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Hitchin systems - conventional set-up (Hitchin’87)

Σ – genus g algebraic curve /C, G – complex s/s Lie group,
g = Lie(G), P0 – a fixed principle C∞ G-bundle on Σ.

Holomorphic structure = (0,1)-connection on P0
is a (0,1) g-valued form ω on Σ with gauge transformation
ω → γωγ−1 − (∂̄γ)γ−1 under gluing function γ.

A = {(P0, ω)} – space of s/s holomorphic structures on P0, G –
group of global smooth gauge transformations, N = A/G – the
moduli space of holomorphic structures on P0.

dimN = dim g · (g − 1)

Any point in N is a gauge equivalence class of holomorphic
principal G–bundles on Σ, denoted by P: P = [(P0, ω)].



Hitchin systems – construction (Hitchin’87)

Configuration space – N , phase space – T ∗(N )

By Kodaira–Spencer theory TP(N ) ' H1(Σ,Ad P).

Then by Serr duality T ∗P(N ) ' H0(Σ,Ad P ⊗K),

and (P,Φ) ∈ T ∗(N )⇐⇒ Φ ∈ H0(Σ,Ad P ⊗K)

Given a homogeneous degree d invariant polynomial χd on g,

∀P ∈ N , we obtain χd (P) : H0(Σ,Ad P ⊗K)→H0(Σ,Kd )

Φ 7−→χd (P,Φ)

Pick up a base {Ωd
j } ⊂ H0(Σ,Kd ).

Then χd (P,Φ) =
∑

Hd ,j(P,Φ)Ωd
j , where Hd ,j(P,Φ) is a scalar

function on T ∗(N ) called a Hitchin Hamiltonian.

THEOREM (HITCHIN, ’87): {Hd ,j} Poisson commute on T ∗(N )



Hitchin systems in terms of separated variables

Assume g to be a complex simple Lie algebra of one of the
types An, Bn, Cn, g ∈ Z+ and P2g+1(x) = x2g+1 + . . . a given
polynomial of degree 2g + 1. Let n = rank g, and d1, . . . ,dn be
degrees of the basis invariants of g, d be the dimension of the
standard representation of g.

Phase space: tuples {(λ1, x1, y1), . . . , (λĝ , xĝ , yĝ)},
ĝ = (dim g)(g − 1), λi , xi , yi ∈ C, y2

i = P2g+1(xi) (i = 1, . . . , ĝ)

Poisson bracket is given by {λi , xj} = δijyi

Hamiltonians H(0)
jk , H(1)

js are defined from the system of linear
equations (i = 1, . . . , ĝ):

λd
i +

n∑
j=1

dj (g−1)∑
k=0

H(0)
jk xk

i +

(dj−1)(g−1)−2∑
s=0

H(1)
js xs

i yi

λ
d−dj
i = 0



Proof of equivalence (beginning)

The proof is based on the classification of spectral curves of
hyperelliptic Hitchin systems.

Pick up a holomorphic differential ω on Σ, say ω = dx/y .

By spectral curve we mean det(λE − Φ(P)/ω) = 0, P ∈ Σ.

For Σ hyperelliptic it descends to two equations in C3:

R(x , y , λ) = λd +
n∑

i=1

ri(x , y)λd−di = 0, and y2 = P2g+1(x).

For An, Bn, Cn every ri is a basis degree di invariant of g:

for An: d = n + 1, di = i + 1 (G = SL(n + 1));
for Bn: d = 2n + 1, di = 2i (G = SO(2n + 1));
for Cn: d = 2n, di = 2i (G = Sp(2n)).



Spectral curves of hyperelliptic An, Bn, Cn Hitchin
systems (Sh’2018)

Analytical properties of Φ determine rj ’s completely:

THEOREM: Basis degree dj invariants of Φ/ω run over
O(−djD) where D = (ω) = 2(g − 1)∞. The functions
1, x , . . . , xdj (g−1), and y , yx , . . . , yx (dj−1)(g−1)−2 form a base in
O(−djD).

