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Motivation

Consider the operators of the coordinate and the momentum of a

quantum particle

x̂j = xj (x), p̂j = −iℏ
∂

∂xj
 (x), x ∈ ℝ

n.

They generate the Heisenberg algebra of polynomial (non-commutative)

expressions in x̂j , p̂j with the identities

x̂j x̂k − x̂kx̂j = 0, p̂j p̂k − p̂kp̂j = 0, p̂j x̂k − x̂k p̂j = −iℏ�jk.
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Any element of the Heisenberg algebra corresponds to a differential

operator with polynomial in x coefficients.

Natural problem. To extend the Heisenberg algebra so that its elements

will still correspond to “good” operators on a reasonable function space.

We propose a certain approach to this problem. But first we develop

some formalism, called the non-commutative structures.
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Let (Ô,+, ⋅) be the free associative algebra over ℂ with m generators

ẑ1, . . . , ẑm:

F̂ ∈ Ô ⇔ F̂ =
∑

�̂

f̂�̂ �̂ ,

where �̂ is a word, composed from the letters ẑ1, . . . , ẑm, and f̂�̂ ∈ ℂ.

Empty word is identified with 1. Example. F̂ =
∑∞

k=1 k! ẑ1ẑ
k
2 ẑ

2
1 .

The corresponding commutative object, (O,+, ⋅), is a commutative

associative algebra with generators z1, . . . , zm.

F ∈ O ⇔ F =
∑

�∈ℤm
+

f� z
�,

where � is a multi-index, an element of ℤm
+ = {0, 1, . . .}, and f� ∈ ℂ.
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Other structures are the involutions ★ : Ô → Ô and ★ : O → O.

For any word �̂ = f̂� ẑj1 ⋅ ẑjk ∈ Ô we have: �̂★ = f̂ � ẑjk ⋅ ẑj1 .

For any monomial f�z
� ∈ O we have: (f�z

�)★ = f�z
�.

Then ★ is an anti-isomorphism and ★2 = id.
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We define the homomorphism of “averaging” aver : Ô → O. For any

word �̂

aver(�̂) = z�, where ẑj enters �̂ exactly �j times.

Example: aver(ẑ2ẑ
2
1 ẑ2ẑ

3
1) = z51z

2
2 .

Then aver is uniquely continued to Ô by linearity.
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Below we need the derivations

∂1, . . . , ∂m ∈ Der(O), ∂̂1, . . . , ∂̂m ∈ Der(Ô).

By definition

∂j(zk) = ∂̂j(ẑk) = �jk, j, k = 1, . . . ,m.

Hence, ∂j = ∂/∂zj. Obviously,

∂j aver = aver ∂̂j , ★ aver = aver★, ∂j★ = ★∂j , ∂̂j★ = ★∂̂j.
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Let D ⊂ ℝm be a domain. Consider the trivial bundles

� : D ×O → D, �̂ : D × Ô → D.

Sections of these bundles have the form

F = F (�; z), F̂ = F̂ (�; ẑ),

where for any � ∈ D F ∈ O and F̂ ∈ Ô.

The sections are said to be horizontal if

(∂�j − ∂j)F = 0, (∂�j − ∂̂j)F̂ = 0.
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The algebras of horizontal sections are denoted O(D), Ô(D).

For any �0 ∈ D there are obvious isomorphisms

O(D)∣�=�0
∼= O and Ô(D)∣�=�0

∼= Ô.

Therefore we have: aver : Ô(D)∣�=�0 → O(D)∣�=�0 . These maps generate

the averaging homomorphism aver : Ô(D) → O(D).

The involutions ★ are naturally extended to anti-isomorphisms of Ô(D)

and O(D).



10
Examples. 1. The simplest examples (except constants) are

zj = �j + zj ∈ O(ℝm), ẑj = �j + ẑj ∈ Ô(ℝm).

2. Polynomials in z1, . . . , zm lie in O(ℝm). Non-commutative polynomi-

als in ẑ1, . . . , ẑm lie in Ô(ℝm).

3. Proposition. F ∈ O(D) iff F (�; z) = f(z), where f : D → ℂ is a

smooth function.

Corollary. O(D) ∼= C∞(D,ℂ).

Informally speaking, any F̂ ∈ Ô(D) is a “non-commutative smooth

function of ẑ”. Sometimes we will use the notation F̂ = F̂ (ẑ).
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We extend Ô(D) by adding the element r̂ which commutes with

everything,

∂�j r̂ = ∂j r̂ = ∂̂j r̂ = 0, r̂★ = −r̂.

