Torus fibrations and localization of index
 Computation of local index and application

Takahiko Yoshida

Meiji University, Japan
GEOQUANT 2009

In the previous talk

W: \mathbb{Z}_{2}-graded $\mathrm{Cl}(T M)$-module bundle
\downarrow
M: Riemannian manifold (not necessarily compact)
U
V : open set s.t.

- $M \backslash V$: compact
- $\exists\left\{\pi_{\alpha}: V_{\alpha} \rightarrow U_{\alpha}, D_{\alpha}\right\}_{\alpha \in A}$: acyclic compatible fibration on V

Theorem (Fujita-Furuta-Y '09)

Let D be a Dirac-type operator on W. Then, $\exists \operatorname{Ind}(M, V) \in \mathbb{Z}$ satisfying
(1) $\operatorname{Ind}(M, V)$ is invariant under continuous deformation of the data.
(2) $\operatorname{Ind}(M, V)=\operatorname{Ind}(D)$ for closed M
(3) $\operatorname{Ind}(M, V)=0$ if $V=M$ (vanishing)
(4) Suppose $\exists \cup_{i=1}^{k} O_{i} \supset M \backslash V$: mutually disjoint open covering. Then,

$$
\operatorname{Ind}(M, V)=\sum_{i=1}^{k} \operatorname{Ind}\left(O_{i}, O_{i} \cap V\right) \text { (localization) }
$$

In the this talk

(1) Computation of local index for four-dimensional elliptic singularities
(2) Application to locally toric Lagrangian fibrations

Joint work with Hajime Fujita and Mikio Furuta
(1) H. Fujita, M. Furuta, Y, Torus fibrations and localization of index I, arXiv:0804.3258.
(2) H. Fujita, M. Furuta, Y, Torus fibrations and localization of index II, in preparation. Coming soon!

1. Computation

$\mu:(M, \omega) \rightarrow B$: $2 n$-dim $\mathbb{R}_{\text {R }}$. Lagrangian fibration with singular fibers

Definition

A critical point of $\mu:(M, \omega) \rightarrow B$ is a nondegenerate elliptic singular point of rank $k(\leq n)$ if \exists symplectic coordinates $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ s. t. in these coordinates, μ is written as

$$
\mu=\left(x_{1}, \ldots, x_{k}, x_{k+1}^{2}+y_{k+1}^{2}, \ldots, x_{n}^{2}+y_{n}^{2}\right) .
$$

In this part we define local indices $\operatorname{Ind}_{0}(a, b)$ and $\operatorname{Ind}_{1}(a, b)$ for two types of elliptic singularities in four-dimensional case and compute them.

1.1. A BS fiber in the product of discs.

$$
\begin{aligned}
& \left(L_{0}, \nabla^{L_{0}}\right)=\left(M_{0} \times \mathbb{C}, d+\frac{1}{2} \sum_{i}\left(z_{i} d \bar{z}_{i}-\bar{z}_{i} d z_{i}\right)\right) \\
& \downarrow \\
& \left(M_{0}, \omega_{0}\right)=\left(\left\{z \in \mathbb{C}^{2}| | z_{1}\left|<1,\left|z_{2}\right|<1\right\}, \omega_{\mathbb{C}^{2}}\right)\right. \\
& \quad \downarrow \mu_{0}(z):=\left(\left|z_{1}\right|^{2},\left|z_{2}\right|^{2}\right) \\
& B_{0}=[0,1) \times[0,1)
\end{aligned}
$$

1.1. A BS fiber in the product of discs.

$$
\begin{aligned}
& \left(L_{0}, \nabla^{L_{0}}\right)=\left(M_{0} \times \mathbb{C}, d+\frac{1}{2} \sum_{i}\left(z_{i} d \bar{z}_{i}-\bar{z}_{i} d z_{i}\right)\right) \\
& \quad \downarrow \\
& \left(M_{0}, \omega_{0}\right)=\left(\left\{z \in \mathbb{C}^{2}| | z_{1}\left|<1,\left|z_{2}\right|<1\right\}, \omega_{\mathbb{C}^{2}}\right)\right. \\
& \quad \downarrow \mu_{0}(z):=\left(\left|z_{1}\right|^{2},\left|z_{2}\right|^{2}\right) \\
& B_{0}=[0,1) \times[0,1)
\end{aligned}
$$

- acyclic compatible fibration on $V_{0}:=M_{0} \backslash(0,0)$.

