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Background and History

♦ Classical asymptotic Euler-Maclaurin formula

ϕ: a smooth function on [0, 1]

1

N

N
X

k=1

ϕ(k/N ) ∼
Z 1

0

ϕ(x) dx +
1

2N
(ϕ(1) − ϕ(0))+

+
X

n≥1

(−1)n−1Bn

(2n)!

“

ϕ(2n−1)(1) − ϕ(2n−1)(0)
”

N−2n ,

where Todd(z) =
z

1 − e−z
=

∞∑
n=0

(−1)n bn

n!
zn,

b0 = 1, b1 = −
1

2
, b2n+1 = 0(n ≥ 1),

b2n = (−1)n−1Bn (Bn: Bernoulli number)



♦ The Riemann sum over lattice polytopes

P ⊂ Rm: A lattice polytope
def⇐⇒ vertices of P ⊂ Zm.

Definition: Define a Riemann sum of ϕ ∈ C∞(P ) over a lattice polytope

P ⊂ Rm by:

RN(P ; ϕ) :=
1

Ndim(P )

∑
γ∈(NP )∩Zm

ϕ(γ/N), N ∈ Z>0

Asymptotic Euler-Maclaurin formula

= Asymptotic expansion formula for RN(P ; ϕ).

♦ Purpose of the talk: To give asymptotic Euler-Maclaurin formula which

is effective for computation (for Delzant polytopes).



♦ Terminology for lattice polytopes

P ⊂ Rm: a lattice polytope.

Definition:

(1) P is simple
def⇐⇒ For each vertex v of P ,

♯ of edges (1-dim. faces) incident to v = m.

(2) P is Delzant
def⇐⇒ P is simple and for each vertex v of P , there is a

Z-basis w1, . . . , wm of Zm such that

each edge incident to v ⊂ {v + twj ; t ≥ 0}

for some j = 1, . . . , m.

Remark: Roughly speaking:

Simple polytopes corresponds to toric varieties with quotient singularities.

Delzant polytopes corresponds to smooth projective toric varieties.



♦ Background from spectral analysis on toric varieties

(X, ω): a smooth toric Kähler manifold with Kähler form ω

obtained by a GIT (symplectic) quotient X = Cd//T r

with respect to a suitable subtorus T r ⊂ T d y (Cd, ωstd).

=⇒

T m y X: Hamiltonian, m = d − r.

The moment map µ : X → Rm satisfy µ(X) = P , where P is an

m-dimensional Delzant polytope, which is realized as

P ∼= {x ∈ Rd
+ ;

∑
xjαj = α}

with some α ∈ Zd, where αj (j = 1, . . . , d) are the weights of

T r
C y Cd.



L → X: a Hermitian line bundle obtained from the trivial bundle over Cd.

H0(X, L⊗N) ∼=
⊕

γ∈NP ∩Zd

C · χγ

⊂ L2(Cd, e−N |z|2dzdz),

χγ monomial on Cd with weight γ.

Spectral measure:

πN : L2(Cd, e−N |z|2dzdz) → H0(X, L⊗N): orthog. proj.

f ∈ C∞(Cd): T d-invariant bounded function.

Mf : multiplication by f .

νN(f) := trace(πNMfπN) : a measure on Rd.



Then, we have (Guillemin-Wang)

νN(f) =
∑

γ∈NP ∩Zd

(ANf)(γ/N),

ANf : ‘twisted Mellin transform’ defined by Wang

(NP ) ∩ Zd can be replaced by NP ∩ Zm (P is m-dimensional).

It is known that ANf admits asymptotic expansion in N (Wang).

=⇒

νN(f) reduces to the Riemann sums RN(P ; ϕ)

where ϕ are functions appeaing the expansion of ANf .



♦ Related works Suppose that P ⊂ Rm: Delzant polytope.

