Toric Degeneration of Gelfand-Cetlin Systems and Potential Functions

Yuichi Nohara
Mathematical Institute, Tohoku University
joint work with Takeo Nishinou and Kazushi Ueda

Third International Conference on Geometry and Quantization
University of Luxembourg, Sep. 10, 2009

§1 Introduction

Polarized toric varieties and moment polytopes:

Let $\mathcal{L} \rightarrow X$ be a polarized toric variety of $\operatorname{dim}_{\mathbb{C}}=N$ and fix a $T^{N_{-}}$ invariant Kähler form $\omega \in c_{1}(\mathcal{L})$. Then the moment polytope Δ of X appears in two different stories:

- Monomial basis of $H^{0}(X, \mathcal{L})$:

$$
H^{0}(X, \mathcal{L})=\bigoplus_{I \in \triangle \cap \mathbb{Z}^{N}} \mathbb{C} z^{I} \quad \text { (weight decomposition). }
$$

- Moment map image: $\Phi:(X, \omega) \longrightarrow \mathbb{R}^{N}$ moment map of T^{N}-action, $\Delta=\Phi(X)$. $\Phi^{-1}(u)$ Bohr-Sommerfeld iff $u \in \Delta \cap \mathbb{Z}^{N}$.
"Real quantization \cong Kähler quantization"

Flag manifolds.

$$
\begin{aligned}
F l_{n} & :=\left\{0 \subset V_{1} \subset \cdots \subset V_{n-1} \subset \mathbb{C}^{n} \mid \operatorname{dim} V_{i}=i\right\} \\
& =U(n) / T=G L(n, \mathbb{C}) / B
\end{aligned}
$$

where $T \subset U(n)$ is a maximal torus and $B \subset G L(n, \mathbb{C})$ is a Borel subgroup. Note that

$$
N:=\operatorname{dim}_{\mathbb{C}} F l_{n}=\frac{1}{2} n(n-1)
$$

For

$$
\lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right), \quad \lambda_{1}>\lambda_{2}>\cdots>\lambda_{n}
$$

we can associate
ω_{λ} Kostant-Kirillov form (a $U(n)$-invariant Kähler form), $\mathcal{L}_{\lambda} \rightarrow F l_{n} \quad U(n)$-equivariant line bundle, $c_{1}\left(\mathcal{L}_{\lambda}\right)=\left[\omega_{\lambda}\right]$ (if $\lambda_{i} \in \mathbb{Z}$), $\Delta_{\lambda} \subset \mathbb{R}^{N} \quad$ Gelfand-Cetlin polytope.

Flag manifolds and Gelfand-Cetlin polytopes Δ_{λ} :

(i) Gelfand-Cetlin basis(Gelfand-Cetlin):
a basis of an irreducible representation $H^{0}\left(F l_{n}, \mathcal{L}_{\lambda}\right)$ of $U(n)$ of highest weight λ, indexed by $\Delta_{\lambda} \cap \mathbb{Z}^{N}$.
(ii) Gelfand-Cetlin system(Guillemin-Sternberg):
a completely integrable system (a set of Poisson-commuting independent functions)

$$
\Phi_{\lambda}:\left(F l_{n}, \omega_{\lambda}\right) \longrightarrow \mathbb{R}^{N}, \quad \Phi_{\lambda}\left(F l_{n}\right)=\Delta_{\lambda}
$$

$\Phi_{\lambda}^{-1}(u)$ Bohr-Sommerfeld iff $u \in \Delta_{\lambda} \cap \mathbb{Z}^{N}$.
"Real quantization \cong Kähler quantization"

The common idea is to consider

$$
U(1) \subset U(2) \subset \cdots \subset U(n-1) \subset U(n)
$$

In the case of flag manifolds, we have one more relation:
(iii) Toric degeneration(Gonciulea-Lakshmibai, etc.):
$F l_{n}$ degenerate into a toric variety X_{0} corresponding to Δ_{λ}. We call X_{0} the Gelfand-Cetlin toric variety.

