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ABSTRACT. We generalize Waldschmidt’s bound for Leopoldt’s defect and prove a similar bound
for Gross’s defect for an arbitrary extension of number fields. As an application, we prove new
cases of the generalized Gross conjecture (also known as the Gross-Kuz’min conjecture) beyond
the classical abelian case, and we show that Gross’s p-adic regulator has at least half of the
conjectured rank. We also describe and compute non-cyclotomic analogues of Gross’s defect.

1. INTRODUCTION

Dirichlet’s class number formula classically expresses the residue at s = 1 of the Dedekind
zeta function of a number field K in terms of its Dirichlet regulator, which is a nonzero
determinant involving logarithms of real units in K . Perrin-Riou’s influential program [PR95]
suggests that this formula has a p-adic analogue which involves a p-adic Dirichlet regulator
and an L-invariant, constructed in terms of Leopoldt’s and Gross’s p-adic regulator maps
respectively.

In fact, p-adic class number formulae and their appropriate generalizations to Artin L-
functions have already been proposed by Tate (and attributed to Serre) in [Tat84] and Gross
in [Gro81] when K is a totally real field or a CM field. In an earlier work [Mak21], we
formulated a precise conjecture for more general p-adic Artin L-functions.

Analogously to the complex setting, Leopoldt’s and Gross-Kuz’min’s conjectures respectively
predict that Leopoldt’s and Gross’s p-adic regulator maps have full rank [Leo62, Gro81,
Kuz72]. The purpose of this article is to deduce lower bounds for the ranks of these regulators
from classical theorems of Brumer, Waldschmidt and Roy in p-adic transcendence theory
[Bru67, Wal81, Roy92]. In order to do this, we make use of Artin formalism.

We recall that the Gross-Kuz’min conjecture is known when K /Q is abelian thanks to
Greenberg [Gre73]. More recently, Kleine [Kle19] showed that this conjecture is true when
K has at most two p-adic primes. (We note that Kleine’s approach does not use p-adic
transcendence theory). In addition to those two results, our bounds imply many new cases
of the Gross-Kuz’min conjecture. Besides their potential applications to the Tamagawa
number conjecture (as crucially used in [BKS17]) in connection with p-adic Artin L-functions,
the Gross-Kuz’min conjecture and its analogue for non-cyclotomic Iwasawa theory also
yield information on the fine structure of class groups attached to extensions of K (see
e.g. [Kol91, FMD05, Jau17]). These conjectures are now mainstream in Iwasawa theory of
number fields.

We now introduce the main notations and results of this paper.
Let K be a number field and fix once and for all a prime number p. We denote by Sp(K) and

S∞(K) the sets of p-adic places and archimedean places of K respectively. Fix an algebraic
closure Qp of Qp and let A∧ =Qp⊗Zp lim←−−n

A/pn A be the p-adic completion of an abelian group
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A. Let

(1) ιK : O×,∧
K −→ ∏

P|p
O

×,∧
KP

be the Qp-linear map induced by the diagonal embedding of the units of K into all its p-adic
completions. For K and p, the classical Leopoldt’s conjecture asserts that the map ιK is
injective. The dimension of ker ιK is called Leopoldt’s defect and is denoted by δL

K (we will
omit its dependence on p). Next, we define the Gross regulator map LK , which is closely
related to ιK . Consider the Zp-hyperplane H of

⊕
P|pZp given by the equation

∑
P|p sP = 0,

and the map

(2) LK :
{
OK [ 1

p ]×,∧ −→ H∧

x 7→ (− logp(NP(x)))P,

where OK [ 1
p ]× is the group of p-units of K , NP is the local norm map for the extension KP/Qp,

and logp :Q×
p →Qp is the usual Iwasawa p-adic logarithm. By the usual product formula,

LK is well-defined. The dimension of cokerLK is called Gross’s defect and is denoted by δG
K .

Waldschmidt’s classical bound for Leopoldt’s defect reads δL
K ≤ (|S∞(K)|−1)/2 [Wal81]. The

following theorem generalizes this to a relative setting and also states a similar bound for δG
K .

Theorem 1.1. Let K /k be an extension of number fields. The following inequalities hold.

δL
K ≤ δL

k + (|S∞(K)|− |S∞(k)|) /2,
δG

K ≤ δG
k + (|Sp(K)|− |Sp(k)|) /2.

Moreover, if K has at least one real place and |Sp(K)| 6= |Sp(k)|, then the second bound is strict.
In particular, the Gross-Kuz’min conjecture holds for all cubic number fields.
A key observation that we use in the computation of δL

K and δG
K is that they are compatible

with Artin formalism. For any number field k ⊂Q of absolute Galois group Gk =Gal(Q/k), let
Art

Qp
(Gk) be the set of finite dimensional Qp-valued representations of Gk of finite image.

We will define defects δL
k (ρ) and δG

k (ρ) associated with ρ ∈Art
Qp

(Gk) which satisfy the usual

Artin formalism. In particular, when ρ = Indk
K1K is the induction from GK to Gk of the trivial

representation, they coincide with δL
K and δG

K respectively. We will also define quantities d(ρ),
d+(ρ) and f (ρ) which compute [K :Q], |S∞(K)| and |Sp(K)|, respectively, when ρ = Indk

K1K
(see (5)). Our main theorem is the following.
Theorem 1.2. Let ρ ∈Art

Qp
(GQ) be an irreducible representation and let d = d(ρ), d+ = d+(ρ)

and f = f (ρ). If d+ = f = 0, then we have δL
Q

(ρ)= δG
Q

(ρ)= 0. Otherwise, we have the following
inequalities.

δL
Q(ρ)≤ (d+)2

d+d+ , δG
Q(ρ)≤ f 2

d++2 f
.

By Artin formalism, this yields the upper bound (e.g. for Leopoldt’s defect) δL
k (ρ)≤ d+(ρ)/2

for an arbitrary representation ρ ∈ Art
Qp

(Gk). We immediately recover Theorem 1.1 by

choosing ρ such that Indk
K1K = ρ⊕1k.

The first bound in Theorem 1.2 is Laurent’s main theorem in [Lau89], but we will provide
a much shorter proof of this result via a lemma on local Galois representations (Lemma
3.2.7). The second bound, however, cannot be deduced from the classical methods employed
by Laurent [Lau89] and Roy [Roy92] to study the p-adic closure of S-units of K , for a given
finite set of places S. Indeed, they need to assume p ∉ S, because logp is not injective on
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OK [ 1
p ]×. We circumvent this issue in Proposition 2.1.2 by determining the kernel of the

Q-linear extension of logp.
Theorem 1.2 easily implies Ax-Brumer’s theorem on the validity of Leopoldt’s conjecture

for abelian extensions of an imaginary quadratic field [Ax65, Bru67]. In the same vein, we
indicate two striking applications of Theorem 1.2.
Corollary 1.3. Let k be a totally real field and let V be a totally odd Artin representation of
Gk. Then Gross’s p-adic regulator matrix Rp(V ) defined in [Gro81, (2.10)] has rank at least
half of its size.

This corollary strengthens Gross’s classical result stating that the matrix Rp(V ) has
positive rank [Gro81, Prop. 2.13].
Corollary 1.4. The Gross-Kuz’min conjecture holds for abelian extensions of imaginary
quadratic fields. It also holds for abelian extensions of real quadratic fields having at least
one real place.

Theorem 4.3.2 provides a more extensive list of number fields for which the Gross-Kuz’min
conjecture holds unconditionally.