(1) Khovanskii-Pukhlikov (1993), Brion-Vergne (1997):

RN(P ; ϕ) = Todd(P ; ∂/N∂h)
∫

Ph

ϕ(x) dx

∣∣∣∣
h=0

h = (h1, . . . , hd) ∈ Rd: small parameter, ϕ: polynomial on Rm,

If P = {x ∈ Rm ; 〈 x, uj 〉 ≥ cj (j = 1, . . . , d)} then

Ph = {x ∈ Rm ; 〈 x, uj 〉 ≥ cj + hj (j = 1, . . . , d)},

Todd(P ; ∂/N∂h) =
d∏

i=1

Todd(∂/N∂hi)

Remark:

• Brion-Vergne obtained similar formula for simple P with a modification

of Todd(P ; ∂/N∂h).

• Brion-Vergne proved the above without using toric geometry.



(2) Berline-Vergne (2007): Set N = 1 for simlicity. For each face f of P ,

there exists a differential operator µ(P ; f) of infinite order such that

R1(P ; ϕ) =
∑
f

∫
f

µ(P ; f)ϕ

where ϕ is a polynomial on Rm.

Remark:

• Berline-Vergne obtained the same formula for arbitrary lattice polytope

P for polynomial functions ϕ.

• They proved above without toric geometry, and give application to toric

geometry.



An asymptotic Euler-Maclaurin formula is first obtained by:

(3) Guillemin-Sternberg (2007):

RN(P ; ϕ) ∼ Todd(P ; ∂/N∂h)
∫

Ph

ϕ(x) dx

∣∣∣∣
h=0

for arbitrary smooth function ϕ on P .

Remark:

• Guillemin-Sternberg obtained a similar formula for simple P with some

modification of Todd(P ; ∂/N∂h).

• The operator Todd(P ; ∂/N∂h) is infinite order. But the asymptotic

sum has a meaning.

• They obtained the above without toric geometry. Application to spectral

analysis on toric geometry.



(4) Zelditch (2007): For each n ∈ Z+, there exists a differential operator

En(P ) (of finite order) such that

RN(P ; ϕ) ∼
∫

P

ϕ dx +
1

2N

∫
∂P

ϕ dσ

+
∑
n≥2

N−n

∫
P

En(P )ϕ dx

where dσ on ∂P is defined, for each facet f , by the lattice Zm ∩ L(f)
with a subspace f parallel to f .

Remark:

• The differential operators En(P ) depend on the choice of metric on a

line bundle over the toric variety X.

• The formula for the second term is stated by Szekelyhidi.

• He computed the second term by using Donaldson’s integration by parts

identity.



Results

♦ Main theorem

Theorem P ⊂ Rm: a Delzant polytope. F(P ): the set of faces of P .

For each n ∈ Z+ and f ∈ F(P ) such that n − m + dim(f) ≥ 0,

there exists a homogeneous differential operator Dn(P ; f) of order

n − m + dim(f) with rational constant coefficients which involves

derivatives perpendicular to f such that, for ϕ ∈ C∞(P ),

RN(P ; ϕ) ∼
∑
n≥0

An(P ; ϕ)N−n,

An(P ; ϕ) =
∑

f∈F(P ) ; dim(f)≥m−n

∫
f

Dn(P ; f)ϕ



Remark:

• The formula in the main theorem is rather similar to the formula of

Berline-Vergne. But, the construction of Dn(P ; f) is independent of

Berline-Vergne.

• There is an algorithm of computing Dn(P ; f).

• In the following, some of corollaries are presented. But, we just mention

that we have a concrete formula for An(P ; ϕ) for any n ∈ Z+ when

dim(P ) = m = 2.

• Proof uses:

(1) ‘Szasz function’ to obtain expansion of Riemann sum over

‘unimodular cones’ C. (use Hörmander’s idea.)

(2) an integration by parts procedure (this makes the final formula

complicated).

(3) An Euler’s formula due to Brion-Vergne.