Kogan-Miller: The Gelfand-Cetlin basis can be deformed into the monomial basis on X_{0} under the toric degeneration. In particular, Kähler quantizations for $F l_{n}$ and X_{0} are "isomorphic".

This talk: The Gelfand-Cetlin system can be deformed into the toric moment map on the Gelfand-Cetlin toric variety.

Corollary: \exists isomorphism between real quantizations for $F l_{n}$ and X_{0}.

Application to symplectic geometry/ mirror symmetry: Computation of the potential function for Gelfand-Cetlin torus fibers.

§2 Gelfand-Cetlin systems

Identify $F l_{n}$ with the adjoint orbit \mathcal{O}_{λ} of $\lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$:

$$
\begin{aligned}
U(n) / T & \cong \mathcal{O}_{\lambda}=\left\{x \in M_{n}(\mathbb{C}) \mid x^{*}=x, \text { eigenvalues }=\lambda_{1}, \ldots, \lambda_{n}\right\} \\
g T & \leftrightarrow g \lambda g^{*}
\end{aligned}
$$

For each $k=1, \ldots, n-1$ and $x \in \mathcal{O}_{\lambda}$, set

$$
\begin{aligned}
& x^{(k)}=\text { upper-left } k \times k \text { submatrix of } x \\
& \lambda_{1}^{(k)}(x) \geq \cdots \geq \lambda_{k}^{(k)}(x): \text { eigenvalues of } x^{(k)}
\end{aligned}
$$

Theorem (Guillemin-Sternberg).

$$
\Phi_{\lambda}: \mathcal{O}_{\lambda} \longrightarrow \mathbb{R}^{N}, \quad x \longmapsto\left(\lambda_{i}^{(k)}(x)\right)_{\substack{k=1, \ldots, n-1 \\ i=1, \ldots, k}}
$$

is a completely integrable system on $\left(F l_{n}, \omega_{\lambda}\right)$ and $\Phi_{\lambda}\left(\mathcal{O}_{\lambda}\right)=\Delta_{\lambda}$.
Φ_{λ} is called the Gelfand-Cetlin system.

The Gelfand-Cetlin polytope $\Delta_{\lambda} \subset \mathbb{R}^{N}=\left\{\left(\lambda_{i}^{(k)}\right) ; 1 \leq i \leq k \leq n-1\right\}$ is a convex polytope given by

Remark. (i) For $k=1, \ldots, n-1$, we embed $U(k)$ in $U(n)$ by

$$
U(k) \cong\left(\begin{array}{c|c}
U(k) & 0 \\
\hline 0 & 1_{n-k}
\end{array}\right) \subset U(n)
$$

$x \mapsto x^{(k)} \in \sqrt{-1} \mathfrak{u}(k) \cong \mathfrak{u}(k)^{*}$ is a moment map of the $U(k)$-action.
(ii) The moment map of the action of maximal torus T is given by

$$
x \in \mathcal{O}_{\lambda} \longmapsto \operatorname{diag}\left(x_{11}, x_{22}, \ldots, x_{n n}\right)
$$

Since

$$
x_{k k}=\operatorname{tr} x^{(k)}-\operatorname{tr} x^{(k-1)}=\sum_{i} \lambda_{i}^{(k)}-\sum_{i} \lambda_{i}^{(k-1)}
$$

the T-action is contained in the Hamiltonian torus action of the Gelfand-Cetlin system.
(iii) The Hamiltonian torus action of G-C system is not holomorphic. Hence inverse image of a face of Δ_{λ} is not a subvariety in general.

Example (the case of Fl_{3}).

$$
\Phi_{\lambda}=\left(\lambda_{1}^{(2)}, \lambda_{2}^{(2)}, \lambda_{1}^{(1)}\right): F l_{3} \longrightarrow \mathbb{R}^{3}
$$

Gelfand-Cetlin polytope Δ_{λ} :

For every $u \in \operatorname{Int} \Delta_{\lambda}, L(u):=\Phi_{\lambda}^{-1}(u)$ is a Lagrangian T^{3}.
The fiber of the vertex emanating four edges is a Lagrangian S^{3}.

