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Outline

This talk is based on two joint papers with J.E. Andersen. They
concern asymptotic expansions of quantum invariants, and
resurgence properties of the asymptotic series giving these
expansions.

1 Quantum topology

2 Resurgence and Picard-Lefschetz theory

3 Resurgence in TQFT

4 Quantization of moduli spaces
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Knotted objects and quantum invariants

knotted objects: a knotted object (M,K) is a closed
oriented 3-manifold M with a framed oriented link K ⊂M.

Figure: Example: the trefoil knot in S3 .

Quantum invariants: Let r ∈ N, and κ ∈ {1, ..., r − 1}π0(K).
The quantum invariant is a topological invariant

τr(M,K, κ) ∈ C.

We write Col(K, r) = {1, ..., r − 1}π0(K).
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Surgery presentations of knotted objects

Surgery: Due to work of Kirby there exists a bijection Φ

{Pairs of framed links (L,K) ⊂ S3×S3}/Kirby equivalence

' {Knotted objects (M,K)}/Diff+

(L,K)
Φ7→ (ML,K).

Construction: The framing of L = {Lj}mj=1 induces
T ' tmj=1 S1

j ×B2
j where T is a tubular nbhd of L. We have

ML =
(
S3 \Interior

(
tmj=1 S1

j ×B2
j

))
∪S1

j × S1
j

(
tmj=1 B2

j ×S1
j

)
.
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The framed unknot

A particurly important link, is the framed unknot Om with m
twists. Below we consider the example m = 2

Figure: Example: the unknot O2 with framing 2.
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The Jones polynomial and the Skein relation

Let q = e
2πi
r , r ∈ N. The Jones polynomial J(L, q) ∈ Z[q

±1
4 ] satisfy

J(Om, q) = qm
3
4 (q

1
2 + q−

1
2 ),

multiplicativity
J(L t L′) = J(L)J(L′)

and the Skein-relation

q
1
4J(L+, q)− q−

1
4J(L−, q) = (q

1
2 − q−

1
2 )J(L0, q).

L+ L− L0

Figure: A Skein triple.
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Cabling and the colored Jones polynomial

Cabling: Consider a link L = {Li}mi=1. Given κ ∈ Col(L, r)
define Lκ by replacing each Li by κi new components which
are parallel push-offs of Li

Figure: Example: the cabled unknot O2.

The colored Jones polynomial: Given λ ∈ Col(L, r) let

Jλ(L, q) =

λ−1
2∑

κ=0

(−1)
∑m
i=1 κi

m∏
i=1

(
λi − 1− κi

κi

)
J(Lλ−1−2κ, q).
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Atiyah’s challenge

The Jones polynomial was mysterious to topologists. Atiyah posed
the following challenges:

Extend J(K, q) to an invariant of (ML,K).

Give an intrinsic definition of J(L, q) without link diagrams.
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Witten’s solution: Quantum Cherns-Simons theory

Classical theory: Let G = SU(n). Let A/G be the space of
G-connections. For [A] ∈ A/G, we have the CS action

SCS([A]) =
1

8π2

∫
M

tr(AdA+
2

3
A3) mod Z.

The space of classical solutions d SCS[A] = 0 is equal to the
moduli spaceM(G,M) of flat connections.
Quantum theory: Set k = r − n. Witten considered the path
integrals (which are mathematically ill-defined)

Zphys
k (M,L) =

∫
A/G

e2πik SCS(A)
∏

Li∈π0(L)

tr (HolA(Li)) DA

and showed (n = 2) that Zphys
k (S3, L) = J(L, q).
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The Reshetikhin-Turaev topological quantum field theory

Using modular categories Reshetikhin and Turaev defined a TQFT

τr : (Cob(3),t, ∅)→ (Vect(C),�,C) .

To a surface Σ the TQFT assigns a vector space Vr(Σ).
To a compact oriented 3-manifold M with ∂M = (−Σ) t Σ′

the TQFT assigns a linear map

τr(M) : Vr(Σ)→ Vr(Σ
′).

