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Motivating problems from quantum mechanics

Let M be a Riemann surface and let D ⊂ M be a bounded domain
in M. How do you fill D with quantum states with minimal
spill-over into M\D?

In Kähler quantization of a Kähler manifold (M, ω), a quantum
state with Planck constant 1

k is an L2-normalized holomorphic
section s ∈ H0(M, Lk) of the kth power of a positive Hermitian
line bundle (L, h)→ (M, ω).

This is the ‘Bargmann-Fock’ or ‘Berezin-Toeplitz’ holomorphic
representation of quantum mechanics. It is basic to the Landau
theory of electrons in a magnetic field. Holomorphic ‘sections’ are
called lowest Landau levels. We wish to fill D with 1-particle states
in the LLL.



Problem: how to fill a domain with quantum states?

We assume the states sk,j are orthogonal. Roughly speaking, we
want the density profile

1

N

N∑
j=1

|sk,j(z)|2hk ' 1D

to be approximately equal to the characteristic function 1D of D.
Here, h is the Hermitian metric on the line bundle L Of course, we
cannot literally have 1

N

∑N
j=1 |ψj(z)|2 = 1D but the LHS should

interpolate between 1 and 0.

There are a number of inequivalent ways in which this question
could be formulated mathematically.



Coherent states and discrete configurations

A key role in Kähler analysis is played by the Bergman(= Szego)
kernel Πhk (z ,w) associated to a Hermitian metric h on L. If we fix
the second slot at z0 and L2-normalize we obtain a coherent state

Φz0

hk
(z) :=

Πhk (z , z0)√
Πhk (z0, z0)

“centered” at z0. It is a kind of highly peaked Gaussian state of

width k−
1
2 and height

√
k
m

in dimension m.

A first thought is to try to pack D with coherent states centered at
a discrete configuration of points. But this seems to be impossible
for most domains.



Unit disc
Let M = CP1 and L = O(1). Then H0(CP,O(k)) is the space of
homogeneous holomorphic polynomials of degree k in 2 variables:
zα1 zk−α

2 . In the affine chart C let D be the disc of radius R2. We
choose the quantum to be

ψk,j(z) =
√

k
(
√

kz)j√
j!

e−k|z|
2/2, j ≤ R.

The jth is a transverse Gaussian state centered on the circle of
radius

√
j .



What is this graph?

In the disc case,

1

N

N∑
j=1

|ψk,j(z)|2hk ' 1D

is radial and has the following graph (the Gaussian Erf function):

The transition from 1 to 0 at the ‘edge’ or boundary of ∂DR is
asymptotically Erf.



Erf

The Erf function,

Erf (x) =

∫ x

−∞
e−s

2/2 ds√
2π
,

is the cumulative distribution function of the Gaussian. This
interpolates from 0 to 1 (left to right). We also use
Erf (x) =

∫∞
x e−s

2/2 ds√
2π

for the interpolation 1 to 0.

The usual Gaussian error function erf(x) = (2π)−1/2
∫ x
−x e−s

2/2ds

is related to Erf by Erf(x) = 1
2(1 + erf( x√

2
)).



Bergman kernels on positive line bundles

We now give the precise definitions. Denote by H0(M, Lk) the
space of holomorphic sections of the kth power of a positive
Hermitian holomorphic line bundle L→ M over a Kähler manifold
(M, ω). The Hermitian metric is denoted by h and in a local frame
eL it is denoted by |eL(z)|2h = e−ϕ. Positive Hermitian means that
i∂∂̄ log h = ω is a Kähler form. The Szego projector

Πhk : L2(M, Lk)→ H0(M, Lk)

is the orthogonal projection with respect to the inner product

〈s1, s2〉 :=

∫
M

(s1(z), s2(z))hk
ωm

m!
.

The Schwartz kernel of Πhk (z ,w) relative to the volume form ωm

m!
is known as the semi-classcial Bergman kernel or Szego kernel.



Density of states

In terms of an orthonormal basis {sk,j},

Πhk (z ,w) =

Nk∑
j=1

sk,j(z)sk,j(w).