Physical meaning of r̂ is −iℏ.

The extended algebra is denoted Ôr̂(D). Averaging aver : Ôr̂(D) →

O(D) is the same as before, but first one should put r̂ = 0.
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Consider the ideal J ∈ Ôr̂(D) generated by the elements

ẑj ẑk − ẑkẑj − r̂'̂jk, '̂jk ∈ Ôr̂(D).

We put ÔJ(D) = Ôr̂(D)/J . Averaging (again denoted by aver) is defined

on ÔJ so that the following diagram commutes

Ôr̂(D) −→ ÔJ(D)

aver ↘ ↙ aver

O(D)
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Definition. If J = J★, then J is said to be Hermitian.

If the image of r̂ under the projection Ôr̂(D) → ÔJ(D) is not a divisor

of zero in ÔJ(D) then J is said to be Poissonian.

Below for brevity we denote this image again by r̂.

Proposition. J is Poissonian iff for all j, k, l

'̂jk + '̂kj ∈ J, ẑj'̂kl + ẑk'̂lj + ẑl'̂jk ∈ J.
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Main Example. Suppose that m = 2n. We denote

ẑj = x̂j , ẑj+n = p̂j , j = 1, . . . , n,

and generate J by the elements

x̂j x̂k − x̂kx̂j , p̂jp̂k − p̂kp̂j , p̂j x̂k − x̂kp̂j − r̂�jk, x̂jp̂k − p̂kx̂j + r̂�jk.

J is Poissonian and Hermitian. The corresponding algebra ÔJ(ℝ
2n)

is denoted ℍ̂(ℝ2n). Subalgebra of polynomial elements in ℍ̂(ℝ2n) is

isomorphic to the Heisenberg algebra.
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Any Poissonian ideal generates a quantum bracket [ , ]:

[F̂ , Ĝ] =
1

r̂

(

F̂ Ĝ− ĜF̂
)

for any F̂ , Ĝ ∈ ÔJ .

Important: the right-hand side of this equation lies in ÔJ because F̂ Ĝ−

ĜF̂ is divisible by r̂.

Then the corresponding classical Poisson bracket { , } is uniquely

determined from the commutative diagram

ÔJ(D)× ÔJ(D)
[ , ]

−−−−→ ÔJ(D)

aver× aver

⏐

⏐

y

⏐

⏐

y

aver

O(D)×O(D)
{ , }

−−−−→ O(D)

If J is Hermitian, ★ is naturally defined as an anti-isomorphism of ÔJ(D).



16

If we regard D as a coordinate domain, these algebras can be defined

over a manifold. They are called non-commutative structures.

This language is analogous to the language of star-products in deforma-

tion quantization. There are strong relations between this approach to

deformation quantization and the traditional one, but we will not discuss

them now.

We concentrate on the algebra ℍ̂(ℝ2n) and try to interpret its elements

as operators on L2(ℝn).
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Recall the standard conventions:

x̂j = xj (x), p̂j = −iℏ
∂

∂xj
 (x), r̂ = −iℏ ,  : ℝn → ℂ.

Consider F̂ ∈ ℍ(ℝ2n). How it is possible to associate with F̂ an

operator on L2(ℝn) ? If F̂ is not polynomial in p̂, power expansions do

not help because we have to deal with a “differential operator of an infinite

order”.

Main idea. For any � ∈ ℝm

e−i�p̂ (x) = e−ℏ
∑

�j∂/∂xj (x) =  (x − ℏ�),

a quite innocent operator.
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Expansion in exponents e−i�p̂ means the Fourier expansion in the

variable p̂. The most convenient space for harmonic analysis on ℝ
m is

the Schwartz space S. We define

Sr̂ =
{

f(�, �, r̂) =

∞
∑

k=0

fk(�, �)r̂
k, fk ∈ S

}

, �, � ∈ ℝ
n,

the series is formal. The structure of a topological space is introduced in

a standard way.
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Fourier transform:

Sr̂ ∋ f 7→ f̂ = ℱ(f) =
1

(2�)n/2

∫

ℝn

f(x̂, �, r̂)e−i�p̂ d�.

We denote Ŝr̂ = ℱ(Sr̂). Proposition. Ŝr̂ ⊂ ℍ̂(ℝ2n) is a subalgebra.

Inverse Fourier transform:

Ŝr̂ ∋ f̂ 7→ f = ℱ−1(f̂) =
1

(2�)n/2

∫

ℝn

f̂(x̂, p̂)ei�p̂ dp,

where as usual, p̂ = p+ p̂.

