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§1 Introduction

Polarized toric varieties and moment polytopes:

Let L → X be a polarized toric variety of dimC = N and fix a TN-

invariant Kähler form ω ∈ c1(L). Then the moment polytope ∆ of X

appears in two different stories:

• Monomial basis of H0(X,L):

H0(X,L) =
⊕

I∈∆∩ZN

CzI (weight decomposition).

• Moment map image:

Φ : (X, ω) −→ RN moment map of TN-action, ∆ = Φ(X).

Φ−1(u) Bohr-Sommerfeld iff u ∈ ∆ ∩ ZN .

“Real quantization ∼= Kähler quantization”
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Flag manifolds.

Fln := {0 ⊂ V1 ⊂ · · · ⊂ Vn−1 ⊂ Cn | dimVi = i }
= U(n)/T = GL(n, C)/B,

where T ⊂ U(n) is a maximal torus and B ⊂ GL(n, C) is a Borel

subgroup. Note that

N := dimC Fln =
1

2
n(n − 1).

For

λ = diag(λ1, . . . , λn), λ1 > λ2 > · · · > λn,

we can associate

ωλ Kostant-Kirillov form (a U(n)-invariant Kähler form),

Lλ → Fln U(n)-equivariant line bundle, c1(Lλ) = [ωλ] (if λi ∈ Z),

∆λ ⊂ RN Gelfand-Cetlin polytope.
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Flag manifolds and Gelfand-Cetlin polytopes ∆λ:

(i) Gelfand-Cetlin basis(Gelfand-Cetlin):

a basis of an irreducible representation H0(Fln,Lλ) of U(n)

of highest weight λ, indexed by ∆λ ∩ ZN .

(ii) Gelfand-Cetlin system(Guillemin-Sternberg):

a completely integrable system (a set of Poisson-commuting

independent functions)

Φλ : (Fln, ωλ) −→ RN , Φλ(Fln) = ∆λ.

Φ−1
λ (u) Bohr-Sommerfeld iff u ∈ ∆λ ∩ ZN .

“Real quantization ∼= Kähler quantization”

The common idea is to consider

U(1) ⊂ U(2) ⊂ · · · ⊂ U(n − 1) ⊂ U(n).
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In the case of flag manifolds, we have one more relation:

(iii) Toric degeneration(Gonciulea-Lakshmibai, etc.):

Fln degenerate into a toric variety X0 corresponding to ∆λ.

We call X0 the Gelfand-Cetlin toric variety.

Kogan-Miller: The Gelfand-Cetlin basis can be deformed into the

monomial basis on X0 under the toric degeneration. In particular,

Kähler quantizations for Fln and X0 are “isomorphic”.

This talk: The Gelfand-Cetlin system can be deformed into the toric

moment map on the Gelfand-Cetlin toric variety.

Corollary: ∃ isomorphism between real quantizations for Fln and X0.

Application to symplectic geometry/ mirror symmetry: Compu-

tation of the potential function for Gelfand-Cetlin torus fibers.
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§2 Gelfand-Cetlin systems

Identify Fln with the adjoint orbit Oλ of λ = diag(λ1, . . . , λn):

U(n)/T ∼= Oλ =
{
x ∈ Mn(C)

∣∣∣ x∗ = x, eigenvalues = λ1, . . . , λn

}
gT ↔ gλg∗

For each k = 1, . . . , n − 1 and x ∈ Oλ, set

x(k) = upper-left k × k submatrix of x,

λ
(k)
1 (x) ≥ · · · ≥ λ

(k)
k (x) : eigenvalues of x(k).

Theorem (Guillemin-Sternberg).

Φλ : Oλ −→ RN , x 7−→
(
λ
(k)
i (x)

)
k=1,...,n−1,
i=1,...,k

is a completely integrable system on (Fln, ωλ) and Φλ(Oλ) = ∆λ.