The last part of this article is devoted to developing some tools to study non-cyclotomic
analogues of the Gross-Kuz’min conjecture. Given an arbitrary Zp-extension K∞ of K , we will
define a map LK∞/K specializing to LK if K∞ is the cyclotomic extension of K . Interestingly,
there do exist examples of Zp-extensions K∞/K for which δG

K∞/K > 0 [Kis83, JS95], but a
conjectural description of all such K∞/K is still missing.
Theorem 1.5. Let k be an imaginary quadratic field, and K an abelian extension of k in
which p splits completely. Let Kab/k be the maximal subextension of K /k that is abelian over Q.
Then there exist at most [K :Q]− [Kab :Q] distinct Zp-extensions k∞ of k for which δG

Kk∞/K > 0.
In Proposition 3.1.1 we illustrate Theorem 1.5 with a classical application to the semi-

simplicity of Iwasawa modules attached to Kk∞/K . In addition, we show that the exceptional
Zp-extensions in Theorem 1.5, for which δG

Kk∞/K > 0, necessarily have a transcendental slope
(see Example 5.2.3 for the meaning of slope). It turns out that such Zp-extensions should not
exist under the p-adic Schanuel conjecture.

Theorem 1.5 can be generalized to arbitrary base fields k having at most r linearly disjoint
Zp-extensions with r ≤ 2 (Theorem 5.1.1). The main idea is that, under our assumption on p,
one can parameterize Zp-extensions of k by points on a (r−1)-dimensional linear subspace L
of Pn−1(Qp), where n = [k :Q]. The condition δG

Kk∞/K > 0 then cuts out a closed subvariety C

of L given by polynomial equations with coefficients in Λ := logp(OK [ 1
p ]×). We then exploit

the fact that any linear (resp. algebraic) independence between elements of Λ implies strong
conditions on the Q-points (resp. the Qp-points) of C .

Theorem 1.5 was inspired by Betina-Dimitrov’s work [BD21] where the authors show the
non-vanishing of a certain anticyclotomic L-invariant for Katz’s p-adic L-function. In fact,
their result generalizes to any Zp-extension with non-transcendental slope. We expect that
our techniques can give further results on the non-vanishing of L-invariants in more general
contexts.

The paper is structured as follows. In Section 2 we recall all the classical results in p-adic
transcendence theory which we make use of. In Section 3 we describe Leopoldt’s and Gross’s
defects via class field theory and we show that they are compatible with Artin formalism. Our
main results and corollaries are proven in Section 4, except for Theorem 1.5 whose proof is
postponed to Section 5.
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2. p-ADIC TRANSCENDENCE THEORY

Throughout this section we fix an embedding ιp : Q ,→Qp, allowing us to view algebraic
numbers as p-adic numbers. Let Λ be the Q-linear subspace of Qp generated by 1 and
by p-adic logarithms of non-zero algebraic numbers. The following very strong conjecture
describes the algebraic dependence between elements in Λ.
Conjecture (p-adic Schanuel conjecture). If λ1, . . . ,λn ∈Λ are linearly independent over Q,
then they are algebraically independent over Q.

We recall some classical results of Brumer, Waldschmidt and Roy and deduce some conse-
quences that turn out to be useful in the study of the Gross-Kuz’min conjecture.

2.1. The Baker-Brumer theorem. Brumer [Bru67] extended Baker’s method to the p-adic
setting and proved the following theorem on linear independence of logarithms:
Theorem 2.1.1 (Baker-Brumer theorem). If λ1, . . . ,λn ∈Λ are linearly independent over Q,
then they are linearly independent over Q.

Recall that logp is normalized so that we have logp(p)= 0.
Proposition 2.1.2. Let H ⊂Q be a number field. The Q-linear extension logp : Q⊗Z H× →Qp,

c⊗ x 7→ c logp(ιp(x)) of the p-adic logarithm has kernel the line pQ spanned by 1⊗ p.

Proof. Let Hp be the completion of ιp(H) inside Qp, let O×
Hp

be its unit group and consider

the abelian group T = {x ∈ H× : ιp(x) ∈ O×
Hp

}. Then we clearly have Q⊗H× =
(
Q⊗T

)⊕
pQ.

Moreover, the p-adic logarithm map is injective on O×
Hp

, so multiplicatively independent

numbers α1, . . . ,αn ∈T have Q-linearly independent p-adic logarithms by the Baker-Brumer
theorem. This shows that the restriction of logp to Q⊗T is injective, hence ker(logp)= pQ. �

2.2. Waldschmidt’s and Roy’s theorem. Extensions of Baker’s method due to Waldschmidt
and Roy give a lower bound for the rank of matrices with coefficients in Λ. To each matrix M
with coefficients in Qp, of size m×`, they assign a number θ(M) defined as the minimum of all
ratios `′

m′ where (m′,`′) runs among the pairs of integers satisfying 0< m′ ≤ m and 0≤ `′ ≤ `,
for which there exist matrices P ∈GLm(Q) and Q ∈GL`(Q) such that the product PMQ can
be written as (

M′ 0
N M′′

)
with M′ of size m′×`′. Note that θ(M)≤ `

m with equality if all the entries of M are Q-linearly
independent. The following theorem is due to Waldschmidt [Wal81, Théorème 2.1.p] and Roy
[Roy92, Corollary 1].
Theorem 2.2.1. Let M be a matrix with coefficients in Λ, of size m×` with m,`> 0, and let
n be its rank. We have

n ≥ θ(M)
1+θ(M)

·m.

Roy also deduced a useful corollary for 3× 2 matrices from Theorem 2.2.1 in [Roy92,
Corollary 2].
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Corollary 2.2.2 (Strong six exponentials theorem). Let M be a (3×2)-matrix with coefficients
in Λ. If the rows of M are Q-linearly independent, and if the columns of M are also Q-linearly
independent, then M has rank 2.

3. REGULATOR MAPS AND CLASS GROUPS

3.1. Galois cohomology. For all fields L ⊂Q and all finite sets S of places of L containing
Sp(L), we let X (L) (resp. X ′

S(L)) be the Galois group of the maximal abelian pro-p extension
of L which is unramified everywhere (resp. unramified everywhere and totally split at all
v ∈ S). If S = Sp(L), we simply put X ′(L)= X ′

S(L). Given a Zp-extension K∞ =⋃
n Kn of K with

Galois group Γ, we have X (K∞)= lim←−−n
X (Kn) and X ′

S(K∞)= lim←−−n
X ′

S(Kn), the transition maps
being the restriction maps. Therefore, X (K∞) and X ′

S(K∞) are modules over the Iwasawa
algebra Zp[[Γ]]. They are finitely generated torsion as shown by Iwasawa [Iwa73]. We let

δG
K∞/K := rkZp X ′(K∞)Γ,

where (−)Γ means Γ-coinvariants. If K∞ is the cyclotomic Zp-extension Kcyc of K we simply
write δG

K for δG
K∞/K . We will later see that this definition is compatible with that of the

introduction. One motivation in classical Iwasawa theory to compute δG
K∞/K originates in the

following simple result by Jaulent and Sands [JS95, Proposition 6].
Proposition 3.1.1. Let γ be a topological generator of Γ. If no p-adic prime of K splits
completely in K∞ and if δG

K∞/K = 0, then γ−1 acts semi-simply on X (K∞). That is, (γ−1)2

does not divide the elements Pi ∈Zp[[Γ]] appearing in any elementary module
⊕

iZp[[Γ]]/(Pi)
pseudo-isomorphic to X (K∞).