Let $a, b \in \mathbb{Z}$.

$$
\begin{aligned}
& \pi_{0,0}: V_{0,0}:=\left\{z \in M_{0} \mid z_{i} \neq 0 \forall i\right\} \rightarrow U_{0,0}:=V_{0,0} / T^{2}, t z=\left(t_{1} z_{1}, t_{2} z_{2}\right) \\
& \pi_{0,1}: V_{0,1}:=\left\{z \in M_{0}| | z_{1}\left|>\left|z_{2}\right|\right\} \rightarrow U_{0,1}:=V_{0,1} / S^{1}, t z=\left(t z_{1}, t^{a} z_{2}\right)\right. \\
& \pi_{0,2}: V_{0,2}:=\left\{z \in M_{0}| | z_{1}\left|<\left|z_{2}\right|\right\} \rightarrow U_{0,2}:=V_{0,2} / S^{1}, t z=\left(t^{b} z_{1}, t z_{2}\right)\right.
\end{aligned}
$$

1.1. A BS fiber in the product of discs.

$$
\begin{aligned}
& \left(L_{0}, \nabla^{L_{0}}\right)=\left(M_{0} \times \mathbb{C}, d+\frac{1}{2} \sum_{i}\left(z_{i} d \bar{z}_{i}-\bar{z}_{i} d z_{i}\right)\right) \\
& \downarrow \\
& \left(M_{0}, \omega_{0}\right)=\left(\left\{z \in \mathbb{C}^{2}| | z_{1}\left|<1,\left|z_{2}\right|<1\right\}, \omega_{\mathbb{C}^{2}}\right)\right. \\
& \begin{array}{ll}
\mid \mu_{0}(z) & :=\left(\left|z_{1}\right|^{2},\left|z_{2}\right|^{2}\right) \\
B_{0}=[0,1) \times[0,1) & \bullet \text { every fiber of } \mu_{0} \text { is smooth. } \\
\quad \bullet(0,0): \text { unique BS fiber. }
\end{array}
\end{aligned}
$$

- acyclic compatible fibration on $V_{0}:=M_{0} \backslash(0,0)$.

Let $a, b \in \mathbb{Z}$.

$$
\begin{aligned}
& \pi_{0,0}: V_{0,0}:=\left\{z \in M_{0} \mid z_{i} \neq 0 \forall i\right\} \rightarrow U_{0,0}:=V_{0,0} / T^{2}, t z=\left(t_{1} z_{1}, t_{2} z_{2}\right) \\
& \pi_{0,1}: V_{0,1}:=\left\{z \in M_{0}| | z_{1}\left|>\left|z_{2}\right|\right\} \rightarrow U_{0,1}:=V_{0,1} / S^{1}, t z=\left(t z_{1}, t^{a} z_{2}\right)\right. \\
& \pi_{0,2}: V_{0,2}:=\left\{z \in M_{0}| | z_{1}\left|<\left|z_{2}\right|\right\} \rightarrow U_{0,2}:=V_{0,2} / S^{1}, t z=\left(t^{b} z_{1}, t z_{2}\right)\right.
\end{aligned}
$$

Take a compatible $\left(g_{0}, J_{0}\right)$ on M_{0} invariant under the standard T^{2}-action.

$$
D_{0, i}: \Gamma\left(\bigwedge^{\bullet}\left(T^{*} V_{0, i}\right) \otimes_{\mathbb{C}} L_{0} \mid v_{0, i}\right) \rightarrow \Gamma\left(\bigwedge^{\bullet}\left(T^{*} V_{0, i}\right) \otimes_{\mathbb{C}} L_{0} \mid v_{0, i}\right)
$$

family of de Rham operators along the fibers of $\pi_{0, i}(i=0,1,2)$
1.1. A BS fiber in the product of discs.

$$
\begin{aligned}
& \left(L_{0}, \nabla^{L_{0}}\right)=\left(M_{0} \times \mathbb{C}, d+\frac{1}{2} \sum_{i}\left(z_{i} d \bar{z}_{i}-\bar{z}_{i} d z_{i}\right)\right) \\
& \downarrow \\
& \left(M_{0}, \omega_{0}\right)=\left(\left\{z \in \mathbb{C}^{2}| | z_{1}\left|<1,\left|z_{2}\right|<1\right\}, \omega_{\mathbb{C}^{2}}\right)\right. \\
& \begin{array}{ll}
\mid \mu_{0}(z):=\left(\left|z_{1}\right|^{2},\left|z_{2}\right|^{2}\right) & \bullet \text { every fiber of } \mu_{0} \text { is smooth. } \\
B_{0}=[0,1) \times[0,1) & \bullet(0,0): \text { unique BS fiber. }
\end{array}
\end{aligned}
$$

- acyclic compatible fibration on $V_{0}:=M_{0} \backslash(0,0)$.

