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Motivating problems from quantum mechanics

Let M be a Riemann surface and let D C M be a bounded domain
in M. How do you fill D with quantum states with minimal
spill-over into M\ D?

In Kahler quantization of a Kahler manifold (M, w), a quantum
state with Planck constant % is an L2-normalized holomorphic
section s € HO(M, LK) of the kth power of a positive Hermitian
line bundle (L, h) — (M, w).

This is the ‘Bargmann-Fock’ or ‘Berezin-Toeplitz' holomorphic
representation of quantum mechanics. It is basic to the Landau
theory of electrons in a magnetic field. Holomorphic ‘sections’ are
called lowest Landau levels. We wish to fill D with 1-particle states
in the LLL.



Problem: how to fill a domain with quantum states?

We assume the states s, ; are orthogonal. Roughly speaking, we
want the density profile
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to be approximately equal to the characteristic function 1p of D.
Here, h is the Hermitian metric on the line bundle L Of course, we
cannot literally have & Zszl |4j(2)|? = 1p but the LHS should
interpolate between 1 and 0.

There are a number of inequivalent ways in which this question
could be formulated mathematically.



Coherent states and discrete configurations

A key role in Kahler analysis is played by the Bergman(= Szego)
kernel My« (z, w) associated to a Hermitian metric h on L. If we fix
the second slot at zp and L2-normalize we obtain a coherent state

rlhk(z7 ZO)
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“centered” at zp. It is a kind of highly peaked Gaussian state of
width k~2 and height ﬂm in dimension m.

A first thought is to try to pack D with coherent states centered at
a discrete configuration of points. But this seems to be impossible
for most domains.



Unit disc
Let M = CP! and L = O(1). Then H°(CP, O(k)) is the space of
homogeneous holomorphic polynomials of degree k in 2 variables:
Z{z¥~®. In the affine chart C let D be the disc of radius R?. We
choose the quantum to be
kz 2
wk,j(z) — ﬁ“/»\/.ﬂ)JekZ /2’ _/S R.
The jth is a transverse Gaussian state centered on the circle of

radius \/J.




What is this graph?
In the disc case,
L
N > k(23 = 1p
j=1

is radial and has the following graph (the Gaussian Erf function):

F1G. 7.11. The density profilc of the » = 1 droplet, where the first mn levels (represented by the
thick lines) are filled.

The transition from 1 to 0 at the ‘edge’ or boundary of 9Dg is
asymptotically Erf.



Erf

The Erf function,

X d
Erf(x) = / e_sz/zé,

is the cumulative distribution function of the Gaussian. This
interpolates from 0 to 1 (left to right). We also use

— [0 o—s?/2_d i ;
Erf(x) = [Xes/ 5= for the interpolation 1 to 0.

The usual Gaussian error function erf(x) = (27)~1/2 =, e=s"/2ds

is related to Erf by Erf(x) = %(1 + erf(%)).



Bergman kernels on positive line bundles

We now give the precise definitions. Denote by H(M, L¥) the
space of holomorphic sections of the kth power of a positive
Hermitian holomorphic line bundle L — M over a Kahler manifold
(M,w). The Hermitian metric is denoted by h and in a local frame
e it is denoted by |e,(2)[2 = e™¥. Positive Hermitian means that
i0dlog h = w is a Kahler form. The Szego projector

My 0 L2(M, L%) — HO(M, LK)
is the orthogonal projection with respect to the inner product

wm

(s1,92) = /M (s1(2), 2(2))e s

The Schwartz kernel of My« (z, w) relative to the volume form %T

is known as the semi-classcial Bergman kernel or Szego kernel.



Density of states

In terms of an orthonormal basis {sj ;},

ﬂhk Z, W Zsk’f Z)Sk,j

Here, Ny = dim HO(M, L¥). If we set z = w and take the
Hermitian norm, we get the DOS (density of states),

I_Ihk(z Z|Skd ’hkam(l‘i‘?‘f— )



Partial Bergman kernels

Consider a subspace Sy € H°(M, L¥). Let dx = dim Sy. The
associated partial Bergman kernel is the projection operator

My, : HO(M, LK) = Sk

If {Sk,j};'ji1 is an orthonormal basis of Sy then

I'Ihksk Z, W E Sk:J Sk,_,(W

The associated DOS (Density of states) is

dy

Mk s, (2) = Z ’5k,j(z)|ik'

j=1



More precise statement of our problem

Suppose D C M is a domain in a kahler manifold M™ of dimension

m. Problem: Construct a subspace Six(D) = Span{s L such
that the partial DOS satisfies,

dk,0
k""z |55 (2) | =2 Cmk™1p(2). (1)
Here, 1p is the characteristic function of D. Also, dix p = dim S.

So far, the only approach which works is to define spectral partial
Bergman kernels.