Figure: A cobordism M : Σ1 → Σ2.
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The SU(2) quantum invariant

Let G = SU(2). For m ∈ Z we introduce the quantum integer

[m] = (q
m
2 − q−

m
2 )(q

1
2 − q−

1
2 )−1

The quantum invariant of (a colored) knotted object (ML,K, κ) is

τr(ML,K, κ) = αL
∑

λ∈Col(L,r)

∏
Li∈π0(L)

[λi]J(λ,κ)(L ∪K, q)

where

αL = exp

(
iπ3(2− r)

4r

)−σ(L)
(√

2

r
sin
(π
r

))|π0(L)|+1

and σ(L) is the signature of the linking matrix.
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The RT-TQFT is a mathematical model for quantum
Chern-Simons theory

The TQFT τr is considered to be a model for the path integrals
Zphys
k (M) considered by Witten in quantum Chern-Simons theory

τr(M)“ = “

∫
A/G

e2πik SCS(A) DA.

Remark 1
The rest of the talk concerns the mathematically rigorously
constructed quantum invariant τr(M) and their relation to
Chern-Simons theory.
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Classical solutions in Chern-Simons theory

Let (M,K, κ) be a knotted object. Let λ ∈ {1, ..., r − 1}. We have
a correspondence

λ←→ Rλ ←→ Cλ

where
Rλ is an irreducible G-representation and
Cλ is a conjugacy class in G obtained by exponentiation of a
highest weight vλ of Rλ - here the Lie algebra g is identified
with g∗ through the Killing form.

Let
M(G,M,K,Cκ)

be the moduli space of flat G-connections on M \K with
holonomy Cλ around a component Kj colored with λ.
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Semi-classical analysis: the asymptotic expansion conjecture

Let (M,K, κ) be a knotted object. Set

CS = SCS(M(G,M,K,Cκ)).

Conjecture 1 (The asymptotic expansion conjecture)

There exists
{(dθ, bθ)}θ∈CS ⊂ Q× C∗

and formal power series

{Zθ(k)}θ∈CS ⊂ k−
1
2C[[k−

1
2 ]]

giving an asymptotic expansion in the Poincaré sense

τk(M,K, κ) ∼k→∞
∑
θ∈CS

exp(2πikθ)kdθbθ(1 + Zθ(k)).
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Analytic continuation: from semi-classical analysis to
resurgence and complexification

Complexification: The Chern-Simons action SCS can be
holomorphically extended to the SL(n,C)-connections.

Analytic continuation: Witten has proposed an analytic
continuation of

k 7→ Zphys
k (M)

by formally applying Pham-Picard-Lefschetz theory to the
holomorphic extension of the Chern-Simons action SCS.
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Saddle point analysis of Laplace integrals over
Picard-Lefschetz thimbles

Laplace integrals: Let Y be a complex manifold. We discuss
resurgence and saddle point analysis of Laplace integrals

I(λ) =

∫
∆
e−λf(z) ω(z).

Here f ∈ O(Y ) will be a so-called resurgence phase, and
∆ ⊂ Y will be a Picard-Lefschetz thimble.

Work of Malgrange, Pham and Howls: We present some
results which are natural generalizations of results due to
Malgrange, Pham and Howls.

William Elbæk Mistegård Resurgence Analysis of Quantum Invariants



Quantum topology Resurgence and Picard-Lefschetz theory Resurgence in TQFT Quantization of moduli spaces

Resurgence phases

Resurgence phase: Let Y ∈Mand(C) be a complex
manifold of complex dimension d. Let f ∈ O(Y ). Let S be the
set of saddle points of f . Let Ω = f(S). Let C = f(Y ) \ Ω.
Then f is called a resurgence phase if S is discrete and

f : f−1(C)→ C

is a fibre bundle.

Homological bundle: Let

H = Hd−1(f−1( · ))→ C

be the associated homological bundle, associated with the
Gauss-Manin connection.
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Milnor fibrations, vanishing cycles and monodromy

Milnor fibration: If B is a small ball centered at
z ∈ S ∩ f−1(η) then f : B \f−1(η)→ D \{η} is a Milnor
fibration with fibres homotopy equivalent to ∨µzj=1 Sd−1

j .

Vanishing cycles and monodromy: A vanishing cycle σ is a
flat section of the homological Milnor fibration

Hd−1(B ∩ f−1( · ))→ D \{η}.