Let $a, b \in \mathbb{Z}$.

$$
\begin{aligned}
& \pi_{0,0}: V_{0,0}:=\left\{z \in M_{0} \mid z_{i} \neq 0 \forall i\right\} \rightarrow U_{0,0}:=V_{0,0} / T^{2}, t z=\left(t_{1} z_{1}, t_{2} z_{2}\right) \\
& \pi_{0,1}: V_{0,1}:=\left\{z \in M_{0}| | z_{1}\left|>\left|z_{2}\right|\right\} \rightarrow U_{0,1}:=V_{0,1} / S^{1}, t z=\left(t z_{1}, t^{a} z_{2}\right)\right. \\
& \pi_{0,2}: V_{0,2}:=\left\{z \in M_{0}| | z_{1}\left|<\left|z_{2}\right|\right\} \rightarrow U_{0,2}:=V_{0,2} / S^{1}, t z=\left(t^{b} z_{1}, t z_{2}\right)\right.
\end{aligned}
$$

Take a compatible $\left(g_{0}, J_{0}\right)$ on M_{0} invariant under the standard T^{2}-action.

$$
D_{0, i}: \Gamma\left(\bigwedge^{\bullet}\left(T^{*} V_{0, i}\right) \otimes_{\mathbb{C}} L_{0} \mid v_{0, i}\right) \rightarrow \Gamma\left(\bigwedge^{\bullet}\left(T^{*} V_{0, i}\right) \otimes_{\mathbb{C}} L_{0} \mid v_{0, i}\right)
$$

family of de Rham operators along the fibers of $\pi_{0, i}(i=0,1,2)$

Definition $\left(R R_{0}(a, b)\right)$

$$
\operatorname{Ind}_{0}(a, b):=\operatorname{Ind}\left(M_{0}, V_{0}\right) \quad(a, b \in \mathbb{Z})
$$

1.2. A singular non $B S$ fiber in the product of a cylinder and a disc

$$
\begin{aligned}
& \left(L_{1}, \nabla^{L_{1}}\right)=\left(M_{1} \times \mathbb{C}, d-2 \pi \sqrt{-1} r d \theta+\frac{1}{2}(z d \bar{z}-\bar{z} d z)\right) \\
& \downarrow \\
& \left(M_{1}, \omega_{1}\right)=\left((0,1) \times S^{1} \times\{z \in \mathbb{C}| | z \mid<1\}, \omega_{\left.(0,1) \times S^{1} \oplus \omega_{\mathbb{C}}\right)}\right. \\
& \quad \downarrow \mu_{1}(r, u, z):=\left(r,|z|^{2}\right) \\
& B_{1}=(0,1) \times[0,1)
\end{aligned}
$$

1.2. A singular non $B S$ fiber in the product of a cylinder and a disc

$$
\begin{aligned}
& \left(L_{1}, \nabla^{L_{1}}\right)=\left(M_{1} \times \mathbb{C}, d-2 \pi \sqrt{-1} r d \theta+\frac{1}{2}(z d \bar{z}-\bar{z} d z)\right) \\
& \downarrow \\
& \left(M_{1}, \omega_{1}\right)=\left((0,1) \times S^{1} \times\{z \in \mathbb{C}| | z \mid<1\}, \omega_{\left.(0,1) \times S^{1} \oplus \omega_{\mathbb{C}}\right)}\right. \\
& \quad \downarrow \mu_{1}(r, u, z):=\left(r,|z|^{2}\right) \\
& B_{1}=(0,1) \times[0,1)
\end{aligned}
$$

- acyclic compatible fibration on $V_{1}:=M_{1} \backslash \mu_{1}^{-1}\left(r_{1}, 0\right)$.

Take and fix $r_{1} \in(0,1)$. Let $a, b \in \mathbb{Z}$.

$$
\begin{aligned}
& \pi_{1,0}: V_{1,0}:=\left\{(r, u, z) \in M_{1} \mid z \neq 0\right\} \rightarrow U_{1,0}:=V_{1,0} / T^{2}, t(r, u, z)=(r, t u, t z) \\
& \pi_{1,1}: V_{1,1}:=\left\{(r, u, z) \in M_{1} \mid r_{1}<r\right\} \rightarrow U_{1,1}:=V_{1,1} / S^{1}, t(r, u, z)=\left(r, t u, t^{a} z\right) \\
& \pi_{1,2}: V_{1,2}:=\left\{(r, u, z) \in M_{1} \mid r<r_{1}\right\} \rightarrow U_{1,2}:=V_{1,2} / S^{1}, t(r, u, z)=\left(r, t u, t^{b} z\right)
\end{aligned}
$$