♦ The 3rd term

Corollary P ⊂ Rm: Delzant polytope. F(P )k: faces of dim. k.

A2(P ; ϕ) = −
1

12

∑
f∈F(P )m−1

1

|αf |2

∫
f

∇αf
ϕ

+
∑

g∈F(P )m−2

c(P ; g)
∫

g

ϕ,

c(P ; g) =
1

4
−

1

12
〈 α1(g), α2(g) 〉

(
1

|α1(g)|2
+

1

|α2(g)|2

)
where, for f ∈ F(P )m−1, αf ∈ Zm: inward primitive normal to f ,

for g ∈ F(P )m−2, take f1, f2 ∈ F(P )m−1 such that g = f1 ∩ f2.

αi(g) ∈ Zm is the inward primitive normal to fi (i = 1, 2).



Remark:

• By our ‘algorithm’ for computing Dn(P ; f) shows easily

A0(P ; ϕ) =
∫

P

ϕ,

A1(P ; ϕ) =
1

2

∑
f∈F(P )m−1

∫
f

ϕ =
1

2

∫
∂P

ϕ.

• The formula for A2(P ; ϕ) seems new. Furthermore, one has∫
P

E2(P )ϕ = A2(P ; ϕ),

where E2(P ) is Zelditch’s operator.

Question: Can one compute E2(P ) in terms of curvatures of the toric

Kähler manifold? If yes, the above formula gives an integration by parts

identities for curvatures.



♦ Relation to the work of Berline-Vergne Recall

Berline-Vergne formula:

R1(P ; ϕ) =
∑
f

∫
f

µ(P ; f)ϕ

where ϕ is a polynomial on Rm. The differential operators µ(P ; f) is of

infinite order.

But its symbol is real analytic around the origin; Taylor expansion gives

µ(P ; f) =
∞∑

k=0

µk(P ; f),

where µk(P ; f) is a homogeneous diff. op. of order k.



Theorem P ⊂ Rm: Delzant polytope. We have

Dn(P ; f) = µn−dim(P )+dim(f)(P ; f)

for each f ∈ F(P ).

Remark:

• From this, the operators Dn(P ; f) has a nice property; ‘valuation

property’

• For the proof, we use one of results of Berline-Vergne on the relation

among ‘polytope characters’, ‘exponential integral over faces’ and the

symbol of µ(P ; f).



Computation in one dimension

Let us show, for P = [0, 1] ⊂ R, how our formula is proved.

(1) Extend ϕ ∈ C∞([0, 1]) to ϕ ∈ C∞
0 (R).

(It is clear.)

(2) Compute the asymptotics of

RN(ϕ) :=
1

N

∞∑
k=0

ϕ(k/N),

([0, +∞) corresponds to the so-called ‘feasible direction’ of a face f in

a polytope P . )

We use Szasz functions to compute RN(ϕ).



(3) Use the formula:

RN([0, 1]; ϕ) =

RN(ϕ) + RN(ψ) − RN(R; ϕ),

RN(R; ϕ) =
1

N

∑
k∈Z

ϕ(k/N)

with ψ(x) = ϕ(1 − x).

(This corresponds to a variant of Euler’s formula due to Brion-Vergne.)

(4) Sum the results of the above.

(For general P , the ‘naturality’ of the differential operators Dn(P ; f)
is important in this step. There are NO such a step for [0, 1].)

It is enough to consider RN(ϕ).



For one dimension, one can do more; Consider the twisted Riemann sum:

Rω
N(ϕ) :=

1

N

∞∑
k=0

ωkϕ(k/N),

where ω ∈ U(1) (q-th root of unity). One has

RN(ϕ) = R1
N(ϕ) ∼

∫ ∞

0

ϕ dx −
∑
n≥1

bn

n!
ϕ(n−1)(0)N−n,

and, for ω ̸= 1, by Guillemin-Sternberg;

Rω
N(ϕ) ∼

∑
n≥1

(−1)n−1bn(ω)ϕ(n−1)(0)N−n,

s

1 − ωe−s
=

∑
n≥1

bn(ω)sn, b1(ω) =
1

1 − ω
.