$\S 3$ Gelfand-Cetlin basis

Borel-Weil: $H^{0}\left(F l_{n}, \mathcal{L}_{\lambda}\right)$ is an irred. rep. of $U(n)$ of h.w. λ.

$$
H^{0}\left(F l_{n}, \mathcal{L}_{\lambda}\right)=\bigoplus_{\lambda^{(n-1)}} V_{\lambda(n-1)} \quad \text { irred. decomp. as a } U(n-1) \text {-rep. }
$$

Fact:

- Each $V_{\lambda^{(n-1)}}$ has multiplicity at most 1.
- multiplicity $=1$ iff

$$
\lambda_{1} \geq \lambda_{1}^{(n-1)} \geq \lambda_{2} \geq \lambda_{2}^{(n-1)} \geq \lambda_{3} \geq \cdots \geq \lambda_{n-1} \geq \lambda_{n-1}^{(n-1)} \geq \lambda_{n}
$$

Repeating this process we obtain Gelfand-Cetlin decomposition:

$$
H^{0}\left(F l_{n}, \mathcal{L}_{\lambda}\right)=\bigoplus_{\Lambda \in \Delta_{\lambda} \cap \mathbb{Z}^{N}} V_{\Lambda}, \quad \operatorname{dim} V_{\Lambda}=1
$$

Taking $v_{\Lambda}(\neq 0) \in V_{\Lambda}$ for each \wedge, we have Gelfand-Cetlin basis.

$\S 4$ Toric degeneration of flag manifolds

Toric degeneration is given by deforming the Plücker embedding

$$
F l_{n} \hookrightarrow \prod_{i=1}^{n-1} \mathbb{P}\left(\bigwedge^{i} \mathbb{C}^{n}\right), \quad\left(V_{1} \subset \cdots \subset V_{n-1}\right) \mapsto\left(\wedge^{1} V_{1}, \ldots, \wedge^{n-1} V_{n-1}\right) .
$$

Theorem (Gonciulea-Lakshmibai, ...). There exists a flat family

$$
\begin{aligned}
X_{t} & \subset \mathfrak{X} \\
\downarrow & \subset \Pi_{i} \mathbb{P}\left(\wedge^{i} \mathbb{C}^{n}\right) \times \mathbb{C} \\
t & \in \mathbb{C}
\end{aligned}
$$

of projective varieties such that

$$
\begin{aligned}
& X_{1}=F l_{n}, \\
& X_{0}=\text { Gelfand-Cetlin toric variety. }
\end{aligned}
$$

Example. Plücker embedding of Fl_{3} is given by

$$
F l_{3}=\left\{\left(\left[z_{0}: z_{1}: z_{2}\right],\left[w_{0}: w_{1}: w_{2}\right]\right) \in \mathbb{P}^{2} \times \mathbb{P}^{2} \mid z_{0} w_{0}=z_{1} w_{1}+z_{2} w_{2}\right\}
$$

Its toric degeneration:

$$
\begin{aligned}
\mathfrak{X} & =\left\{\left(\left[z_{0}: z_{1}: z_{2}\right],\left[w_{0}: w_{1}: w_{2}\right], t\right) \mid t z_{0} w_{0}=z_{1} w_{1}+z_{2} w_{2}\right\} \\
& \subset \mathbb{P}^{2} \times \mathbb{P}^{2} \times \mathbb{C} \\
& X_{1}=\left\{z_{1} w_{1}+z_{2} w_{2}=z_{0} w_{0}\right\} \quad \text { Flag manifold, } \\
& X_{0}=\left\{z_{1} w_{1}+z_{2} w_{2}=0\right\} \quad \text { Gelfand-Cetlin toric variety. }
\end{aligned}
$$

Remark. General X_{t} does not have $U(k)$-actions.

