An asymptotic Euler-Maclaurin formula for Delzant polytopes

(arXiv:0908.3073 (math.CO))

Tatsuya TATE (Nagoya University)

The conference "GEOQUANT" at Universitè du Luxembourg. September 10, 2009.

Plan of the Talk

- (1) Background and History
 - (a) classical asymptotic Euler-Maclaurin formula
 - (b) The Riemann sums over lattice polytopes
 - (c) Buckground from spectral analysis on toric varieties
 - (d) related works
- (2) Results
 - (a) Main Theorem
 - (b) The 3^{rd} term
 - (c) Relation to the work of Berline-Vergne
- (3) One-dimensional computation (along with the method of proof of the main theorem)

- ♦ Classical asymptotic Euler-Maclaurin formula
- arphi: a smooth function on [0,1]

$$\begin{split} &\frac{1}{N}\sum_{k=1}^{N}\varphi(k/N)\sim\int_{0}^{1}\varphi(x)\,dx+\frac{1}{2N}(\varphi(1)-\varphi(0))+\\ &+\sum_{n\geq 1}\frac{(-1)^{n-1}B_{n}}{(2n)!}\left(\varphi^{(2n-1)}(1)-\varphi^{(2n-1)}(0)\right)N^{-2n}, \end{split}$$

where

Todd(z) =
$$\frac{z}{1 - e^{-z}} = \sum_{n=0}^{\infty} (-1)^n \frac{b_n}{n!} z^n$$
,

$$b_0=1, \ \ b_1=-rac{1}{2}, \ \ b_{2n+1}=0 (n\geq 1),$$

 $b_{2n} = (-1)^{n-1} B_n$ (B_n : Bernoulli number)

♦ The Riemann sum over lattice polytopes

 $P \subset \mathbb{R}^m$: A lattice polytope $\stackrel{\text{def}}{\iff}$ vertices of $P \subset \mathbb{Z}^m$.

Definition: Define a Riemann sum of $\varphi \in C^{\infty}(P)$ over a lattice polytope $P \subset \mathbb{R}^m$ by:

$$R_N(P;arphi):=rac{1}{N^{\dim(P)}}\sum_{\gamma\in (NP)\cap \mathbb{Z}^m}arphi(\gamma/N), \hspace{0.3cm} N\in \mathbb{Z}_{>0}$$

Asymptotic Euler-Maclaurin formula

= Asymptotic expansion formula for $R_N(P; \varphi)$.

◇ Purpose of the talk: To give asymptotic Euler-Maclaurin formula which is effective for computation (for Delzant polytopes).

♦ Terminology for lattice polytopes

 $P \subset \mathbb{R}^m$: a lattice polytope.

Definition:

(1) P is simple $\stackrel{\text{def}}{\iff}$ For each vertex v of P,

 \sharp of edges (1-dim. faces) incident to v = m.

(2) P is Delzant $\stackrel{\text{def}}{\iff} P$ is simple and for each vertex v of P, there is a \mathbb{Z} -basis w_1, \ldots, w_m of \mathbb{Z}^m such that each edge incident to $v \subset \{v + tw_j ; t \ge 0\}$

for some $j = 1, \ldots, m$.

Remark: Roughly speaking:

Simple polytopes corresponds to toric varieties with quotient singularities.

Delzant polytopes corresponds to smooth projective toric varieties.

♦ Background from spectral analysis on toric varieties

 (X, ω) : a smooth toric Kähler manifold with Kähler form ω obtained by a GIT (symplectic) quotient $X = \mathbb{C}^d /\!\!/ T^r$ with respect to a suitable subtorus $T^r \subset T^d \curvearrowright (\mathbb{C}^d, \omega_{\mathrm{std}})$.

 $T^m \curvearrowright X$: Hamiltonian, m = d - r.

