HITCHIN SYSTEMS ON HYPERELLIPTIC CURVES

Oleg Sheinman

Steklov Mathematical Institute Moscow

GEOQUANT-2019 Department of Mathematics National Tsing Hua University September, 1 – 13, 2019

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 Σ – genus *g* algebraic curve $/\mathbb{C}$, *G* – complex s/s Lie group, $\mathfrak{g} = \mathcal{L}ie(G)$, P_0 – a fixed principle C^{∞} *G*-bundle on Σ .

Holomorphic structure = (0, 1)-connection on P_0 is a (0, 1) g-valued form ω on Σ with gauge transformation $\omega \rightarrow \gamma \omega \gamma^{-1} - (\bar{\partial}\gamma)\gamma^{-1}$ under gluing function γ .

 $\mathcal{A} = \{(P_0, \omega)\}$ – space of s/s holomorphic structures on P_0 , \mathcal{G} – group of global smooth gauge transformations, $\mathcal{N} = \mathcal{A}/\mathcal{G}$ – the moduli space of holomorphic structures on P_0 .

$$\dim \mathcal{N} = \dim \mathfrak{g} \cdot (g-1)$$

(日) (日) (日) (日) (日) (日) (日)

Any point in \mathcal{N} is a gauge equivalence class of holomorphic principal *G*-bundles on Σ , denoted by $P: P = [(P_0, \omega)]$.

Hitchin systems – construction (Hitchin'87)

Configuration space $-\mathcal{N}$, phase space $-T^*(\mathcal{N})$ By Kodaira–Spencer theory $T_P(\mathcal{N}) \simeq H^1(\Sigma, \operatorname{Ad} P)$. Then by Serr duality $T_P^*(\mathcal{N}) \simeq H^0(\Sigma, \operatorname{Ad} P \otimes \mathcal{K})$, and $(P, \Phi) \in T^*(\mathcal{N}) \Longleftrightarrow \Phi \in H^0(\Sigma, \operatorname{Ad} P \otimes \mathcal{K})$ Given a homogeneous degree *d* invariant polynomial χ_d on \mathfrak{g} ,

$$\forall P \in \mathcal{N}, \text{ we obtain } \chi_d(P) : H^0(\Sigma, \operatorname{Ad} P \otimes \mathcal{K}) \to H^0(\Sigma, \mathcal{K}^d)$$

 $\Phi \longmapsto \chi_d(P, \Phi)$

Pick up a base $\{\Omega_i^d\} \subset H^0(\Sigma, \mathcal{K}^d)$.

Then $\chi_d(P, \Phi) = \sum H_{d,j}(P, \Phi)\Omega_j^d$, where $H_{d,j}(P, \Phi)$ is a scalar function on $T^*(\mathcal{N})$ called a Hitchin Hamiltonian.

<u>THEOREM</u> (HITCHIN, '87): $\{H_{d,j}\}$ Poisson commute on $T^*(\mathcal{N})$

Hitchin systems in terms of separated variables

Assume g to be a complex simple Lie algebra of one of the types A_n , B_n , C_n , $g \in \mathbb{Z}_+$ and $P_{2g+1}(x) = x^{2g+1} + \ldots$ a given polynomial of degree 2g + 1. Let $n = \operatorname{rank} \mathfrak{g}$, and d_1, \ldots, d_n be degrees of the basis invariants of g, d be the dimension of the standard representation of g.

$$\lambda_i^d + \sum_{j=1}^n \left(\sum_{k=0}^{d_j(g-1)} H_{jk}^{(0)} x_i^k + \sum_{s=0}^{(d_j-1)(g-1)-2} H_{js}^{(1)} x_i^s y_i \right) \lambda_i^{d-d_j} = 0$$

The proof is based on the classification of spectral curves of hyperelliptic Hitchin systems.

Pick up a holomorphic differential ω on Σ , say $\omega = dx/y$.

By spectral curve we mean $det(\lambda E - \Phi(P)/\omega) = 0, P \in \Sigma$.

For Σ hyperelliptic it descends to two equations in \mathbb{C}^3 :

$$R(x, y, \lambda) = \lambda^d + \sum_{i=1}^n r_i(x, y) \lambda^{d-d_i} = 0$$
, and $y^2 = P_{2g+1}(x)$.

For A_n , B_n , C_n every r_i is a basis degree d_i invariant of g:

for
$$A_n$$
: $d = n + 1$, $d_i = i + 1$ ($G = SL(n + 1)$);
for B_n : $d = 2n + 1$, $d_i = 2i$ ($G = SO(2n + 1)$);
for C_n : $d = 2n$, $d_i = 2i$ ($G = Sp(2n)$).

Spectral curves of hyperelliptic A_n , B_n , C_n Hitchin systems (Sh'2018)

Analytical properties of Φ determine r_i 's completely:

<u>THEOREM</u>: Basis degree d_j invariants of Φ/ω run over $\mathcal{O}(-d_jD)$ where $D = (\omega) = 2(g-1)\infty$. The functions $1, x, \ldots, x^{d_j(g-1)}$, and $y, yx, \ldots, yx^{(d_j-1)(g-1)-2}$ form a base in $\mathcal{O}(-d_jD)$.