Here, Nk = dim H0(M, Lk). If we set z = w and take the
Hermitian norm, we get the DOS (density of states),

Πhk (z) =

Nk∑
j=1

|sk,j(z)|2hk ' km(1 +
a1

k
+ · · · ).



Partial Bergman kernels

Consider a subspace Sk ⊂ H0(M, Lk). Let dk = dimSk . The
associated partial Bergman kernel is the projection operator

Πhk ,Sk : H0(M, Lk)→ Sk .

If {sk,j}dkj=1 is an orthonormal basis of Sk then

Πhk ,Sk (z ,w) =

dk∑
j=1

sk,j(z)sk,j(w).

The associated DOS (Density of states) is

Πhk ,Sk (z) =

dk∑
j=1

|sk,j(z)|2hk .



More precise statement of our problem

Suppose D ⊂ M is a domain in a kahler manifold Mm of dimension

m. Problem: Construct a subspace Sk(D) = Span{skj }
dk,D
j=1 such

that the partial DOS satisfies,

k−m
dk,D∑
j=1

|skj (z)|hk ' Cmkm1D(z). (1)

Here, 1D is the characteristic function of D. Also, dk,D = dimSk .

So far, the only approach which works is to define spectral partial
Bergman kernels.



Toeplitz quantization of a Hamiltonian

Let us assume D = {z ∈ M : 0 ≤ H(z) ≤ E} for some
Hamiltonian H : M → R.

The quantization of H is the self-adjoint zeroth order Toeplitz
operator

Ĥk := Πhk (
1

i2πk
∇ξ + H)Πhk : H0(M, Lk)→ H0(M, Lk). (2)

Here, Πhk : L2(M, Lk)→ H0(M, Lk) is the orthogonal (Bergman)
projection, ξ = ξH is the Hamilton vector field of H, ∇ξ is the
Chern covariant deriative on sections, and H acts by multiplication.



Spectral subspaces and spectral partial Bergman kernels

Let {µk,j}Nk
j=1 denote the eigenvalues of Ĥk and denote the

eigenspaces by

Vk(µk,j) := {s ∈ H0(M, Lk) : Ĥks = µk,js}. (3)

Given an interval [E1,E2], denote the corresponding spectral
subspace by H[E1,E2]:

Sk := Hk:[E1,E2] :=
⊕

µk,j∈H−1([E1,E2])

Vµk,j (4)

Spectral partial Bergman kernels are the corresponding orthogonal
projections

Πhk ,[E1,E2] : H0(M, Lk)→ Hk:[E1,E2]. (5)



Adapting a Hamiltonian to a domain

We return to our problem: Find a subspace Sk(D) whose sections
efficiently fill up D, i.e. for which the DOS is as close as possible
to 1D .

This problem does not have a unique solution as formulated. Given
D there exist many functions H : M → R so that

D = {z : E1 ≤ H(z) ≤ E2}.

Any choice will solve the problem reasonably well.



Spectral partial Density of States

Given D, we pick H so that D = H−1[E1,E2], and let the partial
Bergman kernels be the spectral projections

Πhk ,[E1,E2] : H0(M, Lk)→ Hk:[E1,E2]. (6)

A simple result is that as k →∞,

k−mΠhk ,[E1,E2](z , z)→ 1H−1[E1,E2]

and thus “fills the domain H−1[E1,E2] with lowest Landau levels”.
Thus, the partial density of states k−m1[E1,E2](Ĥk)(z , z) essentially
equals 1 in H−1([E1E2]) and zero in the complement, giving a
reasonable notion of “filling” the ‘lowest Landau level’ in the
region H−1([E1,E2]).



Efficient filling result

The following result uses only standard techniques:

Theorem
Let (L, h)→ (M, ω) be a polarized Kähler manifold, and D be any
open domain of M with smooth boundary C = ∂D, and
F = M\D. Let H ∈ C∞(M) be such that D = H−1[E1,E2], and
let Sk = Hk:[E1,E2] :⊂ H0(M, Lk). Then,(

Πk,Sk
Πk

)
(z) =

{
1 if z ∈ D

0 if z ∈ F
mod O(k−∞), ∀z ∈ M\C.



Interface result

We would like to study the interface asymptotics at
∂D = {H = E1} ∪ {H = E2} of the spectral partial Bergman
kernels for the intervals [E1,E2].

