on $G \times \mathbb{R}^{2 n-\operatorname{dim} G}$.
Local index techniques \Longrightarrow Asymptotic expansion and effective method to compute the coefficients.

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Consequences

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Consequences

- $B=U / G . d v_{B}\left(x_{0}, Z\right)=\kappa\left(x_{0}, Z\right) d v_{X_{G}}\left(x_{0}\right) d v_{N_{G, x_{0}}}$, $x_{0} \in X_{G}, Z \in N_{G, x_{0}} . \mathscr{I}_{p} \in \operatorname{End}\left(\Lambda^{\prime}\left(T^{*(0,1)} X\right) \otimes E\right)_{G}:$ $\mathscr{I}_{p}\left(x_{0}\right)=\int_{\substack{|Z| \leq \varepsilon_{0}, Z \in N_{G}}}\left(\kappa h^{2}\right)\left(x_{0}, Z\right) P_{p}^{G}\left(\left(x_{0}, Z\right),\left(x_{0}, Z\right)\right) d v_{N_{G}}(Z)$.

Consequences

- $B=U / G \cdot d v_{B}\left(x_{0}, Z\right)=\kappa\left(x_{0}, Z\right) d v_{X_{G}}\left(x_{0}\right) d v_{N_{G, x_{0}}}$, $x_{0} \in X_{G}, Z \in N_{G, x_{0}} . \mathscr{I}_{p} \in \operatorname{End}\left(\Lambda^{\prime}\left(T^{*(0,1)} X\right) \otimes E\right)_{G}:$ $\mathscr{I}_{p}\left(x_{0}\right)=\int_{\substack{Z \backslash \leq \varepsilon_{0}, Z \in N_{G}}}\left(\kappa h^{2}\right)\left(x_{0}, Z\right) P_{p}^{G}\left(\left(x_{0}, Z\right),\left(x_{0}, Z\right)\right) d v_{N_{G}}(Z)$.
- Modulo $\mathscr{O}\left(p^{-\infty}\right), \mathscr{I}_{p}\left(x_{0}\right)$ does not depend on ε_{0}, and

$$
\begin{aligned}
& \operatorname{dim} \operatorname{Ker} D_{G, p}=\int_{X} \operatorname{Tr}\left[P_{p}^{G}(y, y)\right] d v_{X}(y) \\
& =\int_{B} h^{2}(y) \operatorname{Tr}\left[P_{p}^{G}(y, y)\right] d v_{B}(y)+\mathscr{O}\left(p^{-\infty}\right) \\
& \quad=\int_{X_{G}} \operatorname{Tr}\left[\mathscr{F}_{p}\left(x_{0}\right)\right] d v_{X_{G}}\left(x_{0}\right)+\mathscr{O}\left(p^{-\infty}\right) .
\end{aligned}
$$

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Motivations and results Metric aspect of quantization

Scalar curvature $r^{X_{G}}$ of X_{G}

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Scalar curvature $r^{X_{G}}$ of X_{G}

- Theorem (Ma-Zhang (2005)). There exist $\Phi_{r} \in \operatorname{End}\left(\Lambda\left(T^{*(0,1)} X\right) \otimes E\right)_{G, x_{0}}$, for $x_{0} \in X_{G}, p \in \mathbb{N}$,

$$
\left|p^{-n+\operatorname{dim} G} \mathscr{I}_{p}\left(x_{0}\right)-\sum_{r=0}^{k} \Phi_{r}\left(x_{0}\right) p^{-r}\right|_{\mathscr{C} m^{\prime}} \leq C_{k, m^{\prime}} p^{-k-1}
$$

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Scalar curvature $r^{X_{G}}$ of X_{G}

- Theorem (Ma-Zhang (2005)). There exist $\Phi_{r} \in \operatorname{End}\left(\Lambda\left(T^{*(0,1)} X\right) \otimes E\right)_{G, x_{0}}$, for $x_{0} \in X_{G}, p \in \mathbb{N}$,

$$
\left|p^{-n+\operatorname{dim} G} \mathscr{I}_{p}\left(x_{0}\right)-\sum_{r=0}^{k} \Phi_{r}\left(x_{0}\right) p^{-r}\right|_{\mathscr{C} m^{\prime}} \leq C_{k, m^{\prime}} p^{-k-1}
$$

- Theorem (Ma-Zhang (2005)). X Kähler, L, E holomorphic, then $\mathscr{I}_{p}\left(x_{0}\right), \Phi_{r}\left(x_{0}\right) \in \operatorname{End}\left(E_{G}\right)_{x_{0}}$, and $\Phi_{0}=\operatorname{Id}_{E_{G}}$,
$\Phi_{1}\left(x_{0}\right)=\frac{1}{2 \pi} R_{x_{0}}^{E_{G}}\left(w_{j}^{0}, \bar{w}_{j}^{0}\right)+\frac{1}{8 \pi} r_{x_{0}}^{X_{G}}+\frac{3}{4 \pi} \Delta_{X_{G}} \log \left(\left.h\right|_{X_{G}}\right)$.