Φλ is called the Gelfand-Cetlin system.
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The Gelfand-Cetlin polytope ∆λ ⊂ RN = {(λ(k)
i ); 1 ≤ i ≤ k ≤ n − 1} is

a convex polytope given by

λ1 λ2 λ3 · · · λn−1 λn

≥ ≥ ≥ ≥ ≥ ≥
λ
(n−1)
1 λ

(n−1)
2 λ

(n−1)
n−1

≥ ≥ ≥
λ
(n−2)
1 λ

(n−2)
n−2

≥ ≥
· · · · · ·

≥ ≥
λ
(1)
1

7



Remark. (i) For k = 1, . . . , n − 1, we embed U(k) in U(n) by

U(k) ∼=
(

U(k) 0
0 1n−k

)
⊂ U(n).

x 7→ x(k) ∈
√
−1u(k) ∼= u(k)∗ is a moment map of the U(k)-action.

(ii) The moment map of the action of maximal torus T is given by

x ∈ Oλ 7−→ diag(x11, x22, . . . , xnn).

Since

xkk = trx(k) − trx(k−1) =
∑
i

λ
(k)
i −

∑
i

λ
(k−1)
i ,

the T -action is contained in the Hamiltonian torus action of the

Gelfand-Cetlin system.

(iii) The Hamiltonian torus action of G-C system is not holomorphic.

Hence inverse image of a face of ∆λ is not a subvariety in general.
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Example (the case of Fl3).

Φλ = (λ(2)
1 , λ

(2)
2 , λ

(1)
1 ) : Fl3 −→ R3.

Gelfand-Cetlin polytope ∆λ:

�(2)2�(2)1�(1)1
For every u ∈ Int∆λ, L(u) := Φ−1

λ (u) is a Lagrangian T3.

The fiber of the vertex emanating four edges is a Lagrangian S3.
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§3 Gelfand-Cetlin basis

Borel-Weil: H0(Fln,Lλ) is an irred. rep. of U(n) of h.w. λ.

H0(Fln,Lλ) =
⊕

λ(n−1)

V
λ(n−1) irred. decomp. as a U(n − 1)-rep.

Fact:

• Each V
λ(n−1) has multiplicity at most 1.

• multiplicity = 1 iff

λ1 ≥ λ
(n−1)
1 ≥ λ2 ≥ λ

(n−1)
2 ≥ λ3 ≥ · · · ≥ λn−1 ≥ λ

(n−1)
n−1 ≥ λn.

Repeating this process we obtain Gelfand-Cetlin decomposition:

H0(Fln,Lλ) =
⊕

Λ∈∆λ∩ZN

VΛ, dimVΛ = 1.

Taking vΛ( ̸= 0) ∈ VΛ for each Λ, we have Gelfand-Cetlin basis.
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§4 Toric degeneration of flag manifolds

Toric degeneration is given by deforming the Plücker embedding

Fln ↪→
n−1∏
i=1

P
( i∧

Cn
)
, (V1 ⊂ · · · ⊂ Vn−1) 7→ (

∧1V1, . . . ,
∧n−1Vn−1).

Theorem (Gonciulea-Lakshmibai, ...). There exists a flat family

Xt ⊂ X ⊂
∏

i P(
∧i Cn) × C

↓ ↓
t ∈ C

of projective varieties such that

X1 = Fln,

X0 = Gelfand-Cetlin toric variety.
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Example. Plücker embedding of Fl3 is given by

Fl3 =
{(

[z0 : z1 : z2], [w0 : w1 : w2]
)
∈ P2 × P2

∣∣∣∣ z0w0 = z1w1 + z2w2

}
.

Its toric degeneration:

X =
{(

[z0 : z1 : z2], [w0 : w1 : w2], t
) ∣∣∣∣ tz0w0 = z1w1 + z2w2

}
⊂ P2 × P2 × C

X1 =
{
z1w1 + z2w2 = z0w0

}
Flag manifold,

X0 =
{
z1w1 + z2w2 = 0

}
Gelfand-Cetlin toric variety.