The interface occurs in a tube around ∂D of width k−
1
2 . For small

enough δ > 0, there exists an embedding Φ : C × (−δ, δ)→ M
with the properties Φ(z , 0) = z , dist(Φ(z, t), C) = |t| and
Φ(z , t) ∈ D if and only if t > 0,

Theorem
With the same notation as in above. then

Φ∗
(

Πk,Sk
Πk

)
(z ,

t√
k

) = Erf (t) + O(k−1/2), ∀z ∈ C, t ∈ R

where Erf (t) is the Gaussian error function.



Discussion

I There is no canonical choice of H given D except perhaps 1D .
There are recent somewhat related results on the Toeplitz
operator Πhk1DΠhk but (apparently) restricted to its spectrum
rather than to pointwise asymptotics of the DOS.

I The theorem above is part of a series of results involving two
types of localization for the DOS of a Toeplitz operator Ĥk :
we can localize in the spectrum, i.e. to eigenvalues µk,j ∈ Ik
for any interval Ik ; or we can localize in M. Thus we may
consider Πhk ,Ik

(z) for z in a region Ωk .



Idea of Proof: Three types of smooth sums over
eigenvalues

The eigenvalue problem is Ĥkskj = µkjskj . There are several
‘localization scales’ that may be studied rigorously:

I Energy range localization:
∑

j :µk,j∈P0
f (µk,j − E )Πk,j(z , z);

I Interface localization:
∑

j :µk,j∈P0
f (
√

k(µk,j − E ))Πk,j(z , z),

with z = F β/
√
k(z0) with H(z0) = E .

I Energy level localization:
∑

j :µk,j∈P0
f (k(µk,j − E ))Πk,j(z , z);

The ‘sharp versions’ use characteristic functions f = 1[E0,E1].
Tauberian arguments bridge smooth and sharp asymptotics.



Ideas of proof

Given a function f ∈ S(R) (Schwartz space) one defines

f (Ĥk) =

∫
R

f̂ (τ)e iτ Ĥk dτ, (7)

to be the operator on H0(M, Lk) with the same eigensections as
Ĥk and with eigenvalues f (µk,j). Thus, if sk,j is an eigensection of

Ĥk , then
f (Ĥk)ŝk,j = f (µk,j) ŝk,j (8)



Partial Bergman kernels

Given an interval [E1,E2] ⊂ P0 = H(M) the subspace (4) is
defined as the range of f (Ĥk) where f = 1[E1,E2] and the partial
density of states is given by the metric contraction of the kernel,

Π|kP(z , z) = f (Ĥk)(z , z) =
∑

j :µk,j∈P
Πµk,j (z , z). (9)

For a smooth test function f , it is the metric contraction of the
Schwartz kernel of f (Ĥk) at z = w , is given by

f (Ĥk)Π̂hk (ẑ , ŵ)|z=w =
∑

j :µk,j∈P0

f (µk,j) Πµk,j (z , z). (10)



Interface result for smoothed partial Bergman kernel

Theorem
Let ω be a C∞ Kähler metric, and let H be a C∞ Hamiltonian.
Fix E ∈ H(M), and let z = F β/

√
kz0 for some

z0 ∈ H−1(E ), β ∈ R, and let f ∈ Cb(R). Then there exists a
complete asymptotic expansion,∑
j :µk,j∈P0

f (
√

k(µk,j−E ))Πk,j(F β/
√
kz0) ' kmIm(f ,E )+km− 1

2 Im− 1
2
(f ,E )+· · · ,

in descending powers of k
1
2 , with leading coefficient

[Im(f ,E ) = lim
k→∞

k−m
∑

j :µk,j∈P0

f (
√

k(µk,j − E ))Πk,j(F β/
√
kz0)

=

∫ ∞
−∞

f (x)e
− 1

2

(
2x
√
π

|∇H |
−β |∇H|√

π

)2
2dx√

2|∇H|(z0)
.



The propagator

The propagator is the unitary group,

Uk(t) = exp iktĤk .