Scalar curvature $r^{X_{G}}$ of X_{G}

- Theorem (Ma-Zhang (2005)). There exist $\Phi_{r} \in \operatorname{End}\left(\Lambda\left(T^{*(0,1)} X\right) \otimes E\right)_{G, x_{0}}$, for $x_{0} \in X_{G}, p \in \mathbb{N}$,

$$
\left|p^{-n+\operatorname{dim} G} \mathscr{I}_{p}\left(x_{0}\right)-\sum_{r=0}^{k} \Phi_{r}\left(x_{0}\right) p^{-r}\right|_{\mathscr{C} m^{\prime}} \leq C_{k, m^{\prime}} p^{-k-1}
$$

- Theorem (Ma-Zhang (2005)). X Kähler, L, E holomorphic, then $\mathscr{I}_{p}\left(x_{0}\right), \Phi_{r}\left(x_{0}\right) \in \operatorname{End}\left(E_{G}\right)_{x_{0}}$, and $\Phi_{0}=\operatorname{Id}_{E_{G}}$,

$$
\Phi_{1}\left(x_{0}\right)=\frac{1}{2 \pi} R_{x_{0}}^{E_{G}}\left(w_{j}^{0}, \bar{w}_{j}^{0}\right)+\frac{1}{8 \pi} r_{x_{0}}^{X_{G}}+\frac{3}{4 \pi} \Delta_{X_{G}} \log \left(\left.h\right|_{X_{G}}\right)
$$

- Applications in Donaldson's program?

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Geometric quantization

- X, L, E holomorphic, G acts holomorphically on X, L, E.

Quantization on symplectic manifolds

Geometric quantization

- X, L, E holomorphic, G acts holomorphically on X, L, E.
- $i: \mu^{-1}(0) \hookrightarrow X$ natural injection.
$\pi_{G}: \mathscr{C}^{\infty}\left(\mu^{-1}(0), L^{p} \otimes E\right)^{G} \rightarrow \mathscr{C}^{\infty}\left(X_{G}, L_{G}^{p} \otimes E_{G}\right)$ natural identification.

$$
\sigma_{p}=\pi_{G} \circ i^{*}: H^{0}\left(X, L^{p} \otimes E\right)^{G} \rightarrow H^{0}\left(X_{G}, L_{G}^{p} \otimes E_{G}\right)
$$

Geometric quantization

- X, L, E holomorphic, G acts holomorphically on X, L, E.
- $i: \mu^{-1}(0) \hookrightarrow X$ natural injection. $\pi_{G}: \mathscr{C}^{\infty}\left(\mu^{-1}(0), L^{p} \otimes E\right)^{G} \rightarrow \mathscr{C}^{\infty}\left(X_{G}, L_{G}^{p} \otimes E_{G}\right)$ natural identification.

$$
\sigma_{p}=\pi_{G} \circ i^{*}: H^{0}\left(X, L^{p} \otimes E\right)^{G} \rightarrow H^{0}\left(X_{G}, L_{G}^{p} \otimes E_{G}\right) .
$$

- Guillemin-Sternberg (1982) : If $E=\mathbb{C}$, for $p>0, \sigma_{p}$ is an isomorphism.

Geometric quantization

- X, L, E holomorphic, G acts holomorphically on X, L, E.
- $i: \mu^{-1}(0) \hookrightarrow X$ natural injection.
$\pi_{G}: \mathscr{C}^{\infty}\left(\mu^{-1}(0), L^{p} \otimes E\right)^{G} \rightarrow \mathscr{C}^{\infty}\left(X_{G}, L_{G}^{p} \otimes E_{G}\right)$ natural identification.

$$
\sigma_{p}=\pi_{G} \circ i^{*}: H^{0}\left(X, L^{p} \otimes E\right)^{G} \rightarrow H^{0}\left(X_{G}, L_{G}^{p} \otimes E_{G}\right) .
$$

- Guillemin-Sternberg (1982) : If $E=\mathbb{C}$, for $p>0, \sigma_{p}$ is an isomorphism.
- Zhang (1999) : E general, $p \gg 0, \sigma_{p}$ is an isomorphism.