Let S0 ⊇ Sp(K)
⋃

S∞(K) be a finite set of places of K . For any extension L of K and any
discrete (resp. compact) GL-module M which is unramified outside the places of L above S0,
we consider for all i ≥ 0 the S0-ramified i-th cohomology group (resp. continuous cohomology
group) Hi

S0
(L, M) = Hi(Gal(LS0 /L), M), where LS0 /L is the largest extension of L which is

unramified outside the places of L above S0. Given any subset S ⊂ S0, let

Xi
S(L, M)= ker

[
Hi

S0
(L, M)−→ ∏

v∈S
Hi(Lv, M)× ∏

v∈S0−S
Hi(Lur

v , M)

]
,

where Lur
v /Lv denotes the maximal unramified extension of Lv (so Rur = R in particular)

and the maps above are the usual localization maps. Note that the definition of Xi
S(L, M)

does not depend on the choice of S0. We simply write Xi(L, M) instead of Xi
S(L, M) if

S = Sp(L)
⋃

S∞(L). We also write M∗ for the Pontryagin dual HomZp (M,Qp/Zp) of a Zp-
module M.
Lemma 3.1.2. Let L ⊂Q be a number field and let S ⊃ Sp(L)

⋃
S∞(L) be a finite set of places

of L. There are canonical isomorphisms X2
S(L,Zp(1))'X1

S(L,Qp/Zp)∗ ' X ′
S(L).

Proof. The first isomorphism is given by the Poitou-Tate duality theorem [Mil86, Theo-
rem 4.10 (a)]. Since H1

S(L,Qp/Zp) = Hom(Gal(LS/L),Qp/Zp) we easily have X1(L,Qp/Zp) =
Hom(X ′

S(L),Qp/Zp) by class field theory. �

The isomorphisms provided by Lemma 3.1.2 are functorial in L in the sense that, given
a finite extension L′/L of number fields, the norm map X (L′) → X (L) corresponds to the
corestriction map (resp. to the Pontryagin dual of the restriction map) X2(L′,Zp(1)) →
X2(L,Zp(1)) (resp. X1(L′,Qp/Zp)∗ →X1(L,Qp/Zp)∗).
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Given any Zp-extension K∞ = ⋃
n Kn of K and any finite set S ⊃ Sp(K)

⋃
S∞(K), Lemma

3.1.2 provides isomorphisms of Zp[[Γ]]-modules

lim←−−
n

X2
S(Kn,Zp(1))'X1

S(K∞,Qp/Zp)∗ ' X ′
S(K∞).

We now make use of the inflation-restriction exact sequence to study the problem of Galois
descent. We have a commutative diagram with exact rows

(3)

0 Hom(Γ,Qp/Zp) H1
{p,∞}(K ,Qp/Zp) H1

{p,∞}(K∞,Qp/Zp)Γ 0

0
⊕

v Hom(Γv,Qp/Zp)
⊕

v H1(Kv,Qp/Zp)
⊕

w H1(K∞,w,Qp/Zp),

where the places v (resp. w) of the second row run through all the p-adic and archimedean
places of K (resp. of K∞). Here, we have used the fact that Γ has cohomological dimension
one as it is pro-cyclic.
Proposition 3.1.3. We have δG

K∞/K = dimker(LocK∞/K ), where LocK∞/K is the localization
map

LocK∞/K : H1
{p}(K ,Qp)/H1(Γ,Qp)−→ ⊕

P∈Sp(K)
H1(KP,Qp)/H1(ΓP,Qp).

Proof. By Lemma 3.1.2, the kernel of the right vertical map of (3) is equal to the Pontryagin
dual of X ′(K∞)Γ. Since H1(Kv,Qp/Zp) for v|∞ is finite, this implies that δG

K∞/K is equal to the
rank of the Pontryagin dual of the kernel of the natural map

H1
{p}(K ,Qp/Zp)/H1(Γ,Qp/Zp)→ ⊕

P∈Sp(K)
H1(KP,Qp/Zp)/H1(ΓP,Qp/Zp).

To end the proof, it suffices to notice that for G=Gal(KS/K), Gal(KP/KP), Γ or ΓP, the natural
map H1(G,Zp)⊗Qp/Zp → H1(G,Qp/Zp) (resp. H1(G,Zp)⊗Qp → H1(G,Qp)) has finite kernel
and cokernel (resp. is an isomorphism), see [Rub00, Appendix B § 2]. �

Remark 3.1.4. Since H1
{p}(K ,Qp)=Hom(GK ,Qp) parameterizes the Zp-extensions of K , the

domain of LocK∞/K has dimension r2 +δL
K , where r2 is the number of complex places of K

([Was97, Theorem 13.4]). In particular, Proposition 3.1.3 yields an upper bound δG
K∞/K ≤

r2 +δL
K . Therefore, Leopoldt’s conjecture for a totally real field K implies the Gross-Kuz’min

conjecture for K , as already noticed by Kolster in [Kol91, Corollary 1.3].
Given a prime P ∈ Sp(K), let ΓP be the decomposition subgroup of Γ at P and denote by

recΓP : K×
P →ΓP the corresponding local reciprocity map. Define also the Zp-module

HK∞/K := ker

( ⊕
P∈Sp(K)

ΓP −→Γ

)
.

By the usual product formula in class field theory the regulator map

(4) LK∞/K :
{
OK [ 1

p ]× −→ HK∞/K

x 7→ (recΓP(x))P,

is well-defined, and it extends to a Qp-linear map OK [ 1
p ]×,∧ →H∧

K∞/K which we still denote
by LK∞/K . If K∞ = Kcyc, then the character logp ◦χcyc ◦ recΓP : K×

P −→ Qp coincides with
6



− logp ◦NP, where χcyc is the cyclotomic character. Therefore, LKcyc/K is essentially the same
as the map LK of the introduction, and we easily see that δG

Kcyc/K = δG
K .

Proposition 3.1.5. We have δG
K∞/K = dimcoker(LK∞/K ).

Proof. By Kummer theory and local class field theory, Tate’s local pairing H1(KP,Qp)×
H1(KP,Qp(1)) → Qp can be identified with the evaluation map Hom(K×

P,Qp)×K×,∧
P

→ Qp.

Therefore, the orthogonal complement of H1(ΓP,Qp) ⊆ H1(KP,Qp) is simply the kernel of
recΓP : K×,∧

P
� Γ∧P. Using the fact that X1(K ,Qp) = 0, Poitou-Tate’s duality then yields an

isomorphism

ker

(
H1

{p}(K ,Qp)→ ⊕
P∈Sp(K)

H1(KP,Qp)

H1(ΓP,Qp)

)
' coker

(
⊕P recΓP : OK [ 1

p ]×,∧ → ⊕
P∈Sp(K)

Γ∧P

)
.

In particular, dimker(LocK∞/K )+1 = dimcoker(LK∞/K )+1, so Proposition 3.1.3 yields the
desired equality. �

3.2. Isotypic components. We consider in this paragraph the situation where the Zp-
extension K∞/K comes from the Zp-extension k∞/k of a subfield k of K , which means that
K∞ = Kk∞. Assume that K /k is Galois with Galois group G. Given an algebraically closed
field Q of characteristic zero (typically, Q or Qp), the Q-valued representations of G are
semi-simple and the regular representation of G splits as

Q[G]=⊕
ρ

e(ρ) ·Q[G]=⊕
ρ

W⊕dimρ,

where (W ,ρ) runs through the set of all the Q-valued irreducible representations of G and
e(ρ)= dimρ

|G| ·∑g∈G Tr(ρ(g−1))g ∈Q[G] is the usual idempotent attached to ρ.
For any finite set of places S of k containing S∞(k), let OK [1/S]× be the group of S-units of

K . Dirichlet’s unit theorem implies that we have a decomposition of Q[G]-modules

Q⊗ZOK [1/S]× = (
Q⊗ZOk[1/S]×

)⊕(⊕
1 6=ρ

W⊕d+
S(ρ)

)
,

where (W ,ρ) runs through the set of all non-trivial irreducible representations of G and
d+

S(ρ)=∑
v∈S dimH0(kv,W). It will be convenient to introduce the following invariants:

(5) d(ρ) := [k :Q] ·dimρ, d+(ρ) := ∑
v|∞

dimH0(kv,W), f (ρ) :=∑
p|p

dimH0(kp,W),

so that d+(ρ)= d+
S∞(k)(ρ) and f (ρ)= d+

S∞(k)
⋃

Sp(k)(ρ)−d+
S∞(k)(ρ).