♦ Szasz functions

To obtain an expansion of Rω
N(ϕ), we use the (twisted) Szasz function:

Sω
N(ϕ)(x) := e−Nx

∞∑
k=0

ωkϕ(k/N)
(Nx)k

k!

We have ∫ ∞

0

Sω
N(ϕ)(x) dx = Rω

N(ϕ)

Therefore:

It is enough to obtain the expansion of Sω
N(ϕ)

as N → ∞ with a suitable reminder.



To state the asymptotics of Sω
N(ϕ); we use Stirling numbers of the 2nd

kind and related polynomials.

♦ Stirling ♯ of 2nd kind S(n, k) are defined by the recursion formula:

S(0, 0) = 1, S(n, 0) = 0, S(n, n) = 1 (n ≥ 1)

S(n + 1, k) = kS(n, k) + S(n, k − 1) (1 ≤ k ≤ n)

♦ Polynomials we use here are defined, for 0 ≤ k ≤ n, by

p(n, k; z) =
k∑

t=0

(
n

t

)
(−1)tS(n − t, k − t)zk−t, z ∈ C

Remark:

• Set p(n, k) := p(n, k; 1). Then;

p(n, k) = 0 for [n/2] + 1 ≤ k ≤ n.

• Question: Are there any combinatorial meaning of p(n, k; z) ?



Proposition Let ϕ ∈ S(R). Let ω ∈ U(1). Then for any n ∈ Z+ and

K > 0 with n < K < 2n, ∃CK,n > 0 such that

Sω
N(ϕ)(x) =

2n−1∑
µ=0

ϕ(µ)(x)

µ!
Jω

µ (Nx)N−µ + S2n,N(x),

where

|S2n,N(x)| ≤ CK,nN−n(1 + x)n−K , x > 0,

and the function Jω
µ (x) is given by

Jω
µ (x) = e−(1−ω)x

µ∑
k=0

p(µ, k; ω)xk.

In particular, when ω = 1, J1
µ(x) is a polynomial in x of degree at most

[µ/2].



By the above proposition, we have the following.

Proposition When ω ̸= 1, we have

Rω
N(ϕ) ∼

∑
n≥1

cn(ω)ϕ(n−1)(0)N−n,

cn(ω) =
n−1∑
µ=0

µ∑
k=0

(n − k − 1)!

µ!(n − µ − 1)!

p(µ, µ − k; ω)

(1 − ω)n−k
.

For ω = 1, we have

R1
N(ϕ) ∼

∫ ∞

0

ϕ(x) dx +
∑
n≥1

cnϕ(n−1)(0)N−n,

cn =
2n∑

µ=n

(µ − n)!

µ!
(−1)µ−n+1p(α, α − n).



Remark:

• A direct computation and a well-known formula among the number bn

(Bernoulli numbers), Catalan numbers 1
n+1

(2n
n

)
and the Stirling

numbers S(n, k) shows

cn = −(n + 1)
(
2n

n

)−1 n∑
l=0

(−1)l

l + 1

(
2n

n + l

)
S(n + l, l)

= −
bn

n!
.

• One should have

cn(ω) = (−1)n−1bn(ω).

Question: Are there any combinatorial (or number theoretical) meaning

of this formula ?



♦ Further problems

(1) Find asymptotic EM for simple (or more general lattice) polytopes in a

similar form discussed as above.

(One could use the ‘valuation property’ of the operators Dn(P ; f).)

(2) Find an effective formula for Zelditch’s operators En(P ), and perform

integration by parts to obtain a formula for An(P ; ϕ) (it might be

possible to handle in the case where n = 2).

(We have an effective formula for An(P ; ϕ). Thus, this will give

An(P ; ϕ) a geometrical meaning.)