Then

rj(x , y) =

dj (g−1)∑
k=0

H(0)
jk xk +

(dj−1)(g−1)−2∑
s=0

H(1)
js xsy

where H(0)
jk , H(1)

js are parameters (Hamiltonians).



Proof of equivalence (the end)

With the knowledge of a general form of the spectral curve we
define the Hamiltonians from the requirement that the spectral
curve passes through the points (λ1, x1, y1), . . . , (λĝ , xĝ , yĝ),
λi , xi , yi ∈ C, y2

i = P2g+1(xi) (i = 1, . . . , ĝ), ĝ = (dim g)(g − 1).
This way we obtain the above equations on Hamiltonians:

λd
i +

n∑
j=1

dj (g−1)∑
k=0

H(0)
jk xk

i +

(dj−1)(g−1)−2∑
s=0

H(1)
js xs

i yi

λ
d−dj
i = 0

By Krichever’02 (CMPh) the symplectic form is of the form
σ =

∑
s dλs ∧ ω(γs) for an appropriate set of points {(λs, γs)}

on the spectral curve. Plugging the above points and ω = dx/y
we obtain

σ =

ĝ∑
i=1

dλi ∧
dxi

yj
.



Example: g = sl(2) (∼ A1), genus 2 Hitchin system

(previous results E.Previato, 1994; Kz. Gawȩdzki, 1998)

Phase space:
triples {(λ1, x1, y1), (λ2, x2, y2), (λ3, x3, y3)} s.t.

λ2
i = H0 + H1xi + H2x2

i , y2
i = P5(xi) (i = 1,2,3)

Hamiltonians:

Hi =
∆i

∆
, ∆ =

∣∣∣∣∣∣
1 x1 x2

1
1 x2 x2

2
1 x3 x2

3

∣∣∣∣∣∣ , ∆0 =

∣∣∣∣∣∣
λ2

1 x1 x2
1

λ2
2 x2 x2

2
λ2

3 x3 x2
3

∣∣∣∣∣∣ , etc.

Symplectic form:

σ = dλ1 ∧
dx1

y1
+ dλ2 ∧

dx2

y2
+ dλ3 ∧

dx3

y3



Example: g = sl(2), genus 2: Hitchin equations

H2 =
∆2

∆
, ∆2 =

∣∣∣∣∣∣
1 x1 λ2

1
1 x2 λ2

2
1 x3 λ2

3

∣∣∣∣∣∣ , ∆ =

∣∣∣∣∣∣
1 x1 x2

1
1 x2 x2

2
1 x3 x2

3

∣∣∣∣∣∣
{x1,H2} =

2λ1y1

∆
(x3 − x2),

{λ1,H2} =
y1

(x1 − x2)2(x1 − x3)2

(
∆2

2x1 − x2 − x3

x2 − x3
− 1
)

+ cyclic permutations of indices for (x2, λ2), (x3, λ3)



Separation of variables (Liouville–Jacobi–Stäckel–Arnold–Sklyanin)

Assume Hamiltonians are given by separation relations
R(xi , λi ,H) = 0 (H = (H1, . . . ,Hĝ)), and λi , xi are Darboux
coordinates.

How to linearize flows?

Hurtubise’00, Talalaev’03: Let φ = (φ1, . . . , φĝ) where

φj = −
ĝ∑

i=1

(xi ,yi )∫
∂R/∂Hj

∂R/∂λ
dx .

Then (H, φ) are Darboux coordinates: σ =
∑

dHj ∧ dφj . Since
{Hi ,Hj} = 0, we have d

dt H = 0, d
dtφ = H, hence H = c0,

φ = c0t + c1 (c0, c1 are constant vectors) – linearization of
flows.



Darboux coordinates – cases An, Bn, Cn

Separation relations R(λi , xi , yi ,H) = 0 (see slide 2) are nothing
but giving the spectral curve by means points it passes through.