 \Longrightarrow

The moment map $\mu: X \to \mathbb{R}^m$ satisfy $\mu(X) = P$, where P is an m-dimensional Delzant polytope, which is realized as

$$P\cong \{x\in \mathbb{R}^d_+\,;\,\sum x_jlpha_j=lpha\}$$

with some $lpha\in\mathbb{Z}^d$, where $lpha_j$ $(j=1,\ldots,d)$ are the weights of $T^r_{\mathbb{C}}\curvearrowright\mathbb{C}^d.$

 $L \to X$: a Hermitian line bundle obtained from the trivial bundle over \mathbb{C}^d .

$$egin{aligned} H^0(X,L^{\otimes N})&\cong igoplus_{\gamma\in NP\cap \mathbb{Z}^d}\mathbb{C}\cdot\chi_\gamma\ &\subset L^2(\mathbb{C}^d,e^{-N|z|^2}dzd\overline{z}). \end{aligned}$$

 χ_{γ} monomial on \mathbb{C}^d with weight γ .

Spectral measure:

 $\pi_N: L^2(\mathbb{C}^d, e^{-N|z|^2}dzd\overline{z}) \to H^0(X, L^{\otimes N})$: orthog. proj. $f \in C^\infty(\mathbb{C}^d)$: T^d -invariant bounded function.

 M_f : multiplication by f.

 $u_N(f) := \operatorname{trace}(\pi_N M_f \pi_N) : \text{ a measure on } \mathbb{R}^d.$

Then, we have (Guillemin-Wang)

$$u_N(f) = \sum_{\gamma \in NP \cap \mathbb{Z}^d} (A_N f)(\gamma/N),$$
 $A_N f:$ 'twisted Mellin transform' defined by Wang

 $(NP) \cap \mathbb{Z}^d$ can be replaced by $NP \cap \mathbb{Z}^m$ (*P* is *m*-dimensional). It is known that $A_N f$ admits asymptotic expansion in *N* (Wang).

> $u_N(f)$ reduces to the Riemann sums $R_N(P; \varphi)$ where φ are functions appealing the expansion of $A_N f$.

 \Diamond Related works Suppose that $P \subset \mathbb{R}^m$: Delzant polytope.

(1) Khovanskii-Pukhlikov (1993), Brion-Vergne (1997):

$$R_N(P;arphi) = \operatorname{Todd}(P;\partial/N\partial h) \left. \int_{P_h} arphi(x) \, dx
ight|_{h=0}$$

 $h = (h_1, \dots, h_d) \in \mathbb{R}^d$: small parameter, φ : polynomial on \mathbb{R}^m , If $P = \{x \in \mathbb{R}^m ; \langle x, u_j \rangle \ge c_j \ (j = 1, \dots, d)\}$ then $P_h = \{x \in \mathbb{R}^m ; \langle x, u_j \rangle \ge c_j + h_j \ (j = 1, \dots, d)\},$ $\operatorname{Todd}(P; \partial/N\partial h) = \prod_{i=1}^d \operatorname{Todd}(\partial/N\partial h_i)$

- Brion-Vergne obtained similar formula for simple P with a modification of $\operatorname{Todd}(P;\partial/N\partial h)$.
- Brion-Vergne proved the above without using toric geometry.

(2) Berline-Vergne (2007): Set N = 1 for similcity. For each face f of P, there exists a differential operator $\mu(P; f)$ of infinite order such that

$$R_1(P;arphi) = \sum_f \int_f \mu(P;f)arphi$$

where φ is a polynomial on \mathbb{R}^m .

- Berline-Vergne obtained the same formula for arbitrary lattice polytope P for polynomial functions φ .
- They proved above without toric geometry, and give application to toric geometry.

An asymptotic Euler-Maclaurin formula is first obtained by:

(3) Guillemin-Sternberg (2007):

$$R_N(P;arphi) \sim \operatorname{Todd}(P;\partial/N\partial h) \left. \int_{P_h} arphi(x) \, dx
ight|_{h=0}$$

for arbitrary smooth function φ on P.

- Guillemin-Sternberg obtained a similar formula for simple P with some modification of $\operatorname{Todd}(P;\partial/N\partial h)$.
- The operator $\operatorname{Todd}(P;\partial/N\partial h)$ is infinite order. But the asymptotic sum has a meaning.
- They obtained the above without toric geometry. Application to spectral analysis on toric geometry.