Such cycles extends to flat sections of the homological bundle
H associated with f|f−1(C). We let Mz be the monodromy
operator of the homological Milnor fibration.
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Picard-Lefschetz thimble

Let λ ∈ C∗. Let γ : (R≥0, 0)→ (C ∪ {η}, η) with Re(λ(γ − η))
strictly increasing. The Picard-Lefschetz thimble ∆(σ, γ) is the
formal sum of maps Sd−1×R≥0 → Y with ∆(σ, γ)(t) = σ(γ(t)).

γ(t)

σ(γ(t))

Figure: Thimble ∆(σ, γ) in d = 2.
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Holomorphic saddle point analysis - Malgrange

Let ω be a holomorphic (d, 0)-form on Y.

Theorem 1
There exists an unbounded set A ⊂ Q0>, {dα}α∈A ⊂ N and
{cωα,β}α∈A, 0≤β≤dα ⊂ C giving an asymptotic expansion

∫
∆(σ,γ)

e−λf ω ∼λ→∞ e−λη
∑
α∈A

dα∑
β=0

cωα,βλ
−α log(λ)β.

The set exp(2πiA) is a subset of the set of eigenvalues of Mz and
for each α ∈ A the number dα + 1 is less than or equal to the
maximal dimension of any Jordan block associated with exp(2πiα).

Remark 2
There is no condition on the Hessian of f at z.
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The Borel transform and the Laplace transform

The Borel transform: Let {αj}∞j=0 ⊂ R>0 be an increasing
sequence. Let {(βj , cj)}∞j=0 ⊂ N× C. The Borel transform of
the formal series ϕ̃(λ) =

∑∞
j=0 cjλ

−αj log(λ)βj is the formal
series

B(ϕ̃)(ζ) =

∞∑
j=0

cj(−1)βj
∂βj

∂αjβj

(
ζαj−1

Γ(αj)

)
.

Inverse Laplace transform: For a function g let
LR+(g)(λ) =

∫∞
0 e−λtg(t) d t (provided the integral exsits).

Let κ be a complex number with Re(κ) > 0 and let m ∈ N.
We have that

LR+ ◦ B(λ−κ log(λ)m) = λ−κ log(λ)m,

B ◦ LR+(ζκ−1 log(ζ)m) = ζκ−1 log(ζ)m.
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Resurgence properties of the Borel transform

Algebra of resurgent functions: The algebra of resurgent
functions on the Riemann surface C is R(C) = O(C̃) where
C̃ → C is the universal covering space.

Borel transform: The Borel transform Bσ,ω is

Bσ,ω(ζ) =
∑
α∈A

dα∑
β=0

cωα,β(−1)β
∂β

∂αβ

(
ζα−1

Γ(α)

)
.

Theorem 2

We have that Bσ,ω ∈ R(C − η) and the following formula holds

Bσ,ω(ζ) =

∫
σ(ζ+η)

ω

d f
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Resummation and analytic continuation

We can recover the original Laplace integral through the Laplace
transform and the Laplace integral admits a multivalued analytic
extension in λ.

Theorem 3
We have that∫

∆(σ,γ)
e−λf ω =

∮
γ
e−λζBσ,ω(ζ − η) d ζ.

For every φ ∈ Ω, the cycle χ = var∂D′(φ)(σ) is a sum of vanishing
cycles above φ and we have that

Var∂D′(φ)−η (Bσ,ω) (ζ) = Bχ,ω(ζ + η − φ).
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The Borel transform of quantum invariants

Consider a 3-manifold M for which the AEC hold

τk(M) ∼k→∞
∑
θ∈CS

exp(2πikθ)kdθbθ(1 + Zθ(k)).

In two cases we prove resurgence properties of the Borel transform

B(Zθ)(ζ) ∈ ζ−
1
2C[[ζ

1
2 ]]

1 Case one: Seifert fibered integral homology three-spheres with
at least three exceptional fibers (with CS replaced by CSC).