Multi-parameter family (Kogan-Miller):

There exists an ($n-1$)-parameter family

$$
\begin{array}{rll}
X_{\left(t_{2}, \ldots, t_{n}\right)} & \subset & \widetilde{\mathfrak{X}} \\
& \downarrow & \downarrow \prod_{i} \mathbb{P}\left(\bigwedge^{i} \mathbb{C}^{n}\right) \times \mathbb{C}^{n-1} \\
\left(t_{2}, \ldots, t_{n}\right) & \in \mathbb{C}^{n-1}
\end{array}
$$

such that

- $\left.\tilde{\mathfrak{X}}\right|_{t_{2}=\cdots=t_{n}}=\mathfrak{X}$,
- $X_{(1, \ldots, 1)}=$ Flag manifold,
- $X_{(0, \ldots, 0)}=$ Gelfand-Cetlin toric variety,
- $U(k-1)$ acts on $X_{\left(1, \ldots, 1, t_{k}, \ldots, t_{n}\right)}$,
- $T^{n-1} \times \cdots \times T^{k}$ acts holomorphically on $X_{\left(t_{2}, \ldots, t_{k}, 0, \ldots, 0\right)}$, where T^{k} is a k-torus given by $\left(\lambda_{i}^{(k)}\right)_{i=1, \ldots, k}$. ($T^{n-1} \times \cdots \times T^{1}$ is the torus acting on X_{0}.)

Degeneration is stages (Kogan-Miller):
Restrict $\tilde{f}: \widetilde{\mathfrak{X}} \rightarrow \mathbb{C}^{n-1}$ to the following piecewise linear path
$\left(t_{2}, \ldots, t_{n}\right)=(1, \ldots, 1) \leadsto(1, \ldots, 1,0) \leadsto \cdots \leadsto(1,0, \ldots, 0) \leadsto(0, \ldots, 0)$
The ($n-k+1$)-th stage is given by

$$
\begin{aligned}
& X_{k, t}=X_{(1, \ldots, 1, t, 0, \ldots, 0)} \longrightarrow t .
\end{aligned}
$$

Then $T^{n-1} \times \cdots \times T^{k}$ and $U(k-1)$ acts on $X_{k, t}$ for each t.

§5 Toric degeneration of Gelfand-Cetlin systems

Theorem. The Gelfand-Cetlin system can be deformed into the moment map on X_{0} in the following sense:
(i) For each stage $f_{k}: \mathfrak{X}_{k} \rightarrow \mathbb{C}$, there exists $\Phi_{k}: \mathfrak{X}_{k} \rightarrow \mathbb{R}^{N}$ s.t.

- $\left.\Phi_{k}\right|_{X_{k, t}}: X_{k, t} \rightarrow \mathbb{R}^{N}$ is a completely integrable system,
- $\left.\Phi_{n}\right|_{X_{n, 1}}$ is the Gelfand-Cetlin system on $X_{n, 1}=F l_{n}$,
- $\left.\Phi_{2}\right|_{X_{2,0}}$ is the moment map on $X_{2,0}=X_{0}$,
- $\left.\Phi_{k}\right|_{X_{k, 0}}=\left.\Phi_{k-1}\right|_{X_{k-1,1}}$ on $X_{k, 0}=X_{k-1,1}$.
(ii) There exists a vector field ξ_{k} on \mathfrak{X}_{k} such that

$$
\begin{gathered}
X_{k, 1} \stackrel{\exp (1-t) \xi_{k}}{\nu} X_{k, t} \\
\Phi_{\Delta_{\lambda}} \Phi_{k}
\end{gathered}
$$

Constructions: Using $U(k-1)$ and $T^{n-1} \times \cdots \times T^{k}$-actions, we have

$$
\tilde{\lambda}_{i}^{(l)}: \mathfrak{X}_{k} \longrightarrow \mathbb{R} \quad \text { eigenvalues for moment map of } U(l) \text {-action, }
$$

$$
\left(\widetilde{\nu}_{i}^{(j)}\right)_{i=1, \ldots, j}: \mathfrak{X}_{k} \longrightarrow \mathbb{R}^{N} \quad \text { moment map of } T^{j} \text {-action. }
$$

Then Φ_{k} is given by

$$
\Phi_{k}=\left(\widetilde{\nu}_{i}^{(n-1)}, \ldots, \widetilde{\nu}_{j}^{(k)}, \widetilde{\lambda}_{l}^{(k-1)}, \ldots, \widetilde{\lambda}_{1}^{(1)}\right): \mathfrak{X}_{k} \longrightarrow \mathbb{R}^{N}
$$

$\xi_{k}=$ gradient-Hamiltonian vector field introduced by W.-D. Ruan.