(4) Zelditch (2007): For each $n \in \mathbb{Z}_+$, there exists a differential operator $\mathcal{E}_n(P)$ (of finite order) such that

$$egin{aligned} R_N(P;arphi) &\sim \int_P arphi \, dx + rac{1}{2N} \int_{\partial P} arphi \, d\sigma \ &+ \sum_{n\geq 2} N^{-n} \int_P \mathcal{E}_n(P) arphi \, dx \end{aligned}$$

where $d\sigma$ on ∂P is defined, for each facet f, by the lattice $\mathbb{Z}^m \cap L(f)$ with a subspace f parallel to f.

- The differential operators $\mathcal{E}_n(P)$ depend on the choice of metric on a line bundle over the toric variety X.
- The formula for the second term is stated by Szekelyhidi.
- He computed the second term by using Donaldson's integration by parts identity.

Results

♦ Main theorem

<u>Theorem</u> $P \subset \mathbb{R}^m$: a Delzant polytope. $\mathcal{F}(P)$: the set of faces of P. For each $n \in \mathbb{Z}_+$ and $f \in \mathcal{F}(P)$ such that $n - m + \dim(f) \ge 0$, there exists a homogeneous differential operator $D_n(P; f)$ of order $n - m + \dim(f)$ with rational constant coefficients which involves derivatives perpendicular to f such that, for $\varphi \in C^\infty(P)$,

- The formula in the main theorem is rather similar to the formula of Berline-Vergne. But, the construction of $D_n(P; f)$ is independent of Berline-Vergne.
- There is an algorithm of computing $D_n(P; f)$.
- In the following, some of corollaries are presented. But, we just mention that we have a concrete formula for $A_n(P;\varphi)$ for any $n\in\mathbb{Z}_+$ when $\dim(P)=m=2.$
- Proof uses:
 - (1) 'Szasz function' to obtain expansion of Riemann sum over 'unimodular cones' C. (use Hörmander's idea.)
 - (2) an integration by parts procedure (this makes the final formula complicated).
 - (3) An Euler's formula due to Brion-Vergne.

\Diamond The 3rd term

Corollary $P \subset \mathbb{R}^m$: Delzant polytope. $\mathcal{F}(P)_k$: faces of dim. k.

$$egin{aligned} A_2(P;arphi) &= -rac{1}{12}\sum_{f\in\mathcal{F}(P)_{m-1}}rac{1}{|lpha_f|^2}\int_f
abla_{lpha_f}arphi \ &+ \sum_{g\in\mathcal{F}(P)_{m-2}}c(P;g)\int_garphi, \end{aligned}$$

$$c(P;g) = rac{1}{4} - rac{1}{12} \langle \, lpha_1(g), lpha_2(g) \,
angle \left(rac{1}{|lpha_1(g)|^2} + rac{1}{|lpha_2(g)|^2}
ight)$$

where, for $f \in \mathcal{F}(P)_{m-1}$, $\alpha_f \in \mathbb{Z}^m$: inward primitive normal to f, for $\alpha \in \mathcal{T}(D)$ take $f \in \mathcal{F}(D)$ such that $\alpha = f \cap f$

for $g \in \mathcal{F}(P)_{m-2}$, take $f_1, f_2 \in \mathcal{F}(P)_{m-1}$ such that $g = f_1 \cap f_2$. $\alpha_i(g) \in \mathbb{Z}^m$ is the inward primitive normal to f_i (i = 1, 2). Remark:

• By our 'algorithm' for computing $D_n(P; f)$ shows easily

$$egin{aligned} A_0(P;arphi) &= \int_P arphi, \ A_1(P;arphi) &= rac{1}{2} \sum_{f \in \mathcal{F}(P)_{m-1}} \int_f arphi &= rac{1}{2} \int_{\partial P} arphi. \end{aligned}$$

• The formula for $A_2(P; \varphi)$ seems new. Furthermore, one has

$$\int_P \mathcal{E}_2(P) arphi = A_2(P;arphi),$$

where $\mathcal{E}_2(P)$ is Zelditch's operator.