Toeplitz quantization of a Hamiltonian

Let us assume D = {z € M :0 < H(z) < E} for some
Hamiltonian H : M — R.

The quantization of H is the self-adjoint zeroth order Toeplitz
operator

A~ 1

Flc:= My (o Ve + H)My s HO(M, L) = HO(ML L) (2)

Here, My : L2(M, LK) — HO(M, L¥) is the orthogonal (Bergman)
projection, § = {4 is the Hamilton vector field of H, V¢ is the
Chern covariant deriative on sections, and H acts by multiplication.



Spectral subspaces and spectral partial Bergman kernels

Let {ukJ}J’-V:kl denote the eigenvalues of Hj and denote the
eigenspaces by

Vie(u ) := {s € HO(M, L¥) : Ays = puxjs}. (3)

Given an interval [Ej, E>], denote the corresponding spectral
subspace by H(g, g,

Sk = Hki[ELEz] = @ V,uk,j (4-)
pk,j€H=([E1,E2))

Spectral partial Bergman kernels are the corresponding orthogonal
projections
. 40 k
M g6 - H (M, L) = Hylg, - (5)



Adapting a Hamiltonian to a domain

We return to our problem: Find a subspace Six(D) whose sections
efficiently fill up D, i.e. for which the DOS is as close as possible
to 1p.

This problem does not have a unique solution as formulated. Given
D there exist many functions H : M — R so that

D={z:E <H(z) <E}

Any choice will solve the problem reasonably well.



Spectral partial Density of States

Given D, we pick H so that D = H_l[El, E>], and let the partial
Bergman kernels be the spectral projections

Ny [E,E HO(M, L¥) — Hi[E, Eo]- (6)

A simple result is that as k — oo,

kimnhk,[El,Ez] (z,2) — 1H—1[E1,Ez]

and thus “fills the domain H™[Ey, E>] with lowest Landau levels”.
Thus, the partial density of states k‘ml[El’Ez](I:lk)(z, z) essentially
equals 1 in H71([E1E,]) and zero in the complement, giving a
reasonable notion of “filling” the ‘lowest Landau level' in the
region H=Y([Ey, E2]).



Efficient filling result

The following result uses only standard techniques:

THEOREM

Let (L, h) — (M,w) be a polarized Kihler manifold, and D be any
open domain of M with smooth boundary C = 0D, and

F = M\D. Let H € C>®(M) be such that D = H[Ey, E], and
let Sy = Hy.[g,,E] :C HO(M, L¥). Then,

I'Ik73k . 1 ifze D oo
< i, > (z) = {0 freF mod O(k™>°), Vz e M\C.



Interface result

We would like to study the interface asymptotics at
0D = {H = E1} U{H = Ey} of the spectral partial Bergman
kernels for the intervals [Eq, E3].

The interface occurs in a tube around @D of width k2. For small
enough ¢ > 0, there exists an embedding ® : C x (—6,0) = M
with the properties ®(z,0) = z, dist(®(z,t),C) = |t| and

®(z,t) € D if and only if t > 0,

THEOREM

With the same notation as in above. then

o (Mese Sty ~1/2
® < I'Ik >(z,\/E)—Erf(t)+O(k ), VZEC,tGR

where Erf(t) is the Gaussian error function.



Discussion

» There is no canonical choice of H given D except perhaps 1p.
There are recent somewhat related results on the Toeplitz
operator Mx1plM,« but (apparently) restricted to its spectrum
rather than to pointwise asymptotics of the DOS.

» The theorem above is part of a series of results involving two
types of localization for the DOS of a Toeplitz operator Ay
we can localize in the spectrum, i.e. to eigenvalues pij € Ix
for any interval /i; or we can localize in M. Thus we may
consider My, (z) for z in a region Q.



|dea of Proof: Three types of smooth sums over
eigenvalues

The eigenvalue problem is Hysy; = pixjsk;. There are several
‘localization scales’ that may be studied rigorously:

» Energy range localization: Zj:uk,jePo f(uwj — E)Nkj(z, 2);

» Interface localization: Zj:uk,jePo fF(Vk(urj — E))Mij(z,2),

with z = Fﬂ/ﬂ(zo) with H(z) = E.