Remark. Theorem is true for

- partial flag manifolds of type A,
- orthogonal flag manifolds.

Example. The Gelfand-Cetlin system on $F l_{S O(4)}=S O(4) / T=\mathbb{P}^{1} \times \mathbb{P}^{1}$ is not the standard moment map. In fact the $\mathrm{G}-\mathrm{C}$ polytope is given by

which is moment polytope of $F_{2}=\mathbb{P}\left(\mathcal{O}_{\mathbb{P}^{1}}(2) \oplus \mathcal{O}_{\mathbb{P}^{1}}\right)$. The G-C system on $\mathrm{Fl}_{S O(4)}$ is the pull-back of the moment map on F_{2} under a diffeomorphism $F l_{S O(4)} \cong F_{2}=X_{0}$ given by the gradient-Hamiltonian flow.

Remark. In the case of $S O(n) / T, T$-action is not contained in the Hamiltonian torus action of the G-C system.

§6 Application

Mirror symmetry is a duality between symplectic geometry on X and complex geometry on Y, and vice versa.

Mirror of a Fano manifold X : Landau-Ginzburg model (Y, \mathcal{F})

- Y is a non-compact complex manifold,
- $\mathcal{F}: Y \longrightarrow \mathbb{C}$ is a holomorphic function (superpotential).

Example. Mirror of \mathbb{P}^{1} is given by

$$
Y \cong \mathbb{C}^{*}, \quad \mathcal{F}(y)=y+\frac{Q}{y}
$$

where Q is a parameter.

Potential functions (Fukaya-Oh-Ohta-Ono):

Let X be a toric variety (or flag manifold) with a completely integrable system $\Phi: X \rightarrow \Delta$,

$$
\Lambda_{0}=\left\{\sum_{i=1}^{\infty} a_{i} T^{r_{i}} \mid a_{i} \in \mathbb{C}, r_{i} \geq 0, \quad \lim _{i \rightarrow \infty} r_{i}=\infty\right\}
$$

be the Novikov ring and Λ_{+}its maximal ideal. We can consider potential function $\mathfrak{P O}$ as a function on

$$
\bigcup_{u \in \operatorname{Int} \Delta} H^{1}\left(L(u) ; \wedge_{+}\right) \cong \operatorname{Int} \Delta \times\left(\wedge_{+}\right)^{N}, \quad L(u):=\Phi^{-1}(u)
$$

Roughly, $\mathfrak{P D}$ is given by counting holomorphic disks:

$$
\mathfrak{P O}(L) "=" \sum_{\substack{\phi: D^{2} \rightarrow X \text { holo. }, \partial \phi\left(D^{2}\right) \subset L}} T^{\operatorname{Area}\left(\phi\left(D^{2}\right)\right)}
$$

Toric Fano case.

Theorem (Cho-Oh, Fukaya-Oh-Ohta-Ono). Let X be a smooth toric Fano manifold, and suppose that Δ is given by $\ell_{i}(u)=\left\langle v_{i}, u\right\rangle-\tau_{i} \geq 0$, $i=1, \ldots, m$. Then the potential function is given by

$$
\mathfrak{P O}(u, x)=\sum_{i=1}^{m} e^{\left\langle v_{i}, x\right\rangle} T^{\ell_{i}(u)}, \quad u \in \operatorname{Int} \Delta, x \in\left(\Lambda_{+}\right)^{N}
$$

Moreover, $\mathfrak{P O}$ gives the superpotential of the L-G mirror of X.
Example. $X=\mathbb{P}^{1}$ with $x=0$,

$$
\begin{aligned}
\mathfrak{P O}(L(u)) & =T^{\operatorname{Area}\left(D_{1}\right)}+T^{\operatorname{Area}\left(D_{2}\right)} \\
& =T^{u}+T^{\lambda-u} \\
& =y+\frac{Q}{y}
\end{aligned}
$$

where $y=T^{u}, Q=T^{\lambda}$.