2 Case two: Hyperbolic surgeries on the figure eight knot.
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The Seifert fibered case X

Let n ∈ N and pj , qj ∈ Z, j = 1, ..., n with (pj , qj) = 1 and
(pj , pl) = 1 for l 6= j. Consider the Seifert fibered three-manifold
X = Σ((p1/q1), ..., (pn/qn)). Assume H1(X,Z) = 0.

p1/q1
p2/q2 p3/q3

pn/qn

Figure: Surgery link for X.
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Normalized invariant Z̃k(X)

Let P =
∏n
i=1 pi, H = P

∑n
j=1

qj
pj
. Let S( · , · ) be the Dedekind

sum and set

Ck =
√
P exp

3− H

P
+ 12

n∑
j=1

S(qj , pj)

 iπ

2k
− πi3H

4

 .

Consider the normalized quantum invariant (G = SU(2))

Z̃k(X) =
τk(X)

τk(S2 × S1)
Ck.

Set
CS∗C = SCS(M∗(SL(2,C), X)).
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The Borel transform and complex Chern-Simons

Theorem 4

There exists {Zθ(x) ∈ C[x]}θ∈CS∗C
and Z∞(x) ∈ x−

1
2C[[x−1]] :

Z̃k(X) ∼k→∞
∑
θ∈CS∗C

e2πikθ Zθ(k) + Z∞(k).

We have that B(Z∞)(ζ) is the resurgent function given by

−

√
P2

iζπH

(
sinh

(√
i2Pπζ

H

))2−n n∏
j=1

sinh

(√
i2Pπζ

H

1

pj

)
.

Let Ω be the set of poles of B(Z∞). Then we have

CS∗C =
i

2π
Ω mod Z.
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Exact resummation

Introduce for µ ∈ Q/Z the set

T (µ) = {m = 1, ..., 2P − 1 : −m2H/4P = µ mod Z}.

Introduce the integral operators Lµ defined by

Lµ(ϕ̂)(ξ) =
1

2πi

∑
x∈T (µ)

∮
y=2πix

eξ
Hiy2

8πP

(1− e−ξy)
yH

P4
ϕ̂

(
y2

i8πP

)
d y.

Theorem 5
We have

Z̃k(X) =

∫ ∞
0

e−kξB(Z∞)(ξ) d ξ+
∑

θ∈ i
2π

Ω mod Z

Lθ (B(Z∞)) (k).
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Inspiration: work of Lawrence-Rozansky and work of
Gukov-Marino-Putrov

Work of Lawrence-Rozansky: The existence of an expansion

Z̃k(X) ∼k→∞
∑

θ∈R(X)

e2πikθ Zθ(k) + Z∞(k)

where R(X) ⊂ Q/Z is a finite set was proven by Lawrence
and Rozansky. Our contribution is to show R(X) ⊂ CS∗C .

Work of Gukov-Marino-Putrov: Previous to our work
Gukov-Marino-Putrov have analysed τk(X) for some examples
with 3 exceptional fibers.
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The hyperbolic case Mp/s

We now turn to the hyperbolic three-manifolds Mp/s with surgery
link giving by the figure eight knot with framing p/s. Choose
c, d ∈ Z with pd− cs = 1.

Figure: Figure eight knot
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Quantum invariants and Fadeev’s quantum dilogarithm

Andersen-Hansen have given an expression for τk(Mp/s) involving
Fadeev’s quantum dilogarithm with parameter κ = π/k ∈ (0, 1)

Sκ(z) = exp

(
1

4

∫
C̃

ezy

sinh(πy) sinh(κy)y
d y

)
.

Here |Re(z)| < κ+ π, and C̃ = (−∞,−1/2)∪∆∪ (1/2,∞) where
∆ = D1/2(0) ∩ {w ∈ C : Im(w) > 0}.
Semi-classical approximation: The quantum dilogarithm can be
semi-classically approximated by Euler’s dilogarithm given by

Li2(z) = −
∫
γz

log(1− u)

u
du

where γz is the homotopy class of a path from 0 to z in C \ {1}.
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A conjecture due to Andersen-Hansen

Conjecture 2

Introduce for α, β ∈ {0, 1} and n ∈ Z/|s|Z the function

Φn
α,β(x, y) =

Li2(e2πi(x+y))− Li2(e2πi(x−y))

4π2

− dn2

s
+ (− p

4s
x+

n

s
+ y + α+ β)x+ y(α− β).

