# An asymptotic Euler-Maclaurin formula for Delzant polytopes 

## (arXiv:0908.3073 (math.CO))

Tatsuya TATE (Nagoya University)

The conference "GEOQUANT" at Universitè du Luxembourg.
September 10, 2009.

## Plan of the Talk

(1) Background and History
(a) classical asymptotic Euler-Maclaurin formula
(b) The Riemann sums over lattice polytopes
(c) Buckground from spectral analysis on toric varieties
(d) related works
(2) Results
(a) Main Theorem
(b) The $3^{\text {rd }}$ term
(c) Relation to the work of Berline-Vergne
(3) One-dimensional computation (along with the method of proof of the main theorem)

## Background and History

## $\diamond$ Classical asymptotic Euler-Maclaurin formula

$\varphi$ : a smooth function on $[0,1]$

$$
\begin{aligned}
& \frac{1}{N} \sum_{k=1}^{N} \varphi(k / N) \sim \int_{0}^{1} \varphi(x) d x+\frac{1}{2 N}(\varphi(1)-\varphi(0))+ \\
& \quad+\sum_{n \geq 1} \frac{(-1)^{n-1} B_{n}}{(2 n)!}\left(\varphi^{(2 n-1)}(1)-\varphi^{(2 n-1)}(0)\right) N^{-2 n}
\end{aligned}
$$

where

$$
\begin{aligned}
& \operatorname{Todd}(z)=\frac{z}{1-e^{-z}}=\sum_{n=0}^{\infty}(-1)^{n} \frac{b_{n}}{n!} z^{n} \\
& b_{0}=1, \quad b_{1}=-\frac{1}{2}, \quad b_{2 n+1}=0(n \geq 1) \\
& b_{2 n}=(-1)^{n-1} B_{n} \quad\left(B_{n}: \text { Bernoulli number }\right)
\end{aligned}
$$

$\diamond$ The Riemann sum over lattice polytopes
$\boldsymbol{P} \subset \mathbb{R}^{m}:$ A lattice polytope $\stackrel{\text { def }}{\Longleftrightarrow}$ vertices of $\boldsymbol{P} \subset \mathbb{Z}^{m}$.
Definition: Define a Riemann sum of $\varphi \in C^{\infty}(P)$ over a lattice polytope $P \subset \mathbb{R}^{m}$ by:

$$
R_{N}(P ; \varphi):=\frac{1}{N^{\operatorname{dim}(P)}} \sum_{\gamma \in(N P) \cap \mathbb{Z}^{m}} \varphi(\gamma / N), \quad N \in \mathbb{Z}_{>0}
$$

Asymptotic Euler-Maclaurin formula
$=$ Asymptotic expansion formula for $\boldsymbol{R}_{N}(\boldsymbol{P} ; \varphi)$.
$\diamond$ Purpose of the talk: To give asymptotic Euler-Maclaurin formula which is effective for computation (for Delzant polytopes).

## $\diamond$ Terminology for lattice polytopes

$P \subset \mathbb{R}^{\boldsymbol{m}}:$ a lattice polytope.

## Definition:

(1) $P$ is simple $\stackrel{\text { def }}{\Longleftrightarrow}$ For each vertex $v$ of $P$,

$$
\sharp \text { of edges (1-dim. faces) incident to } v=m
$$

(2) $P$ is Delzant $\stackrel{\text { def }}{\Longleftrightarrow} P$ is simple and for each vertex $v$ of $P$, there is a $\mathbb{Z}$-basis $w_{1}, \ldots, w_{m}$ of $\mathbb{Z}^{m}$ such that
each edge incident to $v \subset\left\{v+t w_{j} ; t \geq 0\right\}$ for some $j=1, \ldots, m$.

Remark: Roughly speaking:
Simple polytopes corresponds to toric varieties with quotient singularities.
Delzant polytopes corresponds to smooth projective toric varieties.