We record in the next lemma a list of useful properties satisfied by the invariants introduced
in (5) and which we make use of in Sections 4 and 5. Recall that a rule ρ 7→ a(ρ) ∈Z, where ρ
runs among all the representations of Galois groups of finite extensions of number fields, is
said to be compatible with Artin formalism if, for all finite Galois extensions M/L/E:

(a) a(ρ̃)= a(ρ) if ρ̃ ∈Art
Qp

(Gal(M/E)) is the inflation of ρ ∈Art
Qp

(Gal(L/E)),
(b) a(ρ1 ⊕ρ2)= a(ρ1)+a(ρ2) for all ρ1,ρ2 ∈Art

Qp
(Gal(M/E)), and

(c) a(ρ′)= a(ρ) if ρ′ is the induction of ρ from Gal(M/L) to Gal(M/E).
Lemma 3.2.1. Let L/E be a finite extension of number fields and let a ∈ {d,d+, f }.

(1) The rule ρ 7→ a(ρ) is compatible with Artin formalism.
7



(2) We have d(1L)= [L :Q], d+(1L)= |S∞(L)| and f (1L)= |Sp(L)|. For any representation
(W ,ρ) ∈ Art

Qp
(Gal(M/L)) with 1L 6⊂ ρ, we have dimHomGal(M/L)(W ,O×,∧

M ) = d+(ρ) and

dimHomGal(M/L)(W ,OM[ 1
p ]×,∧)= d+(ρ)+ f (ρ).

(3) Let ρ ∈Art
Qp

(GL) and let M =Qkerρ be the field extension cut out by ρ. Then M is totally
real (resp. L is totally real and M is a CM field) if and only if d+(ρ)= d(ρ) (resp. d+(ρ)=
0). If M has at least one real place, then d+(ρ)≥ dimρ and any subrepresentation θ of
IndE

Lρ satisfies d+(θ)≥ 1. If L has r complex places, then d+(ρ)≥ r ·dimρ.
(4) Let ρ ∈Art

Qp
(GL). Then we have a(ρ)≤ (dimρ) ·a(1L).

(5) Let M/L be a finite Galois extension, let θ ∈ Art
Qp

(Gal(M/L)) be irreducible and let χ
be a multiplicative character of GL. Then we have (dimθ) ·a(θ⊗χ)≤ a(χ|GM )≤ a(1M).
Moreover, if θ 6=1L, then we have (dimθ) ·a(θ⊗χ)≤ a(χ|GM )−a(χ)≤ a(1M)−a(χ).

Proof. The claims (1), (2) and (4) are easy to deduce from the definitions and Dirichlet’s unit
theorem. Let us justify claim (3). It is clear that d+(ρ)≤ d(ρ), and we have d+(ρ)= d(ρ) (resp.
d+(ρ)= 0) if and only if all archimedean places of L are real and ρ(σ)= id (resp. ρ(σ)=− id)
for all complex conjugations σ ∈Gal(M/L). Since ρ is faithful on Gal(M/L), this is equivalent
to M being totally real (resp. M being CM and L totally real). Assume now that M has at
least one real place w and let v (resp. v0) be the place of L (resp. of E) lying below w. Then
we clearly have d+(ρ) ≥ dimH0(Lv,ρ) = dimρ. Moreover, if θ ⊂ IndE

Lρ, then the Frobenius
reciprocity implies that there exists a subrepresentation ρ′ ⊂ ρ such that ρ′ ⊂ θ|GL , yielding
d+(θ) ≥ dimH0(Ev0 ,θ) = dimH0(Lv,θ) ≥ H0(Lv,ρ′) = dimρ′ ≥ 1 as claimed. Suppose finally
that L has r complex places v1, . . . ,vr. Then d+(ρ)≥∑r

i=1 dimH0(Lvi ,ρ)= r ·dimρ, so this ends
the proof of claim (3).

We now prove claim (5). The upper bounds on a(χ|GM ) directly follow from claim (4), so we
only prove the lower bounds. Since θ is irreducible, the representation (θ⊗χ)⊕dimθ (and even
(θ⊗χ)⊕dimθ⊕χ if θ 6= 1L) occurs as a subrepresentation of (IndL

M1M)⊗χ= IndL
Mχ|GM . Artin

formalism then yields the lower bounds of claim (5), as a(IndL
Mχ|GM ) = a(χ|GM ) and a takes

non-negative values. �

We now describe the isotypic components of the map LK∞/K . For g ∈G, P ∈ Sp(K) and η

a place of K∞ above P, the map KP → Kg(P) (resp. K∞,η → K∞, g̃(η)) induced by g (resp. by
a lift g̃ ∈ Gal(K∞/k) of g) is a field isomorphism which yields a left G-action x 7→ g(x) (resp.
γ 7→ g̃γ g̃−1) on

⊕
P|p K×

P and on
⊕

P|pΓP respectively. This action also restricts to HK∞/K , and
G acts trivially on the quotient (

⊕
P|pΓP)/HK∞/K . Moreover, the map LK∞/K is G-equivariant

for the natural G-action on OK [ 1
p ]× and the action on HK∞/K described above.

Fix any (W ,ρ) ∈Art
Qp

(G) and let HomG(X ,Y ) be the Qp-vector space of all G-equivariant

linear maps between two Qp[G]-modules X and Y . By definition, the ρ-isotypic component
of a G-equivariant Qp-linear map f : X → Y is the linear map HomG(W , X ) → HomG(W ,Y )
obtained by post-composing by f . Write Lk∞/k(ρ) for the ρ-isotypic component of LKcyc/K and
define

δG
k∞/k(ρ) := dimcoker

(
Lk∞/k(ρ)

)
.

If k∞ = kcyc, we abbreviate Lk∞/k(ρ) and δG
k∞/k(ρ) as Lk(ρ) and δG

k (ρ) respectively.
For all p ∈ Sp(k), fix a place P0 of K above p, let Gp be the decomposition subgroup of G at

P0, let W0
p =WGp and denote by resp the restriction-to-W0

p map.
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Proposition 3.2.2. The map Lk∞/k(1) can be naturally identified with Lk∞/k. If 1 6⊂ ρ, then
the map Lk∞/k(ρ) can be naturally identified with the composite map
(6)

HomG(W ,OK [ 1
p ]×,∧)

⊕
pHomGp

(W ,K×,∧
P0

)
⊕

pHom(W0
p ,k×,∧

p )
⊕

pHom(W0
p ,Γ∧p ).

⊕locp ⊕resp ⊕recΓp

Here, p runs over Sp(k) in each sum, and we implicitly used the fact that
(
K×,∧
P0

)Gp = k×,∧
p .

Proof. Let j : HK∞/K ,→⊕
P|pΓP be the inclusion map and let j(ρ) be its ρ-isotypic component.

