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Hitchin systems - conventional set-up (Hitchin'g7)

Y —genus g algebraic curve /C, G — complex s/s Lie group,
g = Lie(G), Py — a fixed principle C>* G-bundle on X.

Holomorphic structure = (0, 1)-connection on P,
is a (0, 1) g-valued form w on ¥ with gauge transformation
w — ywy~ " — (9v)y~" under gluing function +.

A = {(Py,w)} — space of s/s holomorphic structures on Py, G —
group of global smooth gauge transformations, N' = 4/G — the
moduli space of holomorphic structures on Py.

[dim A =dimg-(g— 1)

Any point in V' is a gauge equivalence class of holomorphic
principal G-bundles on X, denoted by P: P = [( Py, w)].



Hitchin systems — construction (Hitchin's7)

Configuration space — N/, phase space — T*(\)

By Kodaira—Spencer theory Tp(N) ~ H'(X,Ad P).

Then by Serr duality T3(N) ~ HO(Z,Ad P ® K),

and (P,®) € T*(N) <= ¢ € H(£,Ad P ® K)

Given a homogeneous degree d invariant polynomial x4 on g,
VP € N, we obtain y4(P) : H°(X,Ad P ® K) =H(Z, K9)

& —xq(P, )
Pick up a base {Q¢} c H(%, K9).
Then xq(P, ®) = 3_ Ha (P, ®)Qf, where Hy (P, ®) is a scalar

function on T*(\) called a Hitchin Hamiltonian.

THEOREM (HITCHIN, *87): {Hy;} Poisson commute on T*(N)



Hitchin systems in terms of separated variables

Assume g to be a complex simple Lie algebra of one of the
types An, Bn, Cn, g € Zy and Pagy1(x) = x29+1 + .. a given
polynomial of degree 2g + 1. Let n =rankg, and d,, ..., d, be
degrees of the basis invariants of g, d be the dimension of the
standard representation of g.

Phase space: tuples {(A1, X1, 1), -+, (Ag: X, V)
g=(dimg)(g—1), \i,Xi,¥i €C, y? = Pagr1(Xx) (i=1,...,8)
Poisson bracket is given by L X} =6y

Hamiltonians H,(k ), Hm are defined from the system of linear
equations (i =1,... ,g)

n [di(g-1) (dj*1)(g*1)*2 e
1 p— .
R E X! > Hj(s)x,-sy,- AT =0
j=1 s=0



Proof of equivalence (beginning)

The proof is based on the classification of spectral curves of
hyperelliptic Hitchin systems.

Pick up a holomorphic differential w on ¥, say w = dx/y.
By spectral curve we mean det(AE — ®(P)/w) =0, P € L.

For ¥ hyperelliptic it descends to two equations in C3:
n
R(X7y7 >‘) = Ad + er(X?y))‘did/ =0, and y2 = P2g+1 (X)
i=1
For An, By, C, every r; is a basis degree d; invariant of g:

mforApd=n+1,d=i+1(G= SL(n+1));
m for B:d =2n+1, di=2i (G= SO(2n + 1));
m for Cp: d = 2n, d; = 2i (G = Sp(2n)).



Spectral curves of hyperelliptic A,, B,, C, Hitchin

systems (sh2018)

Analytical properties of ® determine r;'s completely:

THEOREM: Basis degree g} invariants of ®/w run over
O(—d;D) where D = (w) = 2(g — 1)oc. The functions

1,x,...,x%9-Y and y, yx, ..., yx{(d=1(@-1)-2 form a base in
O(—d;D).
Then
di(g—1) (dj—1)(g—1) -2
Z Z H(1) y
s=0

where H/(k) H(” are parameters (Hamiltonians).



Proof of equivalence (the end)

With the knowledge of a general form of the spectral curve we
define the Hamiltonians from the requirement that the spectral
curve passes through the points (\+, x1, y1) ..... , (Ngs X35 Ya)»
Xi Xi, ¥i € C, y2 = Pagy1(xi) (i=1,...,9), § = (dimg)(g — 1).
This way we obtain the above equations on Hamlltonlans:

n (d;(g 1) (dj—1)(g—1)—2

N+ 2 Hicx > l_ljmx}’/) =0
=

s=0

By Krichever'02 (CMPh) the symplectic form is of the form

o =) .d\s Nw(7s) for an appropriate set of points {(As, vs)}
on the spectral curve. Plugging the above points and w = dx/y
we obtain

o= Zd)\, dX,



Example: g = sl(2) (~ A1), genus 2 Hitchin system

(previous results E.Previato, 1994; Kz. Gawedzki, 1998)
Phase space:
triples {(A1, X1, ¥1), (A2, X2, ¥2), (A3, X3, ¥3) } S.t.