∃ 2-dimensional chains Γnα,β ⊂ C2 meeting only non-degenerate
stationary points of Φn

α,β in {(x, y) ∈ R×C : e2πiy ∈]−∞, 0[}, and
holomorphic 2-forms χnα,β : for some m0 ∈ N and ∀m ∈ N we have

τk(Mp/s) = k
∑
n

∑
α,β

∫
Γnα,β

e2πikΦα,βn χnα,β +O(km0−m).
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A resurgence corollary

By using the framework of resurgence phases we obtain:

Theorem 6

Assume the conjecture of Andersen-Hansen is true. Then there
exists {Zθ(x) ∈ x−1C[[x−1]]}θ∈CS with

τk(Mp/s) ∼k→∞ k
∑
θ∈CS

e2πikθ Zθ(k).

For each θ ∈ CS the Borel transform of Zθ is a resurgent series

B(Zθ) ∈ R(C \ Ω(θ))

where
CSC−θ ⊃

i

2π
Ω(θ) mod Z.
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Stokes phenomena

There are interesting resurgence relations between disctinct
Chern-Simons values.

Corollary 7
Assume the conjecture of Andersen-Hansen is true. With notation
as above, we have that each B(Zθ) is a finite sum of resurgent
functions

B(Zθ) =
∑

λ∈Λ(θ)

Žλ(θ)

For θ, θ′ ∈ CSC and λ ∈ Λ(θ), there exists nλ,µ :

Var2πi(θ−θ′)(Žλ(θ)) =
∑

µ∈Λ(θ′)

nλ,µŽµ(θ′).
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Quantum invariants of mapping tori

For a surface Σ = (Σ, p) of genus g ≥ 2 and a mapping class
ϕ ∈ Γ(Σ, p) consider the mapping torus

(Tϕ, L) = (Σ× I /[(x, 0) ∼ (ϕ(x), 1)], [{p} × I]).

Figure: Surface Σ.

The TQFT τk induces Vk : Γ(Σ, p)→ PGL(Vk(Σ, p, κ)) and:

τk(Tϕ, L, κ) = tr(Vk(ϕ)).
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The quantum representations and the modular functor

The quantum representation Zk : Using moduli space
techniques Hitchin have constructed a projective representation
Zk of Γ(Σ, p) known as the quantum representation.

Projective equivalence: There is a projective equivalence

Zk ' Vk, projective equivalence.

The proof relies on work by many authors: Andersen-Ueno,
Tsuchiya-Ueno-Yamada, Axelrod-Della Pietra-Witten, Hitchin,
Laszlo, and Blanchet-Habegger-Vogel-Masbaum.
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Moduli spaces of flat connections: the coprime case

Let C ∈ Z(G) be a generator. Let

M =M(G,Σ, p, C)

be the moduli space of flat G-connections on Σ \ p with holonomy
around p equal to C. Observe that Γ(Σ, p) act onM and let

Mϕ = {x ∈M : ϕ(x) = x}.

The moduli spaceM supports a symplectic form ω and a
prequantum line bundle

LCS →M

The mapping class group Γ(Σ, p) act sympletically onM.
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The projective quantum representation Zk

The Verlinde bundle: Let T be Teichmüller space. Each
σ ∈ T induces a Kähler structure onM by the
Narasimhan-Seshadri theorem. The Verlinde bundle Hk → T
is the bundle with fibre at σ given by the level k quantization

Hk(σ) = H0(Mσ,L�k
CS).

The quantum action: There exists a lift ϕ∗k : Hk → ϕ∗(Hk)
and a projectively flat connection ∇ on Hk that is preserved by
ϕ∗k. By composing ϕ∗k with parallel transport of ∇ we obtain

Zk : Γ(Σ, p)→ PGL (Hk(σ)) .
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Quantization of symplectomorphisms

The construction of the quantum representation fits into a broader
framework: given a symplectic manifold M with a prequantum
bundle L and ϕ ∈ Symp(M), how does one quantize ϕ and
compute its trace? This has been considered by several authors:

Charles: in relation to Zk .