Given a prime p ∈ Sp(k) and a fixed prime P0|p of K as before, we have
⊕

P|p K×
P =

IndG
Gp

K×
P0

and
⊕

P|pΓP = IndG
Gp
ΓP0 as G-modules and Frobenius reciprocity shows that

HomG(W ,
⊕

P|p K×,∧
P

) ' HomGp(W ,K×,∧
P0

) and HomG(W ,
⊕

P|pΓ
×,∧
P

) ' HomGp(W ,Γ×,∧
P0

), the iso-
morphisms being the natural projection maps. Therefore, j(ρ)◦Lk∞/k(ρ) can be identified
with the composite map

HomG(W ,OK [ 1
p ]×,∧)

⊕
p|p HomGp

(W ,K×,∧
P0

)
⊕

p|p HomGp
(W ,Γ∧P0

)=⊕
p|p Hom(W0

p ,Γ∧P0
),

⊕locp ⊕recΓP0

where the last identification is induced by ⊕resp. Note that resp and recΓP0
commute. Further-

more, letting [np] : Γ∧P0
→ Γ∧p be the multiplication by np = [KP0 : kp] map, the functoriality

of Artin’s reciprocity law shows that recp coincides with [np] ◦ recP0 on k×,∧
p . Hence, if

1 6⊆ ρ, then the map j(ρ) ◦Lk∞/k(ρ) coincides with the map of (6) under the identification
[np] : Γ∧P0

' Γ∧p . Since j(ρ) is an isomorphism in this case, we obtain the desired descrip-
tion of Lk∞/k(ρ). In the case where ρ = 1, the map LK∞/K (1) is nothing but the restriction
(LK∞/K )G : Ok[ 1

p ]×,∧ → (H∧
K∞/K )G of LK∞/K to the G-invariants. Under the identifications

(
⊕
P|p

Γ∧P)G = (
⊕
p|p

IndG
Gp
Γ∧P0

)G =⊕
p|p

Γ∧P0
'⊕

p|p
Γ∧p

induced by by Frobenius reciprocity and by ⊕p[np], it is clear that (H∧
K∞/K )G is mapped onto

H∧
k∞/k, and that LKcyc/K (1) can be naturally identified with Lk∞/k.

�

Remark 3.2.3. The map Lk∞/k(ρ) admits a more intrinsic description in terms of Bloch-Kato
Selmer groups. Namely, let H1

f,p(k, qW) ⊂ H1(k, qW) be the Selmer group of qW defined by the

Bloch-Kato condition at all places not dividing p (see [BK90, § 3]), and let H1
Γ(kp, qW0

p ) be the
orthogonal complement of H1(Γp,W0

p )⊂H1(kp,W) under Tate’s local pairing. Then Kummer
theory and the Inflation-Restriction exact sequence provide natural isomorphisms H1

f,p(k, qW)'
HomGk (W ,OK [ 1

p ]×,∧) and H1(kp, qW)/H1
Γ(kp, qW0

p ) ' Hom(W0
p ,Γp). An easy adaptation of the

proof of Proposition 3.1.5 then shows that Lk∞/k(ρ) coincides with the localization map
H1

f ,p(k, qW)→⊕
p|p H1(kp, qW)/H1

Γ(kp, qW0
p ) under these identifications.

Corollary 3.2.4. (1) If ρ =1 then we have δG
k∞/k(1)= δG

k∞/k.
(2) Assume k =Q, k∞ =Qcyc and 1 6⊂ ρ. Fix an embedding ιp : Q ,→Qp and let W0

p =WGQp .
Then,

δG
Q(ρ)= dimcoker

[
HomG(W ,OK [ 1

p ]×,∧)−→Hom(W0
p ,Qp)

]
,

the map being the restriction-to-W0
p map followed by the post-composition by logp ◦ιp.
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Proof. The first claim directly follows from Propositions 3.1.5 and 3.2.2. The second claim
follows from from Proposition 3.2.2 and from the fact that, if Γp = Gal(Qp,cyc/Qp), then the
composite map logp ◦χcyc ◦recΓp : Q×,∧

p →Γ∧p 'Qp ⊗Zp (1+ pZp)'Qp coincides with − logp. �

Corollary 3.2.5. The assignment ρ 7→ δG
k∞/k(ρ) is compatible with Artin formalism. More

precisely,
(a) δG

k∞/k(ρ) does not depend on the choice of the splitting field K of ρ ∈Art
Qp

(Gk).

(b) δG
k∞/k(ρ1 ⊕ρ2)= δG

k∞/k(ρ1)+δG
k∞/k(ρ2) for any ρ1,ρ2 ∈Art

Qp
(Gk).

(c) If k∞ = kk′∞ for some subfield k′ ⊂ k and Zp-extension k′∞/k′ and if ρ′ = Indk′
k ρ is

induced from ρ ∈Art
Qp

(Gk), then δG
k′∞/k′(ρ′)= δG

k∞/k(ρ).

Proof. Part (b) is obvious from the definition of Lk∞/k(ρ). Part (a) is true if ρ is triv-
ial by Corollary 3.2.4 (1). Let K ′/K /k be Galois extensions, take 1 6⊆ ρ ∈ Art

Qp
(Gal(K /k))

and denote by ρ̃ its inflation to Gal(K ′/k). Then the maps of (6) for ρ and ρ̃ coincide on
HomGal(K /k)(W ,OK [ 1

p ]×,∧)=HomGal(K ′/k)(W ,OK ′[ 1
p ]×,∧), so δG

k∞/k(ρ)= δG
k∞/k(ρ̃). Hence, (a) holds

for every ρ ∈Art
Qp

(Gk). For (c), take any splitting field K of ρ which is Galois over k′ and put
G =Gal(K /k), G′ =Gal(K /k′). Then Frobenius reciprocity identifies the ρ′-isotypic component
of LK∞/K (seen as a G′-equivariant map) with the ρ-isotypic component of LK∞/K (seen as a
G-equivariant map). Hence, the last property follows from Proposition 3.2.2. �

We next define an analogous invariant for Leopoldt’s conjecture. For any Galois extension
K /k with Galois group G, the localization map

ιK : O×,∧
K −→ ⊕

P∈Sp(K)
O

×,∧
KP

is clearly G-equivariant. For any (W ,ρ) ∈Art
Qp

(G) we let δL
k (ρ) be the dimension of the kernel

of the ρ-isotypic component

(7) ιk(ρ) : HomG(W ,O×,∧
K )−→ ⊕

p∈Sp(k)
HomG(W ,

⊕
P|p

O
×,∧
KP

)' ⊕
p∈Sp(k)

HomGp(W ,O×,∧
KP0

)

of ιK . Here (and as in the definition of Lk∞/k(ρ)), P0 is a fixed place of K above p for every
place p of k. The last isomorphism is given by Frobenius reciprocity and is induced by the
natural projection map. As in Corollary 3.2.5, it is easy to see that the rule ρ 7→ δL

k (ρ) is
compatible with Artin formalism.
Remark 3.2.6. In terms of Bloch-Kato Selmer groups for qW , the injectivity of ιk(ρ) is equiva-
lent to that of the localization map H1

f (k, qW)→∏
p|p H1

f (kp, qW). This last statement is Jannsen’s
conjecture for qW ([Jan89]).

The following lemma on local Galois representations with finite image will help us describe
δL

k (ρ) in another way if k =Q.
Lemma 3.2.7. Let (W ,ρ) ∈Art

Qp
(GQp ) be a local representation factoring through the Galois

group of a finite extension E ⊂Qp of Qp. Then the internal multiplication map Qp ⊗Qp E →Qp
induces an isomorphism

m : HomGQp
(W ,Qp ⊗Qp E)'Hom

Qp
(W ,Qp).