N2 = Ho + Hix; + Hox?, y? = Ps(x;) (i =1,2,3)

Hamiltonians:

A, 1 x5 x2 A2ox x2
A p) 2 )
1 X3 X3 A5 X3 X3

Symplectic form:

U—d)\1/\cjj(1+d)\2/\dxz+d/\3/\dx3

1 Yo Y3



Example: g = s((2), genus 2: Hitchin equations

A 1 x3 )2 1 Xy X
HQ_KZ, Do=[1 X2 M|, A=1 xo X5
1 x3 A 1 X3 X5
2\
{x1,Ha} = XH(X — X2),
Y1 2X1 — X2 — X3
A, Ha} = A —1
{1, e} (X1—X2)2(X1—X3)2( 2 - x )

+ cyclic permutations of indices for (x2, A2), (X3, A3)



Separation of variables (Liouville-Jacobi-Stackel-Arnold—Sklyanin)

Assume Hamiltonians are given by separation relations
R(xj,\i,H) =0 (H = (Hy,..., Hg)), and \;, x; are Darboux
coordinates.

How to linearize flows?
Hurtubise'00, Talalaev'03: Let ¢ = (¢1, ..., ¢g) where

g (Xi,y/')aR/aH
o i
% Z / aRjox &

1=

Then (H, ¢) are Darboux coordinates: o = ) dH; A d¢;. Since
{Hi, H;} = 0, we have $H =0, 3¢ = H, hence H = ¢,

¢ = Cot + ¢1 (Cy, €y are constant vectors) — linearization of
flows.



Darboux coordinates — cases A, B, C,

Separation relations R(\;, x;, yi, H) = 0 (see slide 2) are nothing
but giving the spectral curve by means points it passes through.

Plugging the precise form of separation relations we find
Darboux coordinates (I-Ij(ko), qbl(.,?)), and (I—Ij(;), cbj(.;)) where

I—Ij(,?), H,(;) are to be found from the separation relations, and

(dimg)(g—1) (Xi¥1) XK \d— e

©) _ (a—1)
AP Ry oy 0 Sk=de=)

(dimg)(g—1) ¥ o
M Z xSA9%dx o< (g L

i=1



Darboux coordinates: differentials of angles,

peculiarities of the case D,

THEOREM: The differentials 47579 (0 < k < dj(g—1))

and %2 (0 < k < (g —1)(g—1)—2),j=1,...,nform a
base of holomorphic differentials on the spectral curve for A,
(n > 1), and a base of holomorphic Pryme differentials for the
systems Aq, B, Cp (W.r.tinvolution A — —\).

For the case D,:

m Separation relations R(\;, x;, y;, H) = 0 are quadratic in H
(because the last coefficient is det(®/w) = (Pf(d/w))?);

m Differentials of the angle coordinates are the same for
j < n, and are multiplied by Pf (®/w) for j = n;

m The differentials form a basis of holomorphic Prym
differentials on the normalization of the spectral curve.



Action—angle coordinates

Hitchin foliation is the algebraic-geometrical analog of the
Liouville foliation

The leaves of the Hitchin foliation are Jacobian varieties of the
spectral curves for A,, n > 1, and Prym varieties in cases B,
Cn, or those for normalizations of the spectral curves in case
of D, (Hitchin’87).
Algebraic-geometrical angle coordinates are coordinates on the
leaves of the Hitchin foliation. To find them we must normalize
the above differentials of the angle coordinates.
For the normalizing matrix A we have A~" = (2 fC_ wk> T
i ik=1,....9
where {c;} is the system of cuts between pairs of branching
points. The problem of finding out of all branching points
descends to the system of algebraic equations R(\, x, y) = 0,
R'(\, x,y) =0, and is normally unsolvable in radicals. But
sometimes it is !




s0(4), g = 2 case (PBorisova, Sh'19)

Spectral curve: R\, x, ¥y, H) = X* 4+ X2p+g¢>=0
where p = Hy + xH; + x?Hy, ¢ = Hs + xHy + x?Hs.

THEOREM (P.BORISOVA): Separation equations and
equations for branching points are solvable in radicals.

Normalized spectral curve

has 16 branching points.

By Riemann—Hurwitz g = 13.
Involutiono : A — —\isa
rotation by = around the center of
the picture. No fixed points.

8 preimages of 4 singular points
are located in the middles of
horizontal lines (2 at each one).

o the points at the opposite
Normalization map glues

horizontal lines.



sl(2), sp(4), so(5), g = 2 cases

Case sl(2) Spectral curve:

)\2p+ Hy + xH; + X2H2 =0

has 4 branching points.

By Riemann—Hurwitz g = 5.

Involution o : A — —Als a Fixed points=branching
rotation by = around the vertical points with A = 0

axis of the picture.

Case sp(4) Spectral curve:

M+ Xp+g=0,

p = Ho+ xH; + X?Hp, q =

Hs + xHy + . .. x*H7 + yHg + XyHo,
has 24 branching points.

By Riemann—-Hurwitz § = 17.
Involutiono : A — —\is a
reflection in the vertical axis.

Case so(5) Spectral curve is the same as for sp(4)