## $\diamond$ Background from spectral analysis on toric varieties

$(X, \omega)$ : a smooth toric Kähler manifold with Kähler form $\omega$ obtained by a GIT (symplectic) quotient $X=\mathbb{C}^{d} / / T^{r}$ with respect to a suitable subtorus $T^{r} \subset T^{d} \curvearrowright\left(\mathbb{C}^{d}, \omega_{\text {std }}\right)$.
$T^{m} \curvearrowright X$ : Hamiltonian, $m=d-r$.
The moment map $\mu: X \rightarrow \mathbb{R}^{m}$ satisfy $\mu(X)=P$, where $P$ is an $m$-dimensional Delzant polytope, which is realized as

$$
P \cong\left\{x \in \mathbb{R}_{+}^{d} ; \sum x_{j} \alpha_{j}=\alpha\right\}
$$

with some $\alpha \in \mathbb{Z}^{d}$, where $\alpha_{j}(j=1, \ldots, d)$ are the weights of $T_{\mathbb{C}}^{r} \curvearrowright \mathbb{C}^{d}$.
$L \rightarrow X:$ a Hermitian line bundle obtained from the trivial bundle over $\mathbb{C}^{d}$.

$$
\begin{aligned}
H^{0}\left(X, L^{\otimes N}\right) & \cong \bigoplus_{\gamma \in N P \cap \mathbb{Z}^{d}} \mathbb{C} \cdot \chi_{\gamma} \\
& \subset L^{2}\left(\mathbb{C}^{d}, e^{-N|z|^{2}} d z d \bar{z}\right)
\end{aligned}
$$

$\chi_{\gamma}$ monomial on $\mathbb{C}^{d}$ with weight $\gamma$.

## Spectral measure:

$\pi_{N}: L^{2}\left(\mathbb{C}^{d}, e^{-N|z|^{2}} d z d \bar{z}\right) \rightarrow H^{0}\left(X, L^{\otimes N}\right)$ : orthog. proj.
$f \in C^{\infty}\left(\mathbb{C}^{d}\right): T^{d}$-invariant bounded function.
$M_{f}$ : multiplication by $f$.

$$
\nu_{N}(f):=\operatorname{trace}\left(\pi_{N} M_{f} \pi_{N}\right): \text { a measure on } \mathbb{R}^{d}
$$

Then, we have (Guillemin-Wang)

$$
\begin{aligned}
& \nu_{N}(f)=\sum_{\gamma \in N P \cap \mathbb{Z}^{d}}\left(A_{N} f\right)(\gamma / N) \\
& A_{N} f: \text { 'twisted Mellin transform' defined by Wang }
\end{aligned}
$$

$(N P) \cap \mathbb{Z}^{d}$ can be replaced by $N P \cap \mathbb{Z}^{m}$ ( $P$ is $m$-dimensional).
It is known that $A_{N} f$ admits asymptotic expansion in $N$ (Wang).
$\nu_{N}(f)$ reduces to the Riemann sums $R_{N}(P ; \varphi)$ where $\varphi$ are functions appeaing the expansion of $\boldsymbol{A}_{N} f$.
$\diamond$ Related works Suppose that $P \subset \mathbb{R}^{m}$ : Delzant polytope.
(1) Khovanskii-Pukhlikov (1993), Brion-Vergne (1997):

$$
R_{N}(P ; \varphi)=\left.\operatorname{Todd}(P ; \partial / N \partial h) \int_{P_{h}} \varphi(x) d x\right|_{h=0}
$$

$h=\left(h_{1}, \ldots, h_{d}\right) \in \mathbb{R}^{d}$ : small parameter, $\varphi$ : polynomial on $\mathbb{R}^{m}$,
If $P=\left\{x \in \mathbb{R}^{m} ;\left\langle x, u_{j}\right\rangle \geq c_{j}(j=1, \ldots, d)\right\}$ then
$P_{h}=\left\{x \in \mathbb{R}^{m} ;\left\langle x, u_{j}\right\rangle \geq c_{j}+h_{j}(j=1, \ldots, d)\right\}$,

$$
\operatorname{Todd}(P ; \partial / N \partial h)=\prod_{i=1}^{d} \operatorname{Todd}\left(\partial / N \partial h_{i}\right)
$$