Proposition. ℱ−1ℱ = idSr̂
and ℱℱ−1 = idŜr̂

.
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The derivations ∂̂j still exist in ℍ(ℝ2n). We use for them the notation

∂̂x̂j
and ∂̂p̂j

.

Proposition. For any f ∈ Sr̂ and f̂ = ℱ(f)

∂̂p̂j
f̂ = ℱ(−i�jf), if̂ p̂j = ℱ(∂f/∂�j).
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For any f = f(�, �, r̂), g = g(�, �, r̂) ∈ Sr̂ and f̂ = f̂(x̂, p̂), ĝ =

ĝ(x̂, p̂) ∈ Ŝr̂ we define the convolutions

f ∗ g =
1

(2�)n/2

∫

ℝn

f(x̂, � − �, r̂) g(x̂+ ir̂�, �, r̂) d�,

f̂ ∗ ĝ =

∫

ℝn

ĝ(x̂, P ) f̂(x̂, p̂− P ) dP.

Proposition. Suppose that f̂ = ℱ(f) and ĝ = ℱ(g). Then

f̂ ∗ ĝ = ℱ(fg), f̂ ĝ = ℱ(f ∗ g).



22

Representation of Ŝr̂ in L2(ℝn).

For any f̂ ∈ Ŝr̂ we have:

f̂ =
1

(2�)n/2

∫

ℝn

f(x̂, �, r̂)e−i�p̂ d�.

Therefore for  ∈ L2(ℝn)

f̂ =
1

(2�)n/2

∫

ℝn

f(x, �,−iℏ) (x− ℏ�) d�.
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For any f, g ∈ Sr̂ and f̂ , ĝ ∈ Ŝr̂ we define the scalar products

⟨f, g⟩ =

∫

ℝn

f(�, �, r̂) g★(�, �, r̂) d�d�,

⟨f̂ , ĝ⟩ =

∫

ℝn

f̂(x̂, p̂) ĝ★(x̂, p̂) dxdp.

Proposition. Suppose that f̂ = ℱ(f) and ĝ = ℱ(g). Then

⟨f̂ , ĝ⟩ = ⟨f, g⟩.
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By using these scalar products, we can consider the spaces of distributi-

ons S ′
r̂ and Ŝ ′

r̂, corresponding to the spaces of “test functions” Sr̂ and Ŝr̂.

The space Ŝ ′
r̂ contains the algebra of non-commutative polynomials in

x̂ and p̂ (the Heisenberg algebra.)

Representation of Ŝ ′
r̂ in L2(ℝn) is given by the same formula.

Note that Ŝ ′
r̂ ∕⊂ ℍ(ℝ2n) and ℍ(ℝ2n) ∕⊂ Ŝ ′

r̂.
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A possible application

Suppose that a quantum system with Hamiltonian Ĥ ∈ ℍ̂(ℝ2n) is

integrable in the sense that there exist sufficiently regular independent

F̂1, . . . , F̂n ∈ ℍ̂(ℝ2n) such that

[F̂j , F̂k] = [F̂j , Ĥ] = 0.

In particular, the corresponding classical Hamiltonian system, obtained by

means of the averaging homomorphism, is Liouville integrable.
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If the classical common integral levels are compact, there exist action-

angle variables.

It turns out that there exist non-commutative action-angle variables

Î , '̂, i.e.,

(a) Î = ℳ(F̂ , ir̂), F̂ =W (Î , ir̂).

(b) '̂ are angular (defined mod2�).

(c) [Îj , Îk] = ['̂j , '̂k] = 0, [Îj , '̂k] = �jk.
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Existence of such non-commutative action-angle variables has been

proven so far locally [T2007]: Îj , '̂j ∈ ℍ̂(D), where D is a neighborhood of

any classical Liouville torus. The corresponding global result is probably

much more complicated, but under reasonable assumptions does not look

hopeless.
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Suppose that Îj , '̂j ∈ ℍ̂(ℝ2n).

Suppose moreover that Îj , e
i'̂j correspond to some good (pseudo-

differential) operators.

Then for any eigenfunction  ∕≡ 0, F̂j = �j we have:

F̂j k = Λjk k,  k = eik'̂ , k ∈ ℤ.

Λjk =Wj

(

ℳ(�, ℏ) + ℏk, ℏ
)

.

Hence, having one eigenfunction, we obtain many (infinitely many?

all?) eigenfunctions and eigenvalues.