Here, we let GQp act on Qp ⊗Qp E via g(a⊗ x)= a⊗ g(x).
10



Proof. Since E 'Qp[Gal(E/Qp)] as a Galois module, it is enough to show that m is injective.
Choose any finite Galois extension L/Qp which contains E and over which ρ is realizable,
i.e., there exist a L[GQp ]-module WL and an isomorphism WL ⊗L Qp ' W. Then we have
to show that the map HomL[GQp ](WL,L⊗Qp E) → HomL(WL,L) is injective. By considering
Qp-linear homomorphisms instead of L-linear ones in the previous map, it suffices to prove
that the map (V ⊗QpQp)GQp ⊗QpQp →V ⊗QpQp given by (v⊗a)⊗b 7→ v⊗(ab) is injective, where
V =HomQp (WL,Qp) and GQp acts on both factors of V ⊗QpQp. But V is finite dimensional over
Qp, so this follows from the Qp-admissibility in the sense of Fontaine of Galois representations
of finite image (see e.g. [FO08, Proposition 2.7]). �

Proposition 3.2.8. Let (W ,ρ) ∈Art
Qp

(GQ), let K ⊂Q be a splitting field of ρ and let P0 be the

p-adic place of K defined by a fixed embedding ιp : Q ,→Qp. We have

δL
Q(ρ)= dimker

[
L : HomGQ

(W ,O×,∧
K )→Hom(W ,Qp)

]
,

the map L being the post-composition by logp : O×,∧
K →Qp ⊗Qp KP0 followed by the internal

multiplication Qp ⊗Qp KP0 →Qp.

Proof. First note that the p-adic logarithm logp : O×
E → E over a finite extension E of Qp

induces an isomorphism O
×,∧
E ' Qp ⊗Qp E. Applying Lemma 3.2.7 to E = KP0 we obtain

isomorphisms HomGQp
(W ,O×,∧

KP0
) ' HomGQp

(W ,Qp ⊗Qp KP0) ' Hom(W ,Qp). The map L is
simply the map ιQ(ρ) composed with these isomorphisms, so the claim follows. �

4. BOUNDS ON LEOPOLDT’S AND GROSS’S DEFECTS

Throughout this section we fix an embedding ιp : Q ,→Qp.

4.1. Bounds on Leopoldt’s defect.
Theorem 4.1.1. Let ρ ∈ Art

Qp
(GQ) be irreducible and let d = d(ρ), d+ = d+(ρ). We have

δL
Q

(ρ)≤ (d+)2
d+d+ .

Proof. Since δL
Q

(1) = δL
Q
= 0, we may assume that ρ 6= 1. Let K be a splitting field of ρ and

let G = Gal(K /Q). Recall from Lemma 3.2.1 that dimHomG(W ,O×,∧
K ) = d+. By Proposition

3.2.8 it is enough to show that the rank of the map HomG(W ,O×,∧
K )→Hom(W ,Qp) induced by

a⊗ x 7→ a logp(ιp(x)) on O
×,∧
K is at least d·d+

d+d+ .
Consider a Q-structure on W, that is, a Q-linear representation W

Q
of G such that W

Q
⊗
Q

Qp 'W . Let also w1, . . . ,wd be a Q-basis of W
Q

. Using an isomorphism e(ρ) ·
(
Q⊗O×

K

)
'W⊕d+

Q

we may define G-equivariant morphisms Ψ1, . . . ,Ψd+ : W
Q
−→ Q⊗O×

K which form a basis
of HomG(W ,O×,∧

K ). Moreover, the elements Ψ j(wi) ∈ Q⊗O×
K for 1 ≤ i ≤ d, 1 ≤ j ≤ d+ are Q-

linearly independent by construction, as well as their p-adic logarithms by Proposition 2.1.2.
Hence, the matrix M = (logp(ιp(Ψ j(wi))))i, j of size d×d+ satisfies θ(M) = d+

d and Theorem
2.2.1 implies rk M ≥ d·d+

d+d+ as claimed. �

Corollary 4.1.2. (1) Let ρ ∈Art
Qp

(Gk) and let d+ = d+(ρ). We have δL
k (ρ)≤ d+/2.

(2) For every finite extensions K /k of number fields, we have δL
K ≤ δL

k + (
rkO×

K −rkO×
k

)
/2.
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Proof. Since d+ ≤ d, the first inequality obviously follows from Theorem 4.1.1 for irreducible
ρ ∈ Art

Qp
(GQ), hence it follows for general ρ from Artin formalism. By Lemma 3.2.1, the

unique representation ρ0 of Gk such that Indk
K1=1⊕ρ0 satisfies d+(ρ0)= rkO×

K −rkO×
k , so

the second inequality follows from the first one applied to ρ0. �

4.2. Bounds on Gross’s defect.
Theorem 4.2.1. Let ρ ∈ Art

Qp
(GQ) be irreducible and let f = f (ρ), d+ = d+(ρ). If d+ = f = 0,

then δG
Q

(ρ)= 0. Otherwise, we have δG
Q

(ρ)≤ f 2

d++2 f .

Proof. Recall from Section 3.2 that dimHomG(W ,OK [ 1
p ]×,∧)= d++ f and that dimW0

p = f . If
ρ =1 or f = 0, then the codomain of LQ(ρ) is {0}, yielding δG

Q
(ρ)= 0. We assume henceforth

that ρ 6=1 and f > 0. Let K be a splitting field of ρ and let G =Gal(K /Q). By Corollary 3.2.4
(2) and Proposition 3.2.2 it is enough to show that the rank of the map HomG(W ,OK [ 1

p ]×,∧)→
Hom(W0

p ,Qp) induced by a⊗ x 7→ a logp(ιp(x)) on OK [ 1
p ]×,∧ is at least (d++ f )· f

d++2 f .

As in the proof of Theorem 4.1.1, fix a Q-structure W
Q

of W. Fix also a basis w1, . . . ,w f of

the subspace W0
Q,p

of GQp -invariants of W
Q

and an isomorphism e(ρ)·
(
Q⊗OK [ 1

p ]×
)
'W⊕(d++ f )

Q
.

These choices yield a basis Ψ1, . . . ,Ψd++ f of HomG(W ,OK [ 1
p ]×,∧) such that the elements

Ψ j(wi) ∈Q⊗O×
K for 1 ≤ i ≤ f , 1 ≤ j ≤ d++ f are Q-linearly independent. Since e(ρ) kills pQ,

we deduce from Proposition 2.1.2 that the entries of the matrix M′ = (logp(ιp(Ψ j(wi))))i, j of

size f × (d++ f ) are Q-linearly independent as well. Therefore, θ(M′) = d++ f
f and Theorem

2.2.1 implies rk M′ ≥ (d++ f )· f
d++2 f . �

Corollary 4.2.2. (1) Let ρ ∈ Art
Qp

(Gk), let K be the field cut out by ρ and let f = f (ρ).
Then the following inequalities hold true:

δG
k (ρ)


≤ f /2
< f /2 if f 6= 0 and K contains at least one real place
≤ f /3 if K is totally real

(2) Let K /k be a finite extension of number fields. Then the following inequalities hold true:

δG
K


≤ δG

k + (|Sp(K)|− |Sp(k)|))/2
< δG

k + (|Sp(K)|− |Sp(k)|))/2 if |Sp(K)| 6= |Sp(k)| and K contains at least one real place
≤ δG

k + (|Sp(K)|− |Sp(k)|))/3 if K is totally real

Proof. We know that ρ 7→ δG
k (ρ) is compatible with Artin formalism by Corollary 3.2.5. We

now explain how to prove (1). Again by Artin formalism, it suffices to prove (1) with ρ replaced
by any irreducible subrepresentation θ ∈ Art

Qp
(GQ) of IndQkρ. For such a θ, Lemma 3.2.1

implies that d+(θ) ≥ 1 if K contains at least one real place, and d+(θ) = d(θ) if K is totally
real. Therefore, the inequalities in (1) for θ directly follow from Theorem 4.2.1. Finally, (2)
follows from (1) as in the proof of Corollary 4.1.2. �

Remark 4.2.3. The matrices M and M′ appearing in the course of the proof of Theorems 4.1.1
and 4.2.1 have full rank under the p-adic Schanuel conjecture. Therefore, Artin formalism
shows that Leopoldt’s and Gross-Kuz’min’s conjectures hold in great generality under the
p-adic Schanuel conjecture.
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4.3. Applications.
Theorem 4.3.1. Let k be a totally real number field and let (V ,ρ) ∈ Art

Qp
(Gk) be such that

d+(ρ) = 0. Then Gross’s p-adic regulator matrix Rp(V ) [Gro81, (2.10)] is of size f (ρ) and of
rank at least f (ρ)/2.