## Remark:

- Brion-Vergne obtained similar formula for simple $\boldsymbol{P}$ with a modification of $\operatorname{Todd}(P ; \partial / N \partial h)$.
- Brion-Vergne proved the above without using toric geometry.
(2) Berline-Vergne (2007): Set $N=1$ for simlicity. For each face $f$ of $P$, there exists a differential operator $\boldsymbol{\mu}(\boldsymbol{P} ; f)$ of infinite order such that

$$
R_{1}(P ; \varphi)=\sum_{f} \int_{f} \mu(P ; f) \varphi
$$

where $\varphi$ is a polynomial on $\mathbb{R}^{m}$.

## Remark:

- Berline-Vergne obtained the same formula for arbitrary lattice polytope $P$ for polynomial functions $\varphi$.
- They proved above without toric geometry, and give application to toric geometry.

An asymptotic Euler-Maclaurin formula is first obtained by:
(3) Guillemin-Sternberg (2007):

$$
\left.R_{N}(P ; \varphi) \sim \operatorname{Todd}(P ; \partial / N \partial h) \int_{P_{h}} \varphi(x) d x\right|_{h=0}
$$

for arbitrary smooth function $\varphi$ on $P$.

## Remark:

- Guillemin-Sternberg obtained a similar formula for simple $\boldsymbol{P}$ with some modification of $\operatorname{Todd}(P ; \partial / N \partial h)$.
- The operator $\operatorname{Todd}(P ; \partial / N \partial h)$ is infinite order. But the asymptotic sum has a meaning.
- They obtained the above without toric geometry. Application to spectral analysis on toric geometry.
(4) Zelditch (2007): For each $n \in \mathbb{Z}_{+}$, there exists a differential operator $\mathcal{E}_{n}(\boldsymbol{P})$ (of finite order) such that

$$
\begin{aligned}
R_{N}(P ; \varphi) \sim & \int_{P} \varphi d x+\frac{1}{2 N} \int_{\partial P} \varphi d \sigma \\
& +\sum_{n \geq 2} N^{-n} \int_{P} \mathcal{E}_{n}(P) \varphi d x
\end{aligned}
$$

where $d \sigma$ on $\partial P$ is defined, for each facet $f$, by the lattice $\mathbb{Z}^{m} \cap L(f)$ with a subspace $f$ parallel to $f$.

## Remark:

- The differential operators $\mathcal{E}_{n}(P)$ depend on the choice of metric on a line bundle over the toric variety $\boldsymbol{X}$.
- The formula for the second term is stated by Szekelyhidi.
- He computed the second term by using Donaldson's integration by parts identity.


## Results

## $\diamond$ Main theorem

Theorem $\boldsymbol{P} \subset \mathbb{R}^{m}$ : a Delzant polytope. $\mathcal{F}(\boldsymbol{P})$ : the set of faces of $\boldsymbol{P}$. For each $n \in \mathbb{Z}_{+}$and $f \in \mathcal{F}(P)$ such that $n-m+\operatorname{dim}(f) \geq 0$, there exists a homogeneous differential operator $D_{n}(P ; f)$ of order $n-m+\operatorname{dim}(f)$ with rational constant coefficients which involves derivatives perpendicular to $f$ such that, for $\varphi \in C^{\infty}(P)$,

$$
\begin{aligned}
& R_{N}(P ; \varphi) \sim \sum_{n \geq 0} A_{n}(P ; \varphi) N^{-n} \\
& A_{n}(P ; \varphi)=\sum_{f \in \mathcal{F}(P) ; \operatorname{dim}(f) \geq m-n} \int_{f} D_{n}(P ; f) \varphi
\end{aligned}
$$

## Remark:

- The formula in the main theorem is rather similar to the formula of Berline-Vergne. But, the construction of $D_{n}(P ; f)$ is independent of Berline-Vergne.
- There is an algorithm of computing $D_{n}(P ; f)$.
- In the following, some of corollaries are presented. But, we just mention that we have a concrete formula for $A_{n}(P ; \varphi)$ for any $n \in \mathbb{Z}_{+}$when $\operatorname{dim}(P)=m=2$.
- Proof uses:
(1) 'Szasz function' to obtain expansion of Riemann sum over 'unimodular cones' $\boldsymbol{C}$. (use Hörmander's idea.)
(2) an integration by parts procedure (this makes the final formula complicated).
(3) An Euler's formula due to Brion-Vergne.