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Metric aspect of quantization

- Hermitian product $\left\rangle_{h}\right.$ on $\mathscr{C}^{\infty}\left(X_{G}, L_{G}^{p} \otimes E_{G}\right)$:

$$
\left\langle s_{1}, s_{2}\right\rangle_{h}=\int_{X_{G}}\left\langle s_{1}\left(x_{0}\right), s_{2}\left(x_{0}\right)\right\rangle h^{2}\left(x_{0}\right) \frac{\omega_{G}^{n-\operatorname{dim} G}}{(n-\operatorname{dim} G)!}\left(x_{0}\right) .
$$

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Metric aspect of quantization

- Hermitian product $\left\rangle_{h}\right.$ on $\mathscr{C}^{\infty}\left(X_{G}, L_{G}^{p} \otimes E_{G}\right)$:

$$
\left\langle s_{1}, s_{2}\right\rangle_{h}=\int_{X_{G}}\left\langle s_{1}\left(x_{0}\right), s_{2}\left(x_{0}\right)\right\rangle h^{2}\left(x_{0}\right) \frac{\omega_{G}^{n-\operatorname{dim} G}}{(n-\operatorname{dim} G)!}\left(x_{0}\right) .
$$

- π_{G} isometry:

$$
\left(\mathscr{C}^{\infty}\left(\mu^{-1}(0), L^{p} \otimes E\right)^{G},\langle \rangle\right) \rightarrow\left(\mathscr{C}^{\infty}\left(X_{G}, L_{G}^{p} \otimes E_{G}\right),\langle \rangle_{h}\right)
$$

Metric aspect of quantization

- Hermitian product $\left\rangle_{h}\right.$ on $\mathscr{C}^{\infty}\left(X_{G}, L_{G}^{p} \otimes E_{G}\right)$:

$$
\left\langle s_{1}, s_{2}\right\rangle_{h}=\int_{X_{G}}\left\langle s_{1}\left(x_{0}\right), s_{2}\left(x_{0}\right)\right\rangle h^{2}\left(x_{0}\right) \frac{\omega_{G}^{n-\operatorname{dim} G}}{(n-\operatorname{dim} G)!}\left(x_{0}\right) .
$$

- π_{G} isometry:

$$
\left(\mathscr{C}^{\infty}\left(\mu^{-1}(0), L^{p} \otimes E\right)^{G},\langle \rangle\right) \rightarrow\left(\mathscr{C}^{\infty}\left(X_{G}, L_{G}^{p} \otimes E_{G}\right),\langle \rangle_{h}\right)
$$

- Ma-Zhang (2005) : $(2 p)^{-\operatorname{dim} G / 4} \sigma_{p}$ asymptotic isometry. $\left\{s_{i}^{p}\right\}_{i=1}^{d_{p}}$ orthonormal basis of $\left(H^{0}\left(X, L^{p} \otimes E\right)^{G},\langle \rangle\right)$,

$$
(2 p)^{-\operatorname{dim} G / 2}\left\langle\sigma_{p} s_{i}^{p}, \sigma_{p} s_{j}^{p}\right\rangle_{h}=\delta_{i j}+\mathscr{O}\left(\frac{1}{p}\right)
$$

- Symplectic case :
$(2 p)^{-\operatorname{dim} G / 4} \sigma_{p}: \operatorname{Ker}\left(D_{p}\right)^{G} \rightarrow \operatorname{Ker}\left(D_{G, p}\right)$ is an isomorphism and asymptotic isometry.

Quantization on symplectic manifolds

Some remarks

- Ma-Zhang, Bergman kernels and symplectic reduction, C. R. A.S. 341 (2005), 297-302.

Full version : math/0607605, Astérisque 318 (2008). Announced also in : Nankai Tracts in Mathematics Vol. 10, (2006), 343-349.

Some remarks

- Ma-Zhang, Bergman kernels and symplectic reduction, C. R. A.S. 341 (2005), 297-302.

Full version : math/0607605, Astérisque 318 (2008). Announced also in : Nankai Tracts in Mathematics Vol. 10, (2006), 343-349.

- Assume (X, ω) Kähler, L holomorphic, $E=\mathbb{C}$. Charles (JFA 2006) when G is abelian, and Paoletti (Adv. Math. 2005) studied some Toeplitz properties on X_{G}. Charles shows $\sigma_{p}: H^{0}\left(X, L^{p}\right)^{G} \rightarrow H^{0}\left(X_{G}, L_{G}^{p}\right)$ is not an asymptotic isometry when G is abelian.

Some remarks

- Ma-Zhang, Bergman kernels and symplectic reduction, C. R. A.S. 341 (2005), 297-302.

Full version : math/0607605, Astérisque 318 (2008). Announced also in : Nankai Tracts in Mathematics Vol. 10, (2006), 343-349.

- Assume (X, ω) Kähler, L holomorphic, $E=\mathbb{C}$. Charles (JFA 2006) when G is abelian, and Paoletti (Adv. Math. 2005) studied some Toeplitz properties on X_{G}. Charles shows $\sigma_{p}: H^{0}\left(X, L^{p}\right)^{G} \rightarrow H^{0}\left(X_{G}, L_{G}^{p}\right)$ is not an asymptotic isometry when G is abelian.
- Hall-Kirwin (math/0610005) reproved Ma-Zhang's asymptotic isometric result for L^{p}, and $L^{p} \otimes \sqrt{K}$ for general G in the Kähler case.

Quantization on symplectic manifolds Bergman kernel and qeometric quantization

Thanks!