1.2. A singular non BS fiber in the product of a cylinder and a disc

$$
\begin{aligned}
& \left(L_{1}, \nabla^{L_{1}}\right)=\left(M_{1} \times \mathbb{C}, d-2 \pi \sqrt{-1} r d \theta+\frac{1}{2}(z d \bar{z}-\bar{z} d z)\right) \\
& \downarrow \\
& \left(M_{1}, \omega_{1}\right)=\left((0,1) \times S^{1} \times\{z \in \mathbb{C}| | z \mid<1\}, \omega_{\left.(0,1) \times S^{1} \oplus \omega_{\mathbb{C}}\right)}\right. \\
& \quad \downarrow \mu_{1}(r, u, z):=\left(r,|z|^{2}\right) \\
& B_{1}=(0,1) \times[0,1)
\end{aligned}
$$

- acyclic compatible fibration on $V_{1}:=M_{1} \backslash \mu_{1}^{-1}\left(r_{1}, 0\right)$. Take and fix $r_{1} \in(0,1)$. Let $a, b \in \mathbb{Z}$.

$$
\begin{aligned}
& \pi_{1,0}: V_{1,0}:=\left\{(r, u, z) \in M_{1} \mid z \neq 0\right\} \rightarrow U_{1,0}:=V_{1,0} / T^{2}, t(r, u, z)=(r, t u, t z) \\
& \pi_{1,1}: V_{1,1}:=\left\{(r, u, z) \in M_{1} \mid r_{1}<r\right\} \rightarrow U_{1,1}:=V_{1,1} / S^{1}, t(r, u, z)=\left(r, t u, t^{a} z\right) \\
& \pi_{1,2}: V_{1,2}:=\left\{(r, u, z) \in M_{1} \mid r<r_{1}\right\} \rightarrow U_{1,2}:=V_{1,2} / S^{1}, t(r, u, z)=\left(r, t u, t^{b} z\right)
\end{aligned}
$$

Take a compatible $\left(g_{1}, J_{1}\right)$ on M_{1} invariant under the standard T^{2}-action.

$$
D_{1, i}: \Gamma\left(\bigwedge^{\bullet}\left(T^{*} V_{1, i}\right) \otimes_{\mathbb{C}} L_{1} \mid V_{1, i}\right) \rightarrow \Gamma\left(\bigwedge^{\bullet}\left(T^{*} V_{1, i}\right) \otimes_{\mathbb{C}} L_{1} \mid v_{1, i}\right)
$$

family of de Rham operators along the fibers of $\pi_{1, i}(i=0,1,2)$
1.2. A singular non BS fiber in the product of a cylinder and a disc

$$
\begin{aligned}
& \left(L_{1}, \nabla^{L_{1}}\right)=\left(M_{1} \times \mathbb{C}, d-2 \pi \sqrt{-1} r d \theta+\frac{1}{2}(z d \bar{z}-\bar{z} d z)\right) \\
& \downarrow \\
& \left(M_{1}, \omega_{1}\right)=\left((0,1) \times S^{1} \times\{z \in \mathbb{C}| | z \mid<1\}, \omega_{\left.(0,1) \times S^{1} \oplus \omega_{\mathbb{C}}\right)}\right. \\
& \quad \begin{array}{l}
\mu_{1}(r, u, z):=\left(r,|z|^{2}\right) \\
B_{1}=(0,1) \times[0,1)
\end{array} \quad \text { every fiber of } \mu_{1} \text { is smooth. }
\end{aligned}
$$

- acyclic compatible fibration on $V_{1}:=M_{1} \backslash \mu_{1}^{-1}\left(r_{1}, 0\right)$.

Take and fix $r_{1} \in(0,1)$. Let $a, b \in \mathbb{Z}$.

$$
\begin{aligned}
& \pi_{1,0}: V_{1,0}:=\left\{(r, u, z) \in M_{1} \mid z \neq 0\right\} \rightarrow U_{1,0}:=V_{1,0} / T^{2}, t(r, u, z)=(r, t u, t z) \\
& \pi_{1,1}: V_{1,1}:=\left\{(r, u, z) \in M_{1} \mid r_{1}<r\right\} \rightarrow U_{1,1}:=V_{1,1} / S^{1}, t(r, u, z)=\left(r, t u, t^{a} z\right) \\
& \pi_{1,2}: V_{1,2}:=\left\{(r, u, z) \in M_{1} \mid r<r_{1}\right\} \rightarrow U_{1,2}:=V_{1,2} / S^{1}, t(r, u, z)=\left(r, t u, t^{b} z\right)
\end{aligned}
$$

Take a compatible $\left(g_{1}, J_{1}\right)$ on M_{1} invariant under the standard T^{2}-action.