## The $3^{\text {rd }}$ term

Corollary $\boldsymbol{P} \subset \mathbb{R}^{\boldsymbol{m}}$ : Delzant polytope. $\mathcal{F}(\boldsymbol{P})_{\boldsymbol{k}}$ : faces of dim. $\boldsymbol{k}$.

$$
\begin{aligned}
A_{2}(P ; \varphi)= & -\frac{1}{12} \sum_{f \in \mathcal{F}(P)_{m-1}} \frac{1}{\left|\alpha_{f}\right|^{2}} \int_{f} \nabla_{\alpha_{f}} \varphi \\
& +\sum_{g \in \mathcal{F}(P)_{m-2}} c(P ; g) \int_{g} \varphi
\end{aligned}
$$

$$
c(P ; g)=\frac{1}{4}-\frac{1}{12}\left\langle\alpha_{1}(g), \alpha_{2}(g)\right\rangle\left(\frac{1}{\left|\alpha_{1}(g)\right|^{2}}+\frac{1}{\left|\alpha_{2}(g)\right|^{2}}\right)
$$

where, for $f \in \mathcal{F}(P)_{m-1}, \alpha_{f} \in \mathbb{Z}^{m}$ : inward primitive normal to $f$, for $g \in \mathcal{F}(P)_{m-2}$, take $f_{1}, f_{2} \in \mathcal{F}(P)_{m-1}$ such that $g=f_{1} \cap f_{2}$. $\alpha_{i}(g) \in \mathbb{Z}^{m}$ is the inward primitive normal to $f_{i}(i=1,2)$.

## Remark:

- By our 'algorithm' for computing $D_{n}(P ; f)$ shows easily

$$
\begin{gathered}
A_{0}(P ; \varphi)=\int_{P} \varphi \\
A_{1}(P ; \varphi)=\frac{1}{2} \sum_{f \in \mathcal{F}(P)_{m-1}} \int_{f} \varphi=\frac{1}{2} \int_{\partial P} \varphi
\end{gathered}
$$

- The formula for $\boldsymbol{A}_{\mathbf{2}}(\boldsymbol{P} ; \varphi)$ seems new. Furthermore, one has

$$
\int_{P} \mathcal{E}_{2}(P) \varphi=A_{2}(P ; \varphi)
$$

where $\mathcal{E}_{2}(P)$ is Zelditch's operator.
Question: Can one compute $\mathcal{E}_{2}(P)$ in terms of curvatures of the toric Kähler manifold? If yes, the above formula gives an integration by parts identities for curvatures.

## $\triangleleft$ Relation to the work of Berline-Vergne Recall

Berline-Vergne formula:

$$
R_{1}(P ; \varphi)=\sum_{f} \int_{f} \mu(P ; f) \varphi
$$

where $\varphi$ is a polynomial on $\mathbb{R}^{m}$. The differential operators $\mu(P ; f)$ is of infinite order.

But its symbol is real analytic around the origin; Taylor expansion gives

$$
\mu(P ; f)=\sum_{k=0}^{\infty} \mu_{k}(P ; f)
$$

where $\mu_{k}(P ; f)$ is a homogeneous diff. op. of order $k$.

Theorem $\boldsymbol{P} \subset \mathbb{R}^{m}$ : Delzant polytope. We have

$$
D_{n}(P ; f)=\mu_{n-\operatorname{dim}(P)+\operatorname{dim}(f)}(P ; f)
$$

for each $f \in \mathcal{F}(P)$.

## Remark:

- From this, the operators $D_{n}(P ; f)$ has a nice property; 'valuation property'
- For the proof, we use one of results of Berline-Vergne on the relation among 'polytope characters', 'exponential integral over faces' and the symbol of $\mu(P ; f)$.