Plugging the precise form of separation relations we find
Darboux coordinates (H(0)

jk , φ
(0)
jk ), and (H(1)

js , φ
(1)
js ) where

H(0)
jk ,H(1)

js are to be found from the separation relations, and

φ
(0)
jk =

(dim g)(g−1)∑
i=1

(xi ,yi )∫
xkλd−dj dx

R′λ(x , y , λ) y
, 0 ≤ k ≤ dj(g − 1);

φ
(1)
js =

(dim g)(g−1)∑
i=1

(xi ,yi )∫
xsλd−dj dx
R′λ(x , y , λ)

, 0 ≤ s ≤ (dj − 1)(g − 1)− 2



Darboux coordinates: differentials of angles,
peculiarities of the case Dn

THEOREM: The differentials xkλ
d−dj dx

R′λ(x ,y ,λ) y (0 ≤ k ≤ dj(g − 1))

and xsλ
d−dj dx

R′λ(x ,y ,λ)
(0 ≤ k ≤ (dj − 1)(g − 1)− 2), j = 1, . . . ,n form a

base of holomorphic differentials on the spectral curve for An
(n > 1), and a base of holomorphic Pryme differentials for the
systems A1, Bn, Cn (w.r.t involution λ→ −λ).

For the case Dn:

Separation relations R(λi , xi , yi ,H) = 0 are quadratic in H
(because the last coefficient is det(Φ/ω) = (Pf (Φ/ω))2);
Differentials of the angle coordinates are the same for
j < n, and are multiplied by Pf (Φ/ω) for j = n;
The differentials form a basis of holomorphic Prym
differentials on the normalization of the spectral curve.



Action–angle coordinates

Hitchin foliation is the algebraic-geometrical analog of the
Liouville foliation

The leaves of the Hitchin foliation are Jacobian varieties of the
spectral curves for An, n > 1, and Prym varieties in cases Bn,
Cn, or those for normalizations of the spectral curves in case
of Dn (Hitchin’87).

Algebraic-geometrical angle coordinates are coordinates on the
leaves of the Hitchin foliation. To find them we must normalize
the above differentials of the angle coordinates.

For the normalizing matrix A we have A−1 =
(

2
∫

ci
ωk

)
i,k=1,...,ĝ

where {ci} is the system of cuts between pairs of branching
points. The problem of finding out of all branching points
descends to the system of algebraic equations R(λ, x , y) = 0,
R′(λ, x , y) = 0, and is normally unsolvable in radicals. But
sometimes it is !



so(4), g = 2 case (P.Borisova, Sh’19)

Spectral curve: R(λ, x , y ,H) = λ4 + λ2p + q2 = 0

where p = H0 + xH1 + x2H2, q = H3 + xH4 + x2H5.

THEOREM (P.BORISOVA): Separation equations and
equations for branching points are solvable in radicals.

Normalized spectral curve
has 16 branching points.
By Riemann–Hurwitz ĝ = 13.
Involution σ : λ→ −λ is a
rotation by π around the center of
the picture. No fixed points.
8 preimages of 4 singular points
are located in the middles of
horizontal lines (2 at each one).
Normalization map glues
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the points at the opposite
horizontal lines.



sl(2), sp(4), so(5), g = 2 cases
Case sl(2) Spectral curve:
λ2p + H0 + xH1 + x2H2 = 0
has 4 branching points.
By Riemann–Hurwitz ĝ = 5.
Involution σ : λ→ −λ is a
rotation by π around the vertical
axis of the picture.
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k

Fixed points=branching
points with λ = 0

Case sp(4) Spectral curve:
λ4 + λ2p + q = 0,
p = H0 + xH1 + x2H2, q =
H3 + xH4 + . . . x4H7 + yH8 + xyH9,
has 24 branching points.
By Riemann–Hurwitz ĝ = 17.
Involution σ : λ→ −λ is a
reflection in the vertical axis.
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Case so(5) Spectral curve is the same as for sp(4)