IMPORTANT: note the k in the exponent. This makes it a
dynamical Toeplitz operator, i.e. a Fourier integral operator. A key
point is that there exists a parametrix for the propagator in terms
of the Bergman kernel and the Hamiltonian flow of H:

Proposition
Ûk(t, x , y) is a semi-classical Fourier integral operator. There
exists an analytic symbol σk,t so that if π(x) = z,

Uk(t, z , z) = Ûk(t, x , x) := Π̂k(ĝ−t)∗σk,tΠ̂k(x , x)

= Π̂ke2πik
∫ t

0 H(exp sξH(z))ds) (exp tξhH)∗σk,tΠ̂k(x , x).
(11)



Expression for interface asymptotics

Let F t be the gradient flow of H. The smoothed interface
asymptotics thus amount to the asymptotics of the dilated sums,∑

j

f (
√

k(µk,j − E ))Πk,j(F β/
√
k(z0))

=

∫
R

f̂ (t)e−iE
√
ktΠ̂hkσkt(ĝ t)∗Π̂hk (F β/

√
k(z0))dt

where z0 ∈ ∂D = H−1(E1) and where f̂ ∈ L1(R), so that the
integral on the right side converges. We employ the
Boutet-de-Monvel-Sjostrand parametrix to give an explicit formula
for the right side.



Boutet de Monvel-Sjostrand parametrix

The projections Πhk onto H0(M, Lk) lift to projections Π̂hk on the
principal S1 bundle ∂D∗h ⊂ L∗ where D∗h = {(z , λ) : |λ|hz < 1}.
This is a strictly pseudo-convex domain in L∗. The sum
Π =

∑
k≥0 Π̂hk is the true Szego kernel

Π̂ : L2(∂D∗h)→ H2(∂D∗h)

onto boundary values of holomorphic functions on D∗h

Near the diagonal in ∂D∗h × ∂D∗h , the Boutet de Monvel-Sjostrand
parametrix is:

Π̂(x , y) =

∫ ∞
0

e−σψ(x ,y)χ(x , y)s(x , y , σ)dσ + R̂(x , y). (12)

Here, χ(x , y) is a smooth cutoff to the diagonal; s(x , y , σ) is a
semi-classical symbol of order m = dimC M.



Osculating Bargmann Fock representations

At each z ∈ M there is an osculating Bargmann-Fock or
Heisenberg model associated to (TzM, Jz , hz). We denote the
model Heisenberg Bergman kernel on the tangent space by

ΠTzM
hz ,Jz

(u, θ1, v , θ2) : L2(TzM)→ H(TzM, Jz , hz) = HJ . (13)

In K-coordinates with respect to a K-frame,

ΠTzM
hz ,Jz

(u, θ1, v , θ2) = π−me i(θ1−θ2)eu·v̄−
1
2

(|u|2+|v |2)

= π−me i(θ1−θ2)e i=u·v̄−
1
2

(|u−v |2

Note that =u · v̄ = ω(u, v).



Linearization approximation

[Shiffman-Z, 2007] [Z. Lu-Shiffman 2015]

Proposition
In K-coordinates in a K-frame at z,

Π̂hk (ĝ
t√
k z , z) ' kme2πtH(z)ΠTzM

Jz ,hz
(tξH , 0, 0, 0)

(
1 + k−1At + · · ·

)
.

Proposition
In K-coordinates in a K-frame at z,

Ûk(t/
√

k , z , θ, z , θ) = kme2πit
√
kH(z))e−|tξH(z)|2 [1 + O(k−

1
2 )]



Putting it together

Lemma

∑
j f
√

k(µk,j − E ))Πk,µk,j (F
u√
k z0,F

u√
k z0)

=
∫
R f̂ (t)e−iE

√
ktÛk(t/

√
k,F

u√
k z0, g

u√
k F

u√
k z0)dt

= km
∫∞
−∞ f̂ (t)e2πit

√
kH(z))e−iE

√
kte−|tξH(z)|2 dt [1 + O(k−

1
2 )] ,

By the Plancherel formula,

k−m
dk∑
j=1

f (
√

k(µk,j − E ))Πk,j(zk , zk)

=

∫ ∞
−∞

f (x)e
− 1

2

(
2x
√
π

|∇H(zk )|−β
|∇H(zk )|√

π

)2
2dx√

2|∇H(z0)|
+ O(k−1/2.