Proof. Let K be the CM field cut out by ρ and let (Hom
Qp

(V ,Qp),ρ∗) be the contragredient
representation of ρ. Gross’s regulator map λp defined in [Gro81, (1.18)] can be identified with
the “minus part” of LK , which is, by definition, the restriction of LK to the subspace where
the complex conjugation acts by −1. This means that λp and LK share the same θ-isotypic
component for every representation θ ∈ Art

Qp
(Gal(K /k)) such that d+(θ) = 0. Since taking

(V ⊗−)Gk amounts to taking ρ∗-isotypic components, we conclude that rkRp(V )= rkLk(ρ∗)=
f (ρ∗)−δG

k (ρ∗), so rkRp(V )≥ f (ρ∗)/2= f (ρ)/2 by Theorem 4.2.1. �

In the next theorem, we write k+ for the maximal totally real subfield of a number field k,
and Qab for the maximal abelian extension of Q.
Theorem 4.3.2. Let K /k be an abelian extension of number fields. The Gross-Kuz’min conjec-
ture holds for K in each of the following cases.

(a) Either |Sp(K)| ≤ 2, or |Sp(K)| ≤ 3 and K has at least one real place, or |Sp(K)| ≤ 4 and
K /Q is Galois, or |Sp(K)| ≤ 6 and K /Q is a real Galois extension.

(b) |Sp(k)| = 1, or |Sp(k)| ≤ 2 and K has at least one real place.
(c) K ⊂ k ·Qab, k/Q is Galois, and either |Sp(k)| ≤ 3, or |Sp(k)| ≤ 5 and K is real.
(d) k is an imaginary quadratic field, or k is a real quadratic field and K has at least one

real place.
(e) k/Q is Galois, |Sp(k)| ≤ 2, |Sp(k+)| = 1 and [K : k] and [k :Q] are coprime.

Proof. Recall that δG(−) is compatible with Artin formalism by Corollary 3.2.5. We shall often
appeal to Lemma 3.2.1 and to the following consequence of Theorem 4.2.1 without further
notice. For any irreducible representation θ ∈Art

Qp
(GQ), we have δG

Q
(θ)= 0 if f (θ)≤ 1, or if

f (θ) = 2 and d+(θ) ≥ 1. In particular, δG
Q

(θ) = 0 if θ is a multiplicative character of GQ, so
δG

M = 0 for any abelian extension M/Q by Artin formalism.
Since δG

Q
= 0, it follows from Corollary 4.2.2 that δG

K = 0 for K satisfying one of the two
first assumptions in case (a). Consider the two last assumptions in (a) and assume that K /Q
is Galois. We claim that δG

Q
(θ) = 0 for all irreducible θ ∈ Art

Qp
(Gal(K /Q)). We may assume

that dimθ ≥ 2, so f (θ)≤ ( f (1K )− f (1Q))/(dimθ)≤ (|Sp(K)|−1)/2. The two last assumptions in
(a) ensure that we either have f (θ) ≤ 1, or f (θ) ≤ 2 and d+(θ) = d(θ) ≥ 1, so we indeed have
δG
Q

(θ)= 0. Therefore, δG
K = 0 in case (a).

Let G = Gal(K /k) and let Ĝ = Hom(G,Q×
p) be the group of characters of G. We place

ourselves in cases (b), (c) and (d), we fix χ ∈ Ĝ and we show that δG
k (χ) = 0. Since f (χ) ≤

|Sp(k)|, Corollary 4.2.2 (1) implies δG
k (χ) = 0 in case (b). Suppose now we are in case (c).

Then χ descends to a character χQ of GQ. Moreover, as k/Q is Galois, any irreducible
subrepresentation ρ of IndQkχ ' (IndQk1k)⊗χQ occurs (dimρ) times, so it satisfies f (ρ) ≤
|Sp(k)|/(dimρ). Moreover, if K is totally real, then any such ρ satisfies d+(ρ) = d(ρ) ≥ 1, so
we can conclude δG

Q
(ρ) = 0. Therefore, δG

k (χ) = 0 in case (c). We now assume to be in case

(d). Then IndQkχ has dimension 2, so it is either irreducible or it is the sum of two characters
of GQ, say η1 and η2. In the latter case, we already know that δG

Q
(ηi) = 0 for i = 1,2, so
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δG
k (χ)= δG

Q
(IndQkχ)= 0. If IndQkχ is irreducible, then the assumptions on K and k imply that

f (χ)≤ 2 and d+(χ)≥ 1, yielding δG
k (χ)= 0. Therefore, δG

K = 0 in the cases (b), (c) and (d).
We now make the assumptions in (e) and we assume without loss of generality that K

is Galois over Q with Galois group G. By the Schur-Zassenhaus theorem, G is the semi-
direct product of H :=Gal(k/Q) acting on G. Let ρ ∈Art

Qp
(G) be irreducible and let us prove

that δG
Q

(ρ) = 0. By [Ser78, Chap II § 8.2], ρ can be written as IndQk′(θ⊗χ), where k′/Q is
a subextension of k/Q, θ an irreducible representation of Gal(k/k′) and χ a character of
Gal(K /k′). Note that f (ρ) ≤ |Sp(k)|/(dimθ) ≤ 2/(dimθ), so we may assume without loss of
generality that dimθ = 1. If k′ is totally real, then f (ρ)≤ |Sp(k′)| ≤ |Sp(k+)| = 1, and otherwise
we have d+(ρ)≥ 1. In any case, δG

Q
(ρ)= 0 so we may infer δG

K = 0 in case (e) as well. �

5. VANISHING LOCUS OF GROSS’S DEFECT

5.1. Preliminaries. This section is devoted to the proof of the following theorem which, in
turn, implies Theorem 1.5 stated in the introduction.
Theorem 5.1.1. Let k be a number field and let ϕ : Gk → Q×

p be a finite-order character.
Assume also that p completely splits in the number field cut out by ϕ.

(1) Assume that r2 +δL
k ≤ 1, where r2 is the number of complex places of k. If there exists

at least one Zp-extension k∞ of k such that δG
k∞/k(ϕ)= 0, then there are at most [k :Q]

(and at most [k :Q]−1 if ϕ=1) Zp-extensions k∞/k such that δG
k∞/k(ϕ) 6= 0.

(2) Assume that k is an imaginary quadratic field. There is at most one Zp-extension
k∞/k for which δG

k∞/k(ϕ) 6= 0, and it has a transcendental slope (see Example 5.2.3 for a
definition of the slope of k∞/k). Moreover, if ϕ cuts out an abelian extension of Q or if
the p-adic Schanuel conjecture holds, then δG

k∞/k(ϕ)= 0 for any Zp-extension k∞ of k.