$$
D_{1, i}: \Gamma\left(\bigwedge^{\bullet}\left(T^{*} V_{1, i}\right) \otimes_{\mathbb{C}} L_{1} \mid V_{1, i}\right) \rightarrow \Gamma\left(\bigwedge^{\bullet}\left(T^{*} V_{1, i}\right) \otimes_{\mathbb{C}} L_{1} \mid v_{1, i}\right)
$$

family of de Rham operators along the fibers of $\pi_{1, i}(i=0,1,2)$

Definition $\left(R R_{1}(a, b)\right)$

$$
\operatorname{Ind}_{1}(a, b):=\operatorname{Ind}\left(M_{1}, V_{1}\right) \quad(a, b \in \mathbb{Z})
$$

1.3. Computation

Proposition (Fujita-Furuta-Y '09)

$$
\operatorname{Ind}_{0}(a, b)=1, \operatorname{Ind}_{1}(a, b)=0 \forall a, b \in \mathbb{Z}
$$

Lemma 1
$\forall a, b, c \in \mathbb{Z}, \quad \operatorname{Ind}_{0}(a, b)=\operatorname{Ind}_{0}(b, a)$ $\operatorname{Ind}_{1}(a, b)=\operatorname{Ind}_{1}(a+c, b+c)$

Lemma 1

$$
\begin{align*}
\forall a, b, c \in \mathbb{Z}, & \operatorname{Ind}_{0}(a, b)=\operatorname{Ind}_{0}(b, a) \tag{1}\\
& \operatorname{Ind}_{1}(a, b)=\operatorname{Ind}_{1}(a+c, b+c) \tag{2}
\end{align*}
$$

Lemma 2

$$
\begin{align*}
\forall a, b, c \in \mathbb{Z}, & \operatorname{Ind}_{0}(a, b)=\operatorname{Ind}_{0}(c, b)+\operatorname{Ind}_{1}(c, a) \tag{3}\\
& \operatorname{Ind}_{1}(a, c)=\operatorname{Ind}_{1}(a, b)+\operatorname{Ind}_{1}(b, c) \tag{4}
\end{align*}
$$

Lemma 1

$$
\begin{align*}
\forall a, b, c \in \mathbb{Z}, & \operatorname{Ind}_{0}(a, b)=\operatorname{Ind}_{0}(b, a) \tag{1}\\
& \operatorname{Ind}_{1}(a, b)=\operatorname{Ind}_{1}(a+c, b+c) \tag{2}
\end{align*}
$$

Lemma 2

$$
\begin{align*}
\forall a, b, c \in \mathbb{Z}, & \operatorname{Ind}_{0}(a, b)=\operatorname{Ind}_{0}(c, b)+\operatorname{Ind}_{1}(c, a) \tag{3}\\
& \operatorname{Ind}_{1}(a, c)=\operatorname{Ind}_{1}(a, b)+\operatorname{Ind}_{1}(b, c) \tag{4}
\end{align*}
$$

Lemma 3

$$
\begin{equation*}
\operatorname{Ind}_{0}(0,1)=\operatorname{Ind}_{0}(0,0)=1 \tag{5}
\end{equation*}
$$

Lemma 1

$$
\begin{align*}
\forall a, b, c \in \mathbb{Z}, & \operatorname{Ind}_{0}(a, b)=\operatorname{Ind}_{0}(b, a) \tag{1}\\
& \operatorname{Ind}_{1}(a, b)=\operatorname{Ind}_{1}(a+c, b+c) \tag{2}
\end{align*}
$$

Lemma 2

$$
\begin{align*}
\forall a, b, c \in \mathbb{Z}, & \operatorname{Ind}_{0}(a, b)=\operatorname{Ind}_{0}(c, b)+\operatorname{Ind}_{1}(c, a) \tag{3}\\
& \operatorname{Ind}_{1}(a, c)=\operatorname{Ind}_{1}(a, b)+\operatorname{Ind}_{1}(b, c) \tag{4}
\end{align*}
$$

Lemma 3

$$
\begin{equation*}
\operatorname{Ind}_{0}(0,1)=\operatorname{Ind}_{0}(0,0)=1 \tag{5}
\end{equation*}
$$

Proof of Proposition.

$$
\begin{equation*}
a<b . \operatorname{lnd}_{1}(0,1) \stackrel{3}{=} \operatorname{Ind}(1,0)-\operatorname{Ind}_{0}(0,0) \stackrel{1}{=} \operatorname{Ind}(0,1)-\operatorname{lnd}(0,0) \stackrel{5}{=} 0 \tag{6}
\end{equation*}
$$