## Computation in one dimension

Let us show, for $P=[0,1] \subset \mathbb{R}$, how our formula is proved.
(1) Extend $\varphi \in C^{\infty}([0,1])$ to $\varphi \in C_{0}^{\infty}(\mathbb{R})$.
( It is clear.)
(2) Compute the asymptotics of

$$
R_{N}(\varphi):=\frac{1}{N} \sum_{k=0}^{\infty} \varphi(k / N)
$$

( $[0,+\infty$ ) corresponds to the so-called 'feasible direction' of a face $f$ in a polytope $P$.)

We use Szasz functions to compute $\boldsymbol{R}_{N}(\varphi)$.
(3) Use the formula:

$$
\begin{aligned}
& \boldsymbol{R}_{N}([0,1] ; \varphi)= \\
& \quad \boldsymbol{R}_{N}(\varphi)+R_{N}(\psi)-R_{N}(\mathbb{R} ; \varphi) \\
& R_{N}(\mathbb{R} ; \varphi)=\frac{1}{N} \sum_{k \in \mathbb{Z}} \varphi(k / N)
\end{aligned}
$$

with $\psi(x)=\varphi(1-x)$.
(This corresponds to a variant of Euler's formula due to Brion-Vergne.)
(4) Sum the results of the above.
(For general $P$, the 'naturality' of the differential operators $D_{n}(P ; f)$ is important in this step. There are NO such a step for $[0,1]$.)

It is enough to consider $\boldsymbol{R}_{N}(\varphi)$.

For one dimension, one can do more; Consider the twisted Riemann sum:

$$
R_{N}^{\omega}(\varphi):=\frac{1}{N} \sum_{k=0}^{\infty} \omega^{k} \varphi(k / N)
$$

where $\omega \in U(1)$ ( $q$-th root of unity). One has

$$
R_{N}(\varphi)=R_{N}^{1}(\varphi) \sim \int_{0}^{\infty} \varphi d x-\sum_{n \geq 1} \frac{b_{n}}{n!} \varphi^{(n-1)}(0) N^{-n}
$$

and, for $\omega \neq 1$, by Guillemin-Sternberg;

$$
\begin{aligned}
& R_{N}^{\omega}(\varphi) \sim \sum_{n \geq 1}(-1)^{n-1} b_{n}(\omega) \varphi^{(n-1)}(0) N^{-n} \\
& \frac{s}{1-\omega e^{-s}}=\sum_{n \geq 1} b_{n}(\omega) s^{n}, \quad b_{1}(\omega)=\frac{1}{1-\omega}
\end{aligned}
$$

## $\diamond$ Szasz functions

To obtain an expansion of $\boldsymbol{R}_{N}^{\omega}(\varphi)$, we use the (twisted) Szasz function:

$$
S_{N}^{\omega}(\varphi)(x):=e^{-N x} \sum_{k=0}^{\infty} \omega^{k} \varphi(k / N) \frac{(N x)^{k}}{k!}
$$

We have

$$
\int_{0}^{\infty} S_{N}^{\omega}(\varphi)(x) d x=R_{N}^{\omega}(\varphi)
$$

Therefore:
It is enough to obtain the expansion of $S_{N}^{\omega}(\varphi)$ as $N \rightarrow \infty$ with a suitable reminder.

To state the asymptotics of $S_{N}^{\omega}(\varphi)$; we use Stirling numbers of the $2^{\text {nd }}$ kind and related polynomials.
$\diamond$ Stirling $\#$ of $2^{\text {nd }}$ kind $S(n, k)$ are defined by the recursion formula:

$$
\begin{gathered}
S(0,0)=1, \quad S(n, 0)=0, \quad S(n, n)=1 \quad(n \geq 1) \\
S(n+1, k)=k S(n, k)+S(n, k-1) \quad(1 \leq k \leq n)
\end{gathered}
$$

$\diamond$ Polynomials we use here are defined, for $0 \leq k \leq n$, by

$$
p(n, k ; z)=\sum_{t=0}^{k}\binom{n}{t}(-1)^{t} S(n-t, k-t) z^{k-t}, \quad z \in \mathbb{C}
$$

## Remark:

- Set $p(n, k):=p(n, k ; 1)$. Then;

$$
p(n, k)=0 \quad \text { for }[n / 2]+1 \leq k \leq n
$$

- Question: Are there any combinatorial meaning of $p(n, k ; z)$ ?