Remark. General Xt does not have U(k)-actions.
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Multi-parameter family (Kogan-Miller):

There exists an (n − 1)-parameter family

X(t2,...,tn) ⊂ X̃ ⊂
∏

i P(
∧i Cn) × Cn−1

↓ ↓
(t2, . . . , tn) ∈ Cn−1

such that

• X̃|t2=···=tn = X,

• X(1,...,1) = Flag manifold,

• X(0,...,0) = Gelfand-Cetlin toric variety,

• U(k − 1) acts on X(1,...,1,tk,...,tn),

• Tn−1 × · · · × T k acts holomorphically on X(t2,...,tk,0,...,0),

where T k is a k-torus given by (λ(k)
i )i=1,...,k.

( Tn−1 × · · · × T1 is the torus acting on X0.)
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Degeneration is stages (Kogan-Miller):

Restrict f̃ : X̃ → Cn−1 to the following piecewise linear path

(t2, . . . , tn) = (1, . . . ,1) ; (1, . . . ,1,0) ; · · · ; (1,0, . . . ,0) ; (0, . . . ,0)

The (n − k + 1)-th stage is given by

fk : Xk = X̃|t2=···=tk−1=1
tk+1=···=tn=0

−→ C

∪ ∈

Xk,t = X(1,...,1,t,0,...,0) −→ t.

Then Tn−1 × · · · × T k and U(k − 1) acts on Xk,t for each t.
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§5 Toric degeneration of Gelfand-Cetlin systems

Theorem. The Gelfand-Cetlin system can be deformed into the mo-

ment map on X0 in the following sense:

(i) For each stage fk : Xk → C, there exists Φk : Xk → RN s.t.

• Φk|Xk,t
: Xk,t → RN is a completely integrable system,

• Φn|Xn,1
is the Gelfand-Cetlin system on Xn,1 = Fln,

• Φ2|X2,0
is the moment map on X2,0 = X0,

• Φk|Xk,0
= Φk−1|Xk−1,1

on Xk,0 = Xk−1,1.

(ii) There exists a vector field ξk on Xk such that

Xk,1

Φk ##GG
GG

GG
GG

G

exp(1−t)ξk// Xk,t

Φk{{xxxxxxxx

∆λ
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Constructions: Using U(k − 1) and Tn−1 × · · · × T k-actions, we have

λ̃
(l)
i : Xk −→ R eigenvalues for moment map of U(l)-action,(
ν̃
(j)
i

)
i=1,...,j

: Xk −→ RN moment map of T j-action.

Then Φk is given by

Φk =
(
ν̃
(n−1)
i , . . . , ν̃

(k)
j , λ̃

(k−1)
l , . . . , λ̃

(1)
1

)
: Xk −→ RN .

ξk = gradient-Hamiltonian vector field introduced by W.-D. Ruan.

Remark. Theorem is true for

• partial flag manifolds of type A,

• orthogonal flag manifolds.

16



Example.The Gelfand-Cetlin system on FlSO(4) = SO(4)/T = P1×P1

is not the standard moment map. In fact the G-C polytope is given

by

λ1 |λ2|
≥ ≥

λ
(3)
1

≥

|λ(2)
1 | ,

�(3)1�(2)1
��

which is moment polytope of F2 = P(OP1(2)⊕OP1). The G-C system

on FlSO(4) is the pull-back of the moment map on F2 under a dif-

feomorphism FlSO(4)
∼= F2 = X0 given by the gradient-Hamiltonian

flow.

Remark. In the case of SO(n)/T , T -action is not contained in the

Hamiltonian torus action of the G-C system.
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§6 Application

Mirror symmetry is a duality between symplectic geometry on X and

complex geometry on Y , and vice versa.

Mirror of a Fano manifold X: Landau-Ginzburg model (Y,F)

• Y is a non-compact complex manifold,

• F : Y −→ C is a holomorphic function (superpotential).

