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Geometric data

Riemann surface Σ. Classical Lie algebra g over C.

Fixed points P1, . . . , PN ∈ Σ, N ∈ Z+

Points γ1, . . . , γK ∈ Σ, K ∈ Z+.

Vectors α1, . . . , αK ∈ Cn associated with γ’s.

γ’s and α’s are joined under the name Tyurin data, because of
the

THEOREM (A.N.Tyurin): Let g = genus Σ, n ∈ Z+. Then there
is a 1-to-1 correspondence between the following data:
1) points γ1, . . . , γng of Σ ;
2) α1, . . . , αng ∈ CPn−1 .
and the equivalence classes of the semi-stable holomorphic
rank n vector bundles on Σ.
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Lax operators on Riemann surfaces

{fixed geometric data} � L ∈ Γ(Σ× g → Σ)

s.t. L has arbitrary poles at Pi ’s, simple or double poles at γ’s, is
holomorphic elsewhere, and at every γ is of the form

L(z) =
L−2

(z − zγ)2 +
L−1

(z − zγ)
+ L0 + L1(z − zγ) + O(z − zγ)

where z is a local coordinate at γ, zγ = z(γ), α, β ∈ Cn

(α associated with γ, β arbitrary), and the following relations
hold:

L−2 = νααtσ L−1 = (αβt + εβαt)σ βtσα = 0 L0α = kα

L is called a Lax operator with a spectral parameter on the Riemann
surface Σ. ν, ε, σ depend on g More
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Lax operator algebras

THEOREM (Krichever-Sh., 2007): For a fixed Tyurin data the
space of Lax operators is closed with respect to the point-wise
commutator [L, L′](P) = [L(P), L′(P)] (P ∈ Σ) (in the case
g = gl(n) also with resp. to the point-wise multiplication).

Comment

It is called the Lax operator algebra and denoted by g.

THEOREM (Kr.-Sh., 2007): (almost graded structure)

(1) g =
∞⊕

m=−∞
gm. (2) dim gm = dim g. (3) [gk , gl ] ⊆

k+l+g⊕
m=k+l

gm.

THEOREM: If g is simple then g has only one almost graded
central extension, up to equivalence (Schlichenmaier-Sh., 2008).
It is given by a cocycle γ(L, L′) = − resP∞ tr(LdL′ − [L, L′]θ)
where θ is a certain 1-form (Kr.-Sh., 2007).
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M-operators

M = M(z, α, β, γ, k , . . .) is defined by the same constrains as L,
excluding βtσα = 0 and L0α = kα, namely

M =
M−2

(z − zγ)2 +
M−1

z − zγ
+ M0 + M1(z − zγ) + O(z − zγ)

where

M−2 = λααtσ M−1 = (αµt + εµαt)σ

M also takes values in g.
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Lax equations

L = L(z, α, β, γ, k , . . .), M = M(z, α, β, γ, k , . . .).

For variative Tyurin data the collection of equations on α’s, β’s,
γ’s, k ’s . . . equivalent to the relation

L̇ = [L, M]

is called a Lax equation.

Motion equations of Tyurin data assigned to a point γ:

żγ = −µtσα, α̇ = −M0α + ka.

Besides, there are motion equations of main parts of the func. L
at Pi ’s.

D :=
∑

miPi (i = 1, . . . , N,∞), s.t. supp D ∩ {γ} = ∅.

LD := {(α, β, γ, k , . . .)|(L) + D ≥ 0 outside γ’s}.
Under a certain (effective) condition a Lax equation defines the
flow on LD.
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Examples

1) g = 0, α = 0 (i.e. Σ = CP1, the bundle is trivial), P1 = 0,
P2 = ∞. Then g = g⊗ C[z, z−1] — loop algebra.

It yields a conventional Lax equation with a rational spectral
parameter:

Lt = [L, M], L, M ∈ g⊗ C[λ−1, λ), λ ∈ D1

(I.Gelfand, L.Dikii, I.Dorfman, A.Reyman, M.Semenov-Tian -
Shanskii, V.Drinfeld, V.Sokolov, V.Kac, P. van Moerbeke). All
known integrable cases of motion and hydrodynamics of a solid
body.