Question: Can one compute $\mathcal{E}_2(P)$ in terms of curvatures of the toric Kähler manifold? If yes, the above formula gives an integration by parts identities for curvatures.

♦ Relation to the work of Berline-Vergne Recall

Berline-Vergne formula:

$$R_1(P;arphi) = \sum_f \int_f \mu(P;f)arphi$$

where φ is a polynomial on \mathbb{R}^m . The differential operators $\mu(P; f)$ is of infinite order.

But its symbol is real analytic around the origin; Taylor expansion gives

$$\mu(P;f)=\sum_{k=0}^\infty \mu_k(P;f),$$

where $\mu_k(P; f)$ is a homogeneous diff. op. of order k.

<u>Theorem</u> $P \subset \mathbb{R}^m$: Delzant polytope. We have

$$D_n(P;f) = \mu_{n-\dim(P)+\dim(f)}(P;f)$$

for each $f \in \mathcal{F}(P)$.

- From this, the operators $D_n(P;f)$ has a nice property; 'valuation property'
- For the proof, we use one of results of Berline-Vergne on the relation among 'polytope characters', 'exponential integral over faces' and the symbol of $\mu(P; f)$.

Computation in one dimension

Let us show, for $P = [0,1] \subset \mathbb{R}$, how our formula is proved.

- (1) Extend $\varphi \in C^{\infty}([0,1])$ to $\varphi \in C_0^{\infty}(\mathbb{R})$. (It is clear.)
- (2) Compute the asymptotics of

$$R_N(arphi):=rac{1}{N}\sum_{k=0}^\infty arphi(k/N),$$

 $([0,+\infty)$ corresponds to the so-called 'feasible direction' of a face f in a polytope P.)

We use Szasz functions to compute $R_N(\varphi)$.

(3) Use the formula:

$$egin{aligned} R_N([0,1];arphi) &= \ R_N(arphi) + R_N(\psi) - R_N(\mathbb{R};arphi), \ R_N(\mathbb{R};arphi) &= rac{1}{N}\sum_{k\in\mathbb{Z}}arphi(k/N) \end{aligned}$$

with $\psi(x)=arphi(1-x).$

(This corresponds to a variant of Euler's formula due to Brion-Vergne.)

(4) Sum the results of the above.

(For general P, the 'naturality' of the differential operators $D_n(P; f)$ is important in this step. There are NO such a step for [0, 1].)

It is enough to consider $R_N(\varphi)$.

For one dimension, one can do more; Consider the twisted Riemann sum:

$$R_N^\omega(arphi):=rac{1}{N}\sum_{k=0}^\infty \omega^k arphi(k/N),$$

where $\omega \in U(1)$ (q-th root of unity). One has

$$R_N(arphi)=R_N^1(arphi)\sim\int_0^\inftyarphi\,dx-\sum_{n\geq 1}rac{b_n}{n!}arphi^{(n-1)}(0)N^{-n},$$

and, for $\omega \neq 1$, by Guillemin-Sternberg;

$$egin{aligned} R_N^\omega(arphi)&\sim \sum_{n\geq 1}(-1)^{n-1}b_n(\omega)arphi^{(n-1)}(0)N^{-n},\ &rac{s}{1-\omega e^{-s}}=\sum_{n\geq 1}b_n(\omega)s^n,\ b_1(\omega)=rac{1}{1-\omega}. \end{aligned}$$

Szasz functions

To obtain an expansion of $R_N^{\omega}(\varphi)$, we use the (twisted) Szasz function:

$$S_N^\omega(arphi)(x):=e^{-Nx}\sum_{k=0}^\infty \omega^k arphi(k/N)rac{(Nx)^k}{k!}$$

We have

$$\int_0^\infty S_N^\omega(arphi)(x)\,dx=R_N^\omega(arphi)$$

Therefore:

It is enough to obtain the expansion of $S^\omega_N(\varphi)$ as $N o \infty$ with a suitable reminder.

To state the asymptotics of $S_N^{\omega}(\varphi)$; we use Stirling numbers of the 2nd kind and related polynomials.