Example. Mirror of P1 is given by

Y ∼= C∗, F(y) = y +
Q

y
,

where Q is a parameter.
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Potential functions (Fukaya-Oh-Ohta-Ono):

Let X be a toric variety (or flag manifold) with a completely integrable

system Φ : X → ∆,

Λ0 =


∞∑

i=1

aiT
ri

∣∣∣∣∣∣ ai ∈ C, ri ≥ 0, lim
i→∞

ri = ∞


be the Novikov ring and Λ+ its maximal ideal. We can consider

potential function PO as a function on⋃
u∈Int∆

H1(L(u); Λ+) ∼= Int∆ × (Λ+)N , L(u) := Φ−1(u).

Roughly, PO is given by counting holomorphic disks:

PO(L)“ = ”
∑

ϕ:D2→X holo.,
∂ϕ(D2)⊂L

TArea(ϕ(D2)).
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Toric Fano case.

Theorem (Cho-Oh, Fukaya-Oh-Ohta-Ono). Let X be a smooth toric

Fano manifold, and suppose that ∆ is given by ℓi(u) = ⟨vi, u⟩− τi ≥ 0,

i = 1, . . . , m. Then the potential function is given by

PO(u, x) =
m∑

i=1

e⟨vi,x⟩T ℓi(u), u ∈ Int∆, x ∈ (Λ+)N .

Moreover, PO gives the superpotential of the L-G mirror of X.

Example. X = P1 with x = 0,

PO(L(u)) = TArea(D1) + TArea(D2)

= Tu + Tλ−u

= y +
Q

y
,

where y = Tu, Q = Tλ. u
L(u) (P1; �!FS)D1 D2� � = [0; �℄
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The case of flag manifolds of type A.

Theorem. Suppose that ∆λ is given by ℓi(u) = ⟨vi, u⟩ − τi ≥ 0, i =

1, . . . , m. Then the potential function for G-C torus fibers is given by

PO(u, x) =
m∑

i=1

e⟨vi,x⟩T ℓi(u), u ∈ Int∆, x ∈ (Λ+)N .

Moreover, PO gives the Givental’s superpotential of the mirror of Fln.

Example (The case of Fl3).

PO = e−x1T−u1+λ1 + ex1Tu1−λ2 + e−x2T−u2+λ2

+ ex2Tu2−λ3 + ex1−x3Tu1−u3 + e−x2+x3T−u2+u3

=
Q1

y1
+

y1

Q2
+

Q2

y2
+

y2

Q3
+

y1

y3
+

y3

y2
,

where yk = eukTxk and Qj = Tλj.
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Idea of the proof.

By comparing holomorphic disks in Fln and X0, we show the following,

which is the same as in the toric Fano case.

Lemma. Only holomorphic disks of Maslov index 2 contribute to PO,

and such disks are Fredholm regular.

Note: X0 is singular in general.

Key facts:

(i) X0 is singular Fano toric variety,

(ii) X0 has a small resolution p : X̃0 → X0, i.e.,

codimC p−1(Sing(X0)) ≥ 2.

Remark: These are not true in the SO(n)-case in general.
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Non-displaceable Lagrangian submanifolds.

From the fact that

HF ((L(u), x); Λ0)
∼= H∗(L(u); Λ0)

if (u, x) ∈ Int∆ × (Λ+)N is a critical point of PO, we have:

Theorem. The Gelfand-Cetlin system Φλ : Fln → ∆λ has a non-

displaceable Lagrangian torus fiber L(u) = Φ−1
λ (u), u ∈ Int∆λ :

ψ(L(u)) ∩ L(u) ̸= ∅

for any Hamiltonian diffeomorphism ψ : Fln → Fln. Moreover, if

ψ(L(u)) is transverse to L(u), then

#
(
ψ(L(u)) ∩ L(u)

)
≥ 2N(= dimH∗(L(u))).
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