Then

$$r_j(x,y) = \sum_{k=0}^{d_j(g-1)} H_{jk}^{(0)} x^k + \sum_{s=0}^{(d_j-1)(g-1)-2} H_{js}^{(1)} x^s y$$

・ロト・日本・日本・日本・日本

where $H_{jk}^{(0)}$, $H_{js}^{(1)}$ are parameters (<u>Hamiltonians</u>).

Proof of equivalence (the end)

With the knowledge of a general form of the spectral curve we define the Hamiltonians from the requirement that the spectral curve passes through the points $(\lambda_1, x_1, y_1), \ldots, (\lambda_{\hat{g}}, x_{\hat{g}}, y_{\hat{g}})$, $\lambda_i, x_i, y_i \in \mathbb{C}, y_i^2 = P_{2g+1}(x_i)$ $(i = 1, \ldots, \hat{g}), \hat{g} = (\dim \mathfrak{g})(g - 1)$. This way we obtain the above equations on Hamiltonians:

$$\lambda_i^d + \sum_{j=1}^n \left(\sum_{k=0}^{d_j(g-1)} H_{jk}^{(0)} x_i^k + \sum_{s=0}^{(d_j-1)(g-1)-2} H_{js}^{(1)} x_i^s y_i \right) \lambda_i^{d-d_j} = 0$$

By Krichever'02 (CMPh) the symplectic form is of the form $\sigma = \sum_{s} d\lambda_{s} \wedge \omega(\gamma_{s})$ for an appropriate set of points $\{(\lambda_{s}, \gamma_{s})\}$ on the spectral curve. Plugging the above points and $\omega = dx/y$ we obtain

$$\sigma = \sum_{i=1}^{\hat{g}} d\lambda_i \wedge \frac{dx_i}{y_j}.$$

Example: $\mathfrak{g} = \mathfrak{sl}(2)$ (~ A_1), genus 2 Hitchin system

(previous results E.Previato, 1994; Kz. Gawędzki, 1998)

Phase space: triples { $(\lambda_1, x_1, y_1), (\lambda_2, x_2, y_2), (\lambda_3, x_3, y_3)$ } s.t. $\lambda_i^2 = H_0 + H_1 x_i + H_2 x_i^2, \ y_i^2 = P_5(x_i) \ (i = 1, 2, 3)$

Hamiltonians:

$$H_{i} = \frac{\Delta_{i}}{\Delta}, \ \Delta = \begin{vmatrix} 1 & x_{1} & x_{1}^{2} \\ 1 & x_{2} & x_{2}^{2} \\ 1 & x_{3} & x_{3}^{2} \end{vmatrix}, \ \Delta_{0} = \begin{vmatrix} \lambda_{1}^{2} & x_{1} & x_{1}^{2} \\ \lambda_{2}^{2} & x_{2} & x_{2}^{2} \\ \lambda_{3}^{2} & x_{3} & x_{3}^{2} \end{vmatrix}, \text{ etc.}$$

Symplectic form:

$$\sigma = d\lambda_1 \wedge \frac{dx_1}{y_1} + d\lambda_2 \wedge \frac{dx_2}{y_2} + d\lambda_3 \wedge \frac{dx_3}{y_3}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Example: $\mathfrak{g} = \mathfrak{sl}(2)$, genus 2: Hitchin equations

$$H_2 = \frac{\Delta_2}{\Delta}, \quad \Delta_2 = \begin{vmatrix} 1 & x_1 & \lambda_1^2 \\ 1 & x_2 & \lambda_2^2 \\ 1 & x_3 & \lambda_3^2 \end{vmatrix}, \ \Delta = \begin{vmatrix} 1 & x_1 & x_1^2 \\ 1 & x_2 & x_2^2 \\ 1 & x_3 & x_3^2 \end{vmatrix}$$

$$\{x_1, H_2\} = \frac{2\lambda_1 y_1}{\Delta} (x_3 - x_2),$$

$$\{\lambda_1, H_2\} = \frac{y_1}{(x_1 - x_2)^2 (x_1 - x_3)^2} \left(\Delta_2 \frac{2x_1 - x_2 - x_3}{x_2 - x_3} - 1 \right)$$

+ cyclic permutations of indices for $(x_2, \lambda_2), (x_3, \lambda_3)$

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

Assume Hamiltonians are given by separation relations $R(x_i, \lambda_i, H) = 0$ ($H = (H_1, ..., H_{\hat{g}})$), and λ_i, x_i are Darboux coordinates.

How to linearize flows?

Hurtubise'00, Talalaev'03: Let $\phi = (\phi_1, \dots, \phi_{\hat{g}})$ where

$$\phi_j = -\sum_{i=1}^{\hat{g}} \int \frac{\partial R}{\partial \partial R} \frac{\partial H_j}{\partial R} dx.$$

Then (H, ϕ) are Darboux coordinates: $\sigma = \sum dH_j \wedge d\phi_j$. Since $\{H_i, H_j\} = 0$, we have $\frac{d}{dt}H = 0$, $\frac{d}{dt}\phi = H$, hence $H = c_0$, $\phi = c_0t + c_1$ (c_0 , c_1 are constant vectors) – linearization of flows.