Zeldith: in relation to liftting a contactomorphism on the unit
bundle of L∗,
Ioos: in relation to non-Kähler polarizations and also in
relation to quantum topology.

Our results relies on work by Karabegov-Schlichenmaier and Zeldith
on Toeplitz operator theory and the Bergman kernel, and previous
work of Andersen on the Hitchin connection.
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Moduli space of flat connections on the mapping torus

LetM(G,Tϕ, L, C) be the moduli space of flat G-connections on
Tϕ \ L with holonomy C around L. The inclusion

ι : Σ ↪→ Tϕ

induces a map
ι∗ :M(G,Tϕ, L, C)→Mϕ.

Set
CS = SCS(M(G,Tϕ, L, C)).

For θ ∈ CS, let

2mθ = max(dim(Ker(dϕz − Id)) : ι∗−1(z) ⊂ SCS
−1(θ))
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The case of a non-degenerate fixed point setMϕ

We prove the following:

Theorem 8

If every component ofMϕ is an integral manifold of

Ker(dϕ− Id) ⊂ TM|Mϕ

then there exists for each θ ∈ CS smooth densities onMϕ

Ωα(θ), α = 0, 1, 2, 3, ...

giving an asymptotic expansion

tr (Zk(ϕ)) ∼k→∞
∑
θ∈CS

e2πirθrmθ
∞∑
α=0

r−
α
2

∫
Mϕ

Ωα(θ).
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Saddle point analysis

Let H = {z ∈ C : <(z) ≤ 0}. There exists a smooth function

ϕ̂ ∈ C∞(M,H/2πiZ)

and smooth top forms

{Ωϕ
n}∞n=0 ⊂ Ω2n0(M)

with the following properties.

We have that

ϕ̂ ◦ ι∗ = 2πiSCS .

Furthermore, ϕ̂ is real analytic nearMϕ and

Mϕ = {d ϕ̂ = 0} ∩ Re(ϕ̂)−1(0).

For every m̃ ∈ N we have that

tr (Zk(ϕ)) = rn0

m̃∑
n=0

r−n
∫
M
erϕ̂ Ωϕ

n +O(kn0−m̃−1).
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Complexification

Complexification: For every z ∈Mϕ there exists a nbhd U
of z and a holomorphic function

ϕ̂C ∈ O(U +
√
−1U)

with
ϕ̂|U = ϕ̂C.

Holomorphic saddle point analysis: It follows that we can
apply the holomorphic version of saddle point analysis to

tr (Zk(ϕ)) = rn0

m̃∑
n=0

r−n
∫
M
erϕ̂ Ωϕ

n +O(kn0−m̃−1)

The advantage is that this imposes no condition on the
Hessian of ϕ̂C.
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The case of a degenerate fixed point setMϕ

We prove the following result.

Theorem 9
Assume every z ∈Mϕ satisfy one of the following conditions:

z is a smooth point with TzMϕ = Ker(dϕz − Id),

dim(Ker(dϕz − Id)) ≤ 1, or
z is an isolated saddle point of the germ of ϕ̂C at z.

Then ∀θ ∈ CS ∃ an unbounded subset Aθ ⊂ Q≤0, nθ ∈ Q≥0,
dθ ∈ N and {cα,β(θ)}α∈Aθ, 0≤β≤dθ ⊂ C giving an expansion

tr (Zk(ϕ)) ∼k→∞
∑
θ∈CS

e2πirθrnθ
∑
α∈Aθ

dθ∑
β=0

cα,β(θ)rα log(r)β.
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Summary of results

The AEC holds for a mapping torus Tϕ of ϕ ∈ Γ(Σg,1), g ≥ 2
for whichMϕ is non-degenerate or at least not too singular.

Let X be a Seifert fibered homology 3-sphere. The AEC holds
over CSC and the Borel transform of the series Z∞
(associated with the trivial connection) is resurgent with poles
equal (modulo Z) to CS∗C. Moreover Z∞ determines τr(X).

If a conjecture of Andersen and Hansen holds, then the AEC
holds for hyperbolic surgeries Mp/s on the figure eight knot,
and each Zθ, θ ∈ CS will have a resurgent Borel transform.

Thank you for your attention!
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