2) Elliptic curves: Calogero-Moser systems (to be discussed
later).

3) Arbitrary genus: Hitchin systems
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Hierarchy of commuting flows

THEOREM: Given a generic L, there is a family of
M-operators Ma = Ma(L) (a = (Pi , n, m), n > 0, m > −mi )
uniquely defined up to normalization, such that outside the
γ-points Ma has pole at the point Pi only, and in the
neighborhood of Pi

Ma(wi) = w−m
i Ln(wi) + O(1),

The equations
∂aL = [L, Ma], ∂a = ∂/∂ta (1)

define a family of commuting flows on an open set of LD.

(g = gl(n)) — Krichever, 2001; other classical Lie algebras —
Sh., 2008 ).
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Krichever-Phong symplectic structure

We define an external 2-form on LD. For L ∈ LD let Ψ be a
matrix-valued function formed by the eigenvectors of L:
LΨ = ΨK (K — diagonal).

Ω := tr(Ψ−1δL ∧ δΨ−Ψ−1δΨ ∧ δK ) = δtr(Ψ−1LδΨ)

where δΨ is the differential of Ψ in α, β, . . ..

Let dz be a holomorphic 1-form on Σ and

ω :=
∑

resγs Ωdz +
∑

resPi Ωdz

THEOREM: ω is a symplectic form on LD.

(gl(n) — Kr., 2001; other class. Lie algs. — Sh., 2008)
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Hamiltonians

THEOREM (gl(n) — Krichever, 2001; other class. Lie algs — Sh.,
2008): The equations of the above commutative family are
Hamiltonian with respect to the Krichever-Phong symplectic
structure on LD, with the Hamiltonians given by

Ha = − 1
n + 1

resPi tr(w−m
i Ln+1)dwi

Example. Let D be a divisor of a holomorphic 1-form. Then
LD ' T ∗(M0) where M0 is an open subset of the moduli
space of holomorphic vector bundles on Σ, Ha are
Hitchin Hamiltonians.
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Calogero-Moser systems

g = gl(n) : Li,j :=
σ(z + qi − qj)σ(z − qi)σ(qj)

σ(z)σ(z − qj)σ(qi − qj)σ(qi)
(i 6= j), Lii = pi

H = −1
2

resz=0 tr(z−1L2) = −1
2

n∑
j=1

p2
j +

∑
i<j

℘(qi − qj).

Tyurin parameters: (qi , ei), ei = (. . . , δij , . . .)
t , ω =

∑
dpi ∧ dqi .

g = so(2n) : L =

(
A B
C −At

)
∈ so(2n), Bt = −B, Ct = −C.

Ai,j is the same as Li,j above.

Bij =
σ(z + qj + qi)σ(z − qj)

σ(z)σ(z + qi)σ(qi + qj)
, Cj i = −

σ(z − qj − qi)σ(z + qi)

σ(z)σ(z − qj)σ(qi + qj)
, i < j .

H = −1
2

res tr(z−1L2) = −
n∑

i=1

p2
i +2

∑
i<j

℘(qi−qj)+2
∑
i<j

℘(qi+qj)

.
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Thank you



let deg L = −m, deg M = −n. Then deg[L, M] = −(m + n).
By Riemann-Roch theorem
the number of unknowns = n2(m + n − 2g + 1),
(= dim{L}+ dim{M}), but
the number of equations = n2(m + n − g + 1)
(= dim{[L, M]}).

Go back



L−2 = νααtσ L−1 = (αβt + εβαt)σ βtσα = 0 L0α = kα

ν ∈ C, β ∈ Cn, σ is a n × n matrix,

ν ≡ 0, ε = 0, σ = id for g = gl(n), sl(n),

ν ≡ 0, ε = −1, σ = id for g = so(n),

ε = 1 for g = sp(2n),

(2)

and σ is a matrix of the symplectic form for g = sp(2n).

In addition we assume that

αtα = 0 for g = so(n) (3)

and
αtσL1α = 0 for g = sp(2n). (4)

Go back



This means, in particular, that the commutator (the product) of
Lax operators again has a simple or 2d order poles at γ’s
(depending on g), and the eigenvalue condition is preserved as
well as the other relations.

Go back
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