 \Diamond Stirling \sharp of 2nd kind S(n, k) are defined by the recursion formula:

$$egin{aligned} S(0,0) &= 1, \ S(n,0) = 0, \ S(n,n) = 1 \ (n \geq 1) \ S(n+1,k) &= kS(n,k) + S(n,k-1) \ (1 \leq k \leq n) \end{aligned}$$

 \Diamond Polynomials we use here are defined, for $0 \leq k \leq n$, by

$$p(n,k;z)=\sum_{t=0}^k {n \choose t} (-1)^t S(n-t,k-t) z^{k-t}, \hspace{1em} z\in \mathbb{C}$$

Remark:

• Set p(n,k) := p(n,k;1). Then;

$$p(n,k)=0 \quad ext{for } [n/2]+1\leq k\leq n.$$

• Question: Are there any combinatorial meaning of p(n,k;z) ?

Proposition Let $\varphi \in \mathcal{S}(\mathbb{R})$. Let $\omega \in U(1)$. Then for any $n \in \mathbb{Z}_+$ and K > 0 with n < K < 2n, $\exists C_{K,n} > 0$ such that

$$S_N^\omega(arphi)(x) = \sum_{\mu=0}^{2n-1} rac{arphi^{(\mu)}(x)}{\mu!} J_\mu^\omega(Nx) N^{-\mu} + S_{2n,N}(x),$$

where

$$|S_{2n,N}(x)| \leq C_{K,n} N^{-n} (1+x)^{n-K}, \quad x > 0,$$

and the function $J^{\omega}_{\mu}(x)$ is given by

$$J^{\omega}_{\mu}(x)=e^{-(1-\omega)x}\sum_{k=0}^{\mu}p(\mu,k;\omega)x^k.$$

In particular, when $\omega = 1$, $J^1_{\mu}(x)$ is a polynomial in x of degree at most $[\mu/2]$.

By the above proposition, we have the following.

Proposition When $\omega \neq 1$, we have

$$R_N^\omega(arphi) \sim \sum_{\substack{n \geq 1 \ \mu = 0}} c_n(\omega) arphi^{(n-1)}(0) N^{-n}, \ c_n(\omega) = \sum_{\mu=0}^{n-1} \sum_{k=0}^{\mu} rac{(n-k-1)!}{\mu!(n-\mu-1)!} rac{p(\mu,\mu-k;\omega)}{(1-\omega)^{n-k}}.$$

For $\omega = 1$, we have

$$egin{split} R_N^1(arphi) &\sim \int_0^\infty arphi(x) \, dx + \sum_{n \geq 1} c_n arphi^{(n-1)}(0) N^{-n}, \ c_n &= \sum_{\mu=n}^{2n} rac{(\mu-n)!}{\mu!} (-1)^{\mu-n+1} p(lpha, lpha-n). \end{split}$$

Remark:

• A direct computation and a well-known formula among the number b_n (Bernoulli numbers), Catalan numbers $\frac{1}{n+1}\binom{2n}{n}$ and the Stirling numbers S(n,k) shows

$$egin{aligned} c_n &= -(n+1) {\binom{2n}{n}}^{-1} \sum_{l=0}^n rac{(-1)^l}{l+1} {\binom{2n}{n+l}} S(n+l,l) \ &= -rac{b_n}{n!}. \end{aligned}$$

• One should have

$$c_n(\omega) = (-1)^{n-1} b_n(\omega).$$

Question: Are there any combinatorial (or number theoretical) meaning of this formula ?

♦ Further problems

(1) Find asymptotic EM for simple (or more general lattice) polytopes in a similar form discussed as above.

(One could use the 'valuation property' of the operators $D_n(P; f)$.)

(2) Find an effective formula for Zelditch's operators $\mathcal{E}_n(P)$, and perform integration by parts to obtain a formula for $A_n(P;\varphi)$ (it might be possible to handle in the case where n = 2).

(We have an effective formula for $A_n(P; \varphi)$. Thus, this will give $A_n(P; \varphi)$ a geometrical meaning.)