The case of flag manifolds of type A.

Theorem. Suppose that Δ_{λ} is given by $\ell_{i}(u)=\left\langle v_{i}, u\right\rangle-\tau_{i} \geq 0, i=$ $1, \ldots, m$. Then the potential function for $G-C$ torus fibers is given by

$$
\mathfrak{P O}(u, x)=\sum_{i=1}^{m} e^{\left\langle v_{i}, x\right\rangle} T^{\ell_{i}(u)}, \quad u \in \operatorname{Int} \Delta, x \in\left(\Lambda_{+}\right)^{N}
$$

Moreover, $\mathfrak{P O}$ gives the Givental's superpotential of the mirror of $F l_{n}$. Example (The case of Fl_{3}).

$$
\begin{aligned}
\mathfrak{P O}= & e^{-x_{1}} T^{-u_{1}+\lambda_{1}}+e^{x_{1}} T^{u_{1}-\lambda_{2}}+e^{-x_{2}} T^{-u_{2}+\lambda_{2}} \\
& +e^{x_{2}} T^{u_{2}-\lambda_{3}}+e^{x_{1}-x_{3}} T^{u_{1}-u_{3}}+e^{-x_{2}+x_{3}} T^{-u_{2}+u_{3}} \\
= & \frac{Q_{1}}{y_{1}}+\frac{y_{1}}{Q_{2}}+\frac{Q_{2}}{y_{2}}+\frac{y_{2}}{Q_{3}}+\frac{y_{1}}{y_{3}}+\frac{y_{3}}{y_{2}}
\end{aligned}
$$

where $y_{k}=e^{u_{k}} T^{x_{k}}$ and $Q_{j}=T^{\lambda_{j}}$.

Idea of the proof.

By comparing holomorphic disks in $F l_{n}$ and X_{0}, we show the following, which is the same as in the toric Fano case.

Lemma. Only holomorphic disks of Maslov index 2 contribute to $\mathfrak{P D}$, and such disks are Fredholm regular.

Note: X_{0} is singular in general.

Key facts:

(i) X_{0} is singular Fano toric variety,
(ii) X_{0} has a small resolution $p: \widetilde{X}_{0} \rightarrow X_{0}$, i.e.,

$$
\operatorname{codim}_{\mathbb{C}} p^{-1}\left(\operatorname{Sing}\left(X_{0}\right)\right) \geq 2
$$

Remark: These are not true in the $S O(n)$-case in general.

Non-displaceable Lagrangian submanifolds.

From the fact that

$$
H F\left((L(u), x) ; \wedge_{0}\right) \cong H^{*}\left(L(u) ; \wedge_{0}\right)
$$

if $(u, x) \in$ Int $\Delta \times\left(\Lambda_{+}\right)^{N}$ is a critical point of $\mathfrak{P O}$, we have:
Theorem. The Gelfand-Cetlin system $\Phi_{\lambda}: F l_{n} \rightarrow \Delta_{\lambda}$ has a nondisplaceable Lagrangian torus fiber $L(u)=\Phi_{\lambda}^{-1}(u), u \in \operatorname{Int} \Delta_{\lambda}$:

$$
\psi(L(u)) \cap L(u) \neq \emptyset
$$

for any Hamiltonian diffeomorphism $\psi: F l_{n} \rightarrow F l_{n}$. Moreover, if $\psi(L(u))$ is transverse to $L(u)$, then

$$
\#(\psi(L(u)) \cap L(u)) \geq 2^{N}\left(=\operatorname{dim} H^{*}(L(u))\right)
$$