> Energy level localization: Ej:uk,jePo f(k(pkj — E))Nij(z, 2);

The ‘sharp versions’ use characteristic functions f = 1ig, g].
Tauberian arguments bridge smooth and sharp asymptotics.



|deas of proof

Given a function f € S(R) (Schwartz space) one defines
F(F) = / F(r)eimhdr, (7)
R

to be the operator on H(M, L¥) with the same eigensections as
Hi and with eigenvalues f (). Thus, if s is an eigensection of
Hy, then

~

F(Hi)Skj = f (1kj) S (8)



Partial Bergman kernels

Given an interval [Eq, E3] C Py = H(M) the subspace (4) is
defined as the range of f(Hy) where f = 1|, £,) and the partial
density of states is given by the metric contraction of the kernel,

I'I|kp(z z) = f(Hk z,2) Z Huk, z,2) (9)
JukJGP

For a smooth test function f, it is the metric contraction of the
Schwartz kernel of f(Hy) at z = w, is given by

FOA (2, W) 2w = Y F (i) My y(2.2). (10)
J:pk j€Po



Interface result for smoothed partial Bergman kernel

THEOREM
Let w be a C° Kahler metric, and let H be a C*° Hamiltonian.
Fix E € H(M), and let z = F5/Vkz, for some
720 € HTY(E),B €R, and let f € Cp(R). Then there exists a
complete asymptotic expansion,
S (VR E)ief(FYVEzo) = K™ l(F, E)+k™ 31,1 (£, E)+-
Jik jEPo ’

in descending powers of k%, with leading coefficient

(£, E) = lim k™™ 3" F(Vk(ukj — E)Nij(F Ve z)

k— o0 .
Jirk j€Po

0 /T 2
= [ e R 2

- Jew V2[VH|(z0)




The propagator
The propagator is the unitary group,
U (t) = exp ikt Hy.

IMPORTANT: note the k in the exponent. This makes it a
dynamical Toeplitz operator, i.e. a Fourier integral operator. A key
point is that there exists a parametrix for the propagator in terms
of the Bergman kernel and the Hamiltonian flow of H:

PROPOSITION
Uk(t, x,y) is a semi-classical Fourier integral operator. There
exists an analytic symbol oy ; so that if m(x) = z,

~

U(t,z,2) = Ui(t,x,x) = Me(87 ) ope i (x, )

Flye2miJo e a2 (exp tefy) o oFli(x, ).

(11)



Expression for interface asymptotics

Let F! be the gradient flow of H. The smoothed interface
asymptotics thus amount to the asymptotics of the dilated sums,

D F(Vh{akj = ENNij(FH(z0))

_ / P(0)e EVRL, i (8111, (FP/VE (20)) dt
R

where zy € dD = H™'(E;) and where f € L'(R), so that the
integral on the right side converges. We employ the

Boutet-de-Monvel-Sjostrand parametrix to give an explicit formula
for the right side.



Boutet de Monvel-Sjostrand parametrix

The projections My« onto HO(M, L¥) lift to projections 15, on the
principal S bundle OD; C L* where Di = {(z,A) : |Aln, < 1}.
This is a strictly pseudo-convex domain in L*. The sum

M=> 0 (15, is the true Szego kernel

f:12(8D;) — H*(AD;)
onto boundary values of holomorphic functions on Dy,

Near the diagonal in 9D} x 0Dy, the Boutet de Monvel-Sjostrand
parametrix is:

IQl(x,y):/o e 7Y x(x,y)s(x,y,0)do + R(x,y).  (12)

Here, x(x, y) is a smooth cutoff to the diagonal; s(x,y,o) is a
semi-classical symbol of order m = dim¢ M.



Osculating Bargmann Fock representations

At each z € M there is an osculating Bargmann-Fock or
Heisenberg model associated to (T;M, J,, h,;). We denote the
model Heisenberg Bergman kernel on the tangent space by

M (u,61,v,02) : LP(T,M) — H(TM, Je, h;) = Hy.  (13)
In K-coordinates with respect to a K-frame,
MM (0,0, v, 05) = 7 i) guv=3(uf+1v1)

_ W—mei(91—02)ei%u-?—%(\u—wz

Note that Su -V = w(u, v).



Linearization approximation

[Shiffman-Z, 2007] [Z. Lu-Shiffman 2015]

PROPOSITION
In K-coordinates in a K-frame at z,

A

(g 2,2) = ke HENT:M (¢64,0,0,0) (1+ K Ap+ ).

PROPOSITION
In K-coordinates in a K-frame at z,

(Afk(t/\/E, 2,0,2,0) = kme27rit\/EH(z))e*|t§H(z)|2[1 4 O(k‘%)]



Putting it together

LEMMA

>0 FVK(kg — E))i oy, (FVE 20, F Ve 20)
— [o F(t)e VR, (t//k, F Vi 20, g Vi F vk 20)dt
= km ffooo ?(t)eZwit\/;H(z))e—iE\/Ete—|t§H(Z)|2 dt [1 n O(k‘%)] 7

By the Plancherel formula,

dk
k—m Z f(\/E(,ukJ — E))Ny j(zk, z«)
j=1

o0 2/7 [V H(z)1 ) 2
/ f(X)e_%<‘VH(Zk)‘_BTk> 2dx

ok VA
. 21V H(z0)]