Proposition Let $\varphi \in \mathcal{S}(\mathbb{R})$. Let $\omega \in \boldsymbol{U}(1)$. Then for any $n \in \mathbb{Z}_{+}$and $K>0$ with $n<K<2 n, \exists C_{K, n}>0$ such that

$$
S_{N}^{\omega}(\varphi)(x)=\sum_{\mu=0}^{2 n-1} \frac{\varphi^{(\mu)}(x)}{\mu!} J_{\mu}^{\omega}(N x) N^{-\mu}+S_{2 n, N}(x)
$$

where

$$
\left|S_{2 n, N}(x)\right| \leq C_{K, n} N^{-n}(1+x)^{n-K}, \quad x>0
$$

and the function $J_{\mu}^{\omega}(x)$ is given by

$$
J_{\mu}^{\omega}(x)=e^{-(1-\omega) x} \sum_{k=0}^{\mu} p(\mu, k ; \omega) x^{k}
$$

In particular, when $\omega=1, J_{\mu}^{1}(x)$ is a polynomial in $x$ of degree at most [ $\mu / 2]$.

By the above proposition, we have the following.

Proposition When $\omega \neq 1$, we have

$$
\begin{aligned}
& R_{N}^{\omega}(\varphi) \sim \sum_{n \geq 1} c_{n}(\omega) \varphi^{(n-1)}(0) N^{-n} \\
& c_{n}(\omega)=\sum_{\mu=0}^{n-1} \sum_{k=0}^{\mu} \frac{(n-k-1)!}{\mu!(n-\mu-1)!} \frac{p(\mu, \mu-k ; \omega)}{(1-\omega)^{n-k}}
\end{aligned}
$$

For $\omega=1$, we have

$$
\begin{aligned}
& R_{N}^{1}(\varphi) \sim \int_{0}^{\infty} \varphi(x) d x+\sum_{n \geq 1} c_{n} \varphi^{(n-1)}(0) N^{-n} \\
& c_{n}=\sum_{\mu=n}^{2 n} \frac{(\mu-n)!}{\mu!}(-1)^{\mu-n+1} p(\alpha, \alpha-n)
\end{aligned}
$$

## Remark:

- A direct computation and a well-known formula among the number $b_{n}$ (Bernoulli numbers), Catalan numbers $\frac{1}{n+1}\binom{2 n}{n}$ and the Stirling numbers $S(n, k)$ shows

$$
\begin{aligned}
c_{n} & =-(n+1)\binom{2 n}{n}^{-1} \sum_{l=0}^{n} \frac{(-1)^{l}}{l+1}\binom{2 n}{n+l} S(n+l, l) \\
& =-\frac{b_{n}}{n!}
\end{aligned}
$$

- One should have

$$
c_{n}(\omega)=(-1)^{n-1} b_{n}(\omega)
$$

Question: Are there any combinatorial (or number theoretical) meaning of this formula ?

## $\diamond$ Further problems

(1) Find asymptotic EM for simple (or more general lattice) polytopes in a similar form discussed as above.
(One could use the 'valuation property' of the operators $D_{n}(P ; f)$. )
(2) Find an effective formula for Zelditch's operators $\mathcal{E}_{n}(P)$, and perform integration by parts to obtain a formula for $\boldsymbol{A}_{\boldsymbol{n}}(\boldsymbol{P} ; \varphi)$ (it might be possible to handle in the case where $n=2$ ).
(We have an effective formula for $A_{n}(P ; \varphi)$. Thus, this will give $\boldsymbol{A}_{\boldsymbol{n}}(\boldsymbol{P} ; \varphi)$ a geometrical meaning.)