$\therefore \operatorname{Ind}_{1}(a, b) \stackrel{4}{=} \sum_{i=0}^{b-a-1} \operatorname{lnd}_{1}(a+i, a+i+1) \stackrel{2}{=}(b-a) \operatorname{lnd}_{1}(0,1) \stackrel{6}{=} 0$ $a=b . \operatorname{Ind}_{1}(a, a) \stackrel{3}{=} \operatorname{Ind}_{0}(a, a)-\operatorname{Ind}_{0}(a, a)=0$
$a>b . \operatorname{lnd}_{1}(a, b) \stackrel{4}{=} \operatorname{lnd}_{1}(a, a)-\operatorname{lnd}_{1}(b, a) \stackrel{8}{=}-\operatorname{lnd}_{1}(b, a) \stackrel{7}{=} 0$
$\therefore \operatorname{Ind}_{0}(a, b) \stackrel{3+\ln d_{1}=0}{=} \operatorname{Ind}_{0}(0, b) \stackrel{1}{=} \operatorname{Ind}(b, 0) \stackrel{3+\operatorname{lnd} d_{1}=0}{=} \operatorname{Ind} 0_{0}(0,0)=1$

Remarks

- In the above computation we used the properties of local index to reduce the computation to Lemma 3. There also exist some examples of local indices that are directly computable.
- In general case we have no systematic method to compute the local index.

2. Application
$\left(L, \nabla^{L}\right)$
$\downarrow \quad$: prequantized closed locally toric Lagrangian fibration $\mu:(M, \omega) \rightarrow B$

2. Application

$\left(L, \nabla^{L}\right)$
$\downarrow \quad$: prequantized closed locally toric Lagrangian fibration
$\mu:(M, \omega) \rightarrow B$

- By definition, a locally toric Lagrangian fibration is a Lagrangian fibration with only nondegenerate elliptic singularities. (Ex. moment map of a nonsingular projective toric variety) In general, a locally toric Lagrangian fibration has no global torus action!

2. Application
$\left(L, \nabla^{L}\right)$
$\downarrow \quad$: prequantized closed locally toric Lagrangian fibration
$\mu:(M, \omega) \rightarrow B$

- By definition, a locally toric Lagrangian fibration is a Lagrangian fibration with only nondegenerate elliptic singularities. (Ex. moment map of a nonsingular projective toric variety) In general, a locally toric Lagrangian fibration has no global torus action!
- B has a structure of a manifold with corners.
$\Rightarrow B=\coprod_{i=0}^{\frac{1}{2} \operatorname{dim}_{\mathbb{R}} M} \mathcal{S}^{(i)} B$: stratification

2. Application
$\left(L, \nabla^{L}\right)$
$\downarrow \quad$: prequantized closed locally toric Lagrangian fibration
$\mu:(M, \omega) \rightarrow B$

- By definition, a locally toric Lagrangian fibration is a Lagrangian fibration with only nondegenerate elliptic singularities. (Ex. moment map of a nonsingular projective toric variety) In general, a locally toric Lagrangian fibration has no global torus action!
- B has a structure of a manifold with corners.
$\Rightarrow B=\coprod_{i=0}^{\frac{1}{2} \operatorname{dim}_{\mathbb{R}} M} \mathcal{S}^{(i)} B$: stratification
- Every fiber of μ is smooth .
\Rightarrow The definition of BS fiber/point makes sense.

2. Application
$\left(L, \nabla^{L}\right)$
: prequantized closed locally toric Lagrangian fibration
$\mu:(M, \omega) \rightarrow B$

- By definition, a locally toric Lagrangian fibration is a Lagrangian fibration with only nondegenerate elliptic singularities. (Ex. moment map of a nonsingular projective toric variety) In general, a locally toric Lagrangian fibration has no global torus action!
- B has a structure of a manifold with corners.
$\Rightarrow B=\coprod_{i=0}^{\frac{1}{2} \operatorname{dim}_{\mathbb{R}} M} \mathcal{S}^{(i)} B$: stratification
- Every fiber of μ is smooth .
\Rightarrow The definition of BS fiber/point makes sense.
- BS fibers appear discretely.

2. Application

$\left(L, \nabla^{L}\right)$
$\downarrow \quad$: prequantized closed locally toric Lagrangian fibration
$\mu:(M, \omega) \rightarrow B$

- By definition, a locally toric Lagrangian fibration is a Lagrangian fibration with only nondegenerate elliptic singularities. (Ex. moment map of a nonsingular projective toric variety) In general, a locally toric Lagrangian fibration has no global torus action!
- B has a structure of a manifold with corners.
$\Rightarrow B=\coprod_{i=0}^{\frac{1}{2} \operatorname{dim}_{\mathbb{R}} M} \mathcal{S}^{(i)} B$: stratification
- Every fiber of μ is smooth .
\Rightarrow The definition of BS fiber/point makes sense.
- BS fibers appear discretely.

Theorem (Fujita-Furuta-Y '09)

In four-dimensional case,

$$
R R(M, \omega)=\#(b o t h \text { singular and nonsingular) BS-fibers. }
$$

Point of Proof.

In general, it is difficult to construct an acyclic compatible fibration on V so that the contribution of $M \backslash V$ to $R R(M, \omega)$ is computable. But, in this case,

Point of Proof.