Separation relations $R(\lambda_i, x_i, y_i, H) = 0$ (see slide 2) are nothing but giving the spectral curve by means points it passes through.

Plugging the precise form of separation relations we find Darboux coordinates $(H_{jk}^{(0)}, \phi_{jk}^{(0)})$, and $(H_{js}^{(1)}, \phi_{js}^{(1)})$ where $H_{jk}^{(0)}, H_{js}^{(1)}$ are to be found from the separation relations, and

$$\phi_{jk}^{(0)} = \sum_{i=1}^{(\dim \mathfrak{g})(g-1)} \int \int \frac{x^k \lambda^{d-d_j} dx}{R'_\lambda(x,y,\lambda) y}, \ 0 \le k \le d_j(g-1);$$

$$\phi_{js}^{(1)} = \sum_{i=1}^{(\dim\mathfrak{g})(g-1)} \int\limits_{-\infty}^{(x_i,y_i)} \frac{x^s\lambda^{d-d_j}dx}{R_\lambda'(x,y,\lambda)}, \ 0 \le s \le (d_j-1)(g-1)-2$$

Darboux coordinates: differentials of angles, peculiarities of the case D_n

THEOREM: The differentials $\frac{x^k \lambda^{d-d_j} dx}{R'_{\lambda}(x,y,\lambda)y}$ $(0 \le k \le d_j(g-1))$ and $\frac{x^s \lambda^{d-d_j} dx}{R'_{\lambda}(x,y,\lambda)}$ $(0 \le k \le (d_j-1)(g-1)-2), j = 1, ..., n$ form a base of holomorphic differentials on the spectral curve for A_n (n > 1), and a base of holomorphic Pryme differentials for the systems A_1 , B_n , C_n (w.r.t involution $\lambda \to -\lambda$).

For the case D_n :

- Separation relations R(λ_i, x_i, y_i, H) = 0 are quadratic in H (because the last coefficient is det(Φ/ω) = (Pf (Φ/ω))²);
- Differentials of the angle coordinates are the same for j < n, and are multiplied by Pf (Φ/ω) for j = n;
- The differentials form a basis of holomorphic Prym differentials on the normalization of the spectral curve.

Hitchin foliation is the algebraic-geometrical analog of the Liouville foliation

The leaves of the Hitchin foliation are Jacobian varieties of the spectral curves for A_n , n > 1, and Prym varieties in cases B_n , C_n , or those for normalizations of the spectral curves in case of D_n (Hitchin'87).

Algebraic-geometrical angle coordinates are coordinates on the leaves of the Hitchin foliation. To find them we must normalize the above differentials of the angle coordinates.

For the normalizing matrix *A* we have $A^{-1} = \left(2 \int_{c_i} \omega_k\right)_{i,k=1,...,\widehat{g}}$ where $\{c_i\}$ is the system of cuts between pairs of branching points. The problem of finding out of all branching points descends to the system of algebraic equations $R(\lambda, x, y) = 0$, $R'(\lambda, x, y) = 0$, and is normally <u>unsolvable in radicals</u>. But sometimes it is !

$\mathfrak{so}(4),\,g=2$ Case (P.Borisova, Sh'19)

Spectral curve: $R(\lambda, x, y, H) = \lambda^4 + \lambda^2 p + q^2 = 0$ where $p = H_0 + xH_1 + x^2H_2$, $q = H_3 + xH_4 + x^2H_5$.

THEOREM (**P.BORISOVA**): Separation equations and equations for branching points are solvable in radicals.

Normalized spectral curve has 16 branching points. By Riemann–Hurwitz $\hat{g} = 13$. Involution $\sigma : \lambda \to -\lambda$ is a rotation by π around the center of the picture. No fixed points. 8 preimages of 4 singular points are located in the middles of horizontal lines (2 at each one). Normalization map glues

the points at the opposite horizontal lines.

$\mathfrak{sl}(2), \mathfrak{sp}(4), \mathfrak{so}(5), g = 2$ cases

Case $\mathfrak{sl}(2)$ Spectral curve: $\lambda^2 p + H_0 + xH_1 + x^2H_2 = 0$ has 4 branching points. By Riemann–Hurwitz $\hat{g} = 5$. Involution $\sigma : \lambda \to -\lambda$ is a rotation by π around the vertical axis of the picture.

Case $\mathfrak{sp}(4)$ Spectral curve: $\lambda^4 + \lambda^2 p + q = 0,$ $p = H_0 + xH_1 + x^2H_2, q =$ $H_3 + xH_4 + \dots x^4H_7 + yH_8 + xyH_9,$ has 24 branching points. By Riemann–Hurwitz $\hat{g} = 17.$ Involution $\sigma : \lambda \to -\lambda$ is a reflection in the vertical axis.

Case $\mathfrak{so}(5)$ Spectral curve is the same as for $\mathfrak{sp}(4)$,

Fixed points=branching points with $\lambda = 0$