In general, it is difficult to construct an acyclic compatible fibration on V so that the contribution of $M \backslash V$ to $R R(M, \omega)$ is computable. But, in this case,

Key Point

$\exists b_{1}, \ldots, b_{k} \in \mathcal{S}^{(1)} B$: non BS points and \exists acyclic compatible fibration on $V:=M \backslash\left\{B S\right.$-fibers, $\left.\mu^{-1}\left(b_{1}\right), \ldots, \mu^{-1}\left(b_{k}\right)\right\}$ s. t.

- $\forall i$, the contribution of $\mu^{-1}\left(b_{i}\right)=\operatorname{Ind}_{1}(a, b)$,
- the contribution of each one-dim. $B S$-fiber $=1$.
\because Use the local model: $\mu_{\mathbb{C}^{n}}:\left(\mathbb{C}^{n}, \omega_{\mathbb{C}^{n}}\right) \rightarrow \mathbb{R}_{\geq 0}^{n}, z \mapsto\left(\left|z_{i}\right|^{2}\right)$.

Point of Proof.

In general, it is difficult to construct an acyclic compatible fibration on V so that the contribution of $M \backslash V$ to $R R(M, \omega)$ is computable. But, in this case,

Key Point

$\exists b_{1}, \ldots, b_{k} \in \mathcal{S}^{(1)} B$: non BS points and \exists acyclic compatible fibration on $V:=M \backslash\left\{B S\right.$-fibers, $\left.\mu^{-1}\left(b_{1}\right), \ldots, \mu^{-1}\left(b_{k}\right)\right\}$ s. t.

- $\forall i$, the contribution of $\mu^{-1}\left(b_{i}\right)=\operatorname{Ind}_{1}(a, b)$,
- the contribution of each one-dim. $B S$-fiber $=1$.
\because Use the local model: $\mu_{\mathbb{C}^{n}}:\left(\mathbb{C}^{n}, \omega_{\mathbb{C}^{n}}\right) \rightarrow \mathbb{R}_{\geq 0}^{n}, z \mapsto\left(\left|z_{i}\right|^{2}\right)$.
Moreover,
- $\operatorname{Ind}_{1}(a, b)=0$. (\because Proposition $)$

Point of Proof.

In general, it is difficult to construct an acyclic compatible fibration on V so that the contribution of $M \backslash V$ to $R R(M, \omega)$ is computable. But, in this case,

Key Point

$\exists b_{1}, \ldots, b_{k} \in \mathcal{S}^{(1)} B$: non BS points and \exists acyclic compatible fibration on $V:=M \backslash\left\{B S\right.$-fibers, $\left.\mu^{-1}\left(b_{1}\right), \ldots, \mu^{-1}\left(b_{k}\right)\right\}$ s. t.

- $\forall i$, the contribution of $\mu^{-1}\left(b_{i}\right)=\operatorname{Ind}_{1}(a, b)$,
- the contribution of each one-dim. $B S$-fiber $=1$.
\because Use the local model: $\mu_{\mathbb{C}^{n}}:\left(\mathbb{C}^{n}, \omega_{\mathbb{C}^{n}}\right) \rightarrow \mathbb{R}_{\geq 0}^{n}, z \mapsto\left(\left|z_{i}\right|^{2}\right)$.
Moreover,
- $\operatorname{Ind}_{1}(a, b)=0$. (\because Proposition)
- the contribution of each zero-dim. BS-fiber $=\operatorname{Ind}_{0}(a, b)=1 .(\because$

Proposition)

Point of Proof.

In general, it is difficult to construct an acyclic compatible fibration on V so that the contribution of $M \backslash V$ to $R R(M, \omega)$ is computable. But, in this case,

Key Point

$\exists b_{1}, \ldots, b_{k} \in \mathcal{S}^{(1)} B$: non BS points and \exists acyclic compatible fibration on $V:=M \backslash\left\{B S\right.$-fibers, $\left.\mu^{-1}\left(b_{1}\right), \ldots, \mu^{-1}\left(b_{k}\right)\right\}$ s. t.

- $\forall i$, the contribution of $\mu^{-1}\left(b_{i}\right)=\operatorname{Ind}_{1}(a, b)$,
- the contribution of each one-dim. $B S$-fiber $=1$.
\because Use the local model: $\mu_{\mathbb{C}^{n}}:\left(\mathbb{C}^{n}, \omega_{\mathbb{C}^{n}}\right) \rightarrow \mathbb{R}_{\geq 0}^{n}, z \mapsto\left(\left|z_{i}\right|^{2}\right)$.
Moreover,
- $\operatorname{Ind}_{1}(a, b)=0$. (\because Proposition)
- the contribution of each zero-dim. BS-fiber $=\operatorname{Ind}_{0}(a, b)=1 .(\because$ Proposition)
- the contribution of each two-dim. BS-fiber $=1 .(\because$ nonsingular BS-fiber $)$

Point of Proof.

In general, it is difficult to construct an acyclic compatible fibration on V so that the contribution of $M \backslash V$ to $R R(M, \omega)$ is computable. But, in this case,

Key Point

$\exists b_{1}, \ldots, b_{k} \in \mathcal{S}^{(1)} B$: non BS points and \exists acyclic compatible fibration on $V:=M \backslash\left\{B S\right.$-fibers, $\left.\mu^{-1}\left(b_{1}\right), \ldots, \mu^{-1}\left(b_{k}\right)\right\}$ s. t.

- $\forall i$, the contribution of $\mu^{-1}\left(b_{i}\right)=\operatorname{Ind}_{1}(a, b)$,
- the contribution of each one-dim. $B S$-fiber $=1$.
\because Use the local model: $\mu_{\mathbb{C}^{n}}:\left(\mathbb{C}^{n}, \omega_{\mathbb{C}^{n}}\right) \rightarrow \mathbb{R}_{\geq 0}^{n}, z \mapsto\left(\left|z_{i}\right|^{2}\right)$.
Moreover,
- $\operatorname{Ind}_{1}(a, b)=0$. (\because Proposition)
- the contribution of each zero-dim. BS-fiber $=\operatorname{Ind}_{0}(a, b)=1 .(\because$

Proposition)

- the contribution of each two-dim. BS-fiber $=1$. (\because nonsingular BS-fiber $)$
$\Rightarrow R R(M, \omega)=\#$ (both singular and nonsingular) BS-fibers.

Example (Non toric example)

$\left(L, \nabla^{L}\right):=\mathrm{p}_{\mathbb{R} \times S^{1}}^{*}(\underline{\mathbb{C}}, d-2 \pi \sqrt{-1} r d \theta) \otimes \mathrm{p}_{\mathbb{C} P^{1}}^{*}\left(\mathcal{O}(1), d+\frac{1}{2} \sum_{i}\left(z_{i} d \bar{z}_{i}-\bar{z}_{i} d z_{i}\right)\right) / \mathbb{Z}$
$(M, \omega):=\left(\mathbb{R} \times S^{1} \times \mathbb{C} P^{1}, \omega_{\mathbb{R} \times S^{1}} \oplus \omega_{F S}\right) / \mathbb{Z}$

$$
\begin{aligned}
\downarrow \mu & \mu\left(r, u,\left[z_{0}: z_{1}\right]\right) \mapsto\left(r,\left|z_{1}\right|^{2}\right) \\
B & :=(\mathbb{R} \times[0,1]) / \mathbb{Z}
\end{aligned}
$$

$\mathbb{Z} \curvearrowright \mathrm{p}_{\mathbb{R} \times \mathcal{S}^{1}}^{*} \underline{\mathbb{C}} \otimes \mathrm{p}_{\mathbb{C} P^{1}}^{*} \mathcal{O}(1):$

$$
n(r, u, z, w):=\left(r+n\left(\left|z_{1}\right|^{2}+1\right), u,\left[z_{0}: u^{-n} z_{1}\right], u^{n} w\right)
$$

$\mathbb{Z} \curvearrowright \mathbb{R} \times S^{1} \times \mathbb{C} P^{1}:$

$$
\left.n\left(r, u,\left[z_{0}: z_{1}\right]\right):=\left(r+n\left(\left|z_{1}\right|^{2}+1\right), u,\left[z_{0}: u^{-n} z_{1}\right]\right)\right)
$$

$\mathbb{Z} \curvearrowright \mathbb{R} \times[0,1]:$

$$
n\left(r_{1}, r_{2}\right):=\left(r_{1}+n\left(r_{2}+1\right), r_{2}\right)
$$

Fundamental domain of $\mathbb{Z} \curvearrowright \mathbb{R} \times[0,1]: n\left(r_{1}, r_{2}\right):=\left(r_{1}+n\left(r_{2}+1\right), r_{2}\right)$

$$
F:=\left\{\left(r_{1}, r_{2}\right) \in \mathbb{R} \times[0,1] \left\lvert\,-\frac{1}{2} \leq r_{1}<r_{2}+\frac{1}{2}\right.\right\}
$$

Figure: Fundamental domain and Bohr-Sommerfeld points

In this example

$$
\begin{gathered}
B S \text { points } \stackrel{1: 1}{\Longleftrightarrow} F \cap \mathbb{Z}^{2} \\
\Rightarrow \quad R R(M, \omega)=\# B S \text {-fibers }=3 .
\end{gathered}
$$