Proof of Theorem 1.5, assuming Theorem 5.1.1. Let K be an abelian extension of an imagi-
nary quadratic field k and let Kab ⊂ K be its maximal absolutely abelian subfield. By Artin
formalism (Corollary 3.2.5) and by Theorem 5.1.1, we have δG

Kk∞/K > 0 for a given Zp-extension
k∞/k if and only if there exists a character ϕ of Gal(K /k) such that δG

k∞/k(ϕ)> 0. Such a char-
acter cannot be a character of Gal(Kab/k), and moreover, k∞ is uniquely determined by ϕ.
Therefore, we have δG

Kk∞/K > 0 for at most [K : k]− [Kab : k] distinct Zp-extensions of k. �

In the rest of Section 5, we fix once and for all an abelian extension K /k with Galois group
G such that p totally splits in K . We let n be the degree of k and (r1, r2) its signature, and we
put r = r1 + r2 −1−δL

k so that the maximal multiple Zp-extension of k has rank n− r. Write
p1, . . . ,pn for the p-adic primes of k. Finally, denote by Z(k) the set of all Zp-extensions of k.

Instead of working with the map Lk∞/k(ϕ), it will be more convenient to consider the
following alternative description of δG

k∞/k(ϕ).
Lemma 5.1.2. Let k∞/k be a Zp-extension with Galois group Γ. The quantity δG

k∞/k(ϕ) is the
dimension of the kernel of the ϕ-isotypic component of the map LocK∞/K of Proposition 3.1.3.

Proof. This follows from Poitou-Tate duality as in the proof of Proposition 3.1.5 where one
replaces the GK -module Qp by the module Qp(ϕ) on which Gk acts by ϕ. �

Since ϕ is a multiplicative character, the ϕ-isotypic component of a Qp[G]-module X is
canonically isomorphic to the linear subspace X [ϕ] of X consisting of elements x ∈ X such
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that g · x = ϕ(g)x for all g ∈ G. Hence Lemma 5.1.2 asserts that, if ϕ 6= 1k, then δG
k∞/k(ϕ) is

equal to the dimension of the kernel of the localization map

(8) Hom(GK ,Qp)[ϕ]−→
n⊕

i=1

(⊕
P|pi

H1(KP,Qp)/Hom(ΓP,Qp)

)
[ϕ].

5.2. Matrices in logarithms of algebraic numbers. For any P ∈ Sp(K), we identify
H1(KP,Qp) with Hom(K×

P,Qp) ' Hom(Q×
p ,Qp) via local class field theory. We also see logp

and the p-adic valuation map ordp as additive characters K×
P ' Q×

p → Qp. In order to de-
scribe elements in the domain of the map (8) we make use of the short exact sequence of
Qp[G]-modules

(9) 0 Hom(GK ,Qp)
⊕n

i=1 Hom(
∏

P|pi K×
P,Qp) Hom(OK [ 1

p ]×,Qp),A

where A is induced by the Artin map.
Let 1 ≤ i ≤ n and fix a prime Pi of K above pi. We define a basis {ηi,ϕ, η̃i,ϕ} of the ϕ-

component of Hom(
∏

P|pi K×
P,Qp) as follows. First define characters ηi and η̃i of

∏
P|pi K×

P by
imposing that they are supported on K×

Pi
and that ηi|K×

Pi
=− logp and η̃i|K×

Pi
= ordp. We then

define
ηi,ϕ = ∑

σ∈G
ϕ(σ) ·ηi ◦σ, η̃i,ϕ = ∑

σ∈G
ϕ(σ) · η̃i ◦σ.

Let ui be any Pi-unit of K which is not a unit (take for example a generator of Ph
i , where

h is the class number of K). The choice of ui with a given Pi-valuation is unique, up to
multiplication by a unit of K . Consider

ui,ϕ = ∏
σ∈G

ϕ(σ)⊗σ−1(ui) ∈Q⊗K×.

It is clear that ui,ϕ is a unit away from the primes above pi, and u1,ϕ, . . . ,un,ϕ form a basis
of (Q⊗OK [1/pi]×)[ϕ] modulo (Q⊗O×

K )[ϕ]. We also fix a basis {ε1,ϕ, . . . ,εr(ϕ),ϕ} of (Q⊗O×
K )[ϕ]

modulo the kernel of Leopoldt’s map ιk(ϕ) of (7), where r(ϕ)= d+(ϕ)−δL
k (ϕ). For all j = 1, . . . ,n,

one can see via ιP j : K ,→ KP j =Qp the elements ui,ϕ and εi,ϕ inside Q⊗Q×
p. We then define

two matrices Lϕ = (L i, j,ϕ) and Mϕ = (Mi, j,ϕ) of respective sizes n×n and r(ϕ)×n by letting

L i, j,ϕ =
logp(ιP j (ui,ϕ))

ordp(ιPi (ui))
, Mi, j,ϕ = logp(ιP j (εi,ϕ)),

where we extended logp to Q⊗Q×
p by linearity. Notice that Mϕ has full rank by construction.

Let η′ be an element in the ϕ-component of
⊕n

i=1 Hom(
∏

P|pi K×
P,Qp), which we write as∑

tiηi,ϕ+ t̃iη̃i,ϕ in the basis {ηi,ϕ, η̃i,ϕ : 1≤ i ≤ n}. Denote by T and T̃ the column matrices of
respective coordinates (t1, . . . , tn) and (t̃1, . . . , t̃n).
Lemma 5.2.1. η′ belongs to the image of the map A of (9) if and only if T̃ = LϕT and MϕT = 0.

Proof. By the exactness of (9) such an η′ is characterized by its vanishing at all the ui ’s
and the εi,ϕ’s. The lemma then follows from a straightforward computation, using that
η j,ϕ(ιP j (ui))=− logp(ιP j (ui,ϕ)) and η̃ j,ϕ(ιP j (ui))= ordp(ιP j (ui)) for all 1≤ i, j ≤ n. �

In what follows we repeatedly use the following elementary fact. For all compact topological
groups G, any non-trivial continuous group homomorphism η : G → Qp factors through a
quotient Zη isomorphic to Zp, and two such homomorphisms η and η′ are proportional if
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and only if Zη = Zη′ . Conversely, any topological group Z isomorphic to Zp which arises as a
quotient of G defines a continuous homomorphism η : G→Qp, which is unique up to scaling.

Fix k∞ ∈Z (k) and put Γ=Gal(k∞/k). The above argument attaches to Γ a non-zero element
η ∈ Hom(Gk,Qp), unique up to scaling. Since the restriction map induces an isomorphism
Hom(Gk,Qp)'Hom(GK ,Qp)[1], one can write A(η) as

∑
i(siηi,1+ s̃iη̃i,1). We shall refer to the

column matrices S = (s1, . . . , sn)t ∈Pn−1(Qp) and S̃ = (s̃1, . . . , s̃n)t ∈Pn−1(Qp) as the coordinates
of k∞.
Proposition 5.2.2. (1) The map sending a Zp-extension k∞/k to its coordinates S defines

a bijection between Z (k) and {S ∈Pn−1(Qp) : M1S = 0}.
(2) Let k∞ ∈ Z (k) with coordinates S ∈ ker(M1) and let Nϕ(S) be the matrix of size

(n+ r(ϕ))×n given in block notation by:[
Diag(S)Lϕ−Diag(L1S)

Mϕ

]
,

where Diag(U) denotes the diagonal matrix associated with a column matrix U . Then

δG
k∞/k(ϕ)= dimker Nϕ(S)−γ,

where γ= 1 if ϕ=1 and γ= 0 otherwise.

Proof. The first point follows from Lemma 5.2.1 applied to ϕ=1. More precisely, S and S̃ are
uniquely determined by the relations S̃ = L1S and M1S = 0. Conversely, any S, S̃ ∈Pn−1(Qp)
satisfying these relations define a non-zero element η ∈Hom(Gk,Qp) which cuts out the Galois
group of a Zp-extension k∞/k.

Let us prove the second claim. Fix k∞ ∈ Z (k) and denote by η ∈ Hom(GK ,Qp)[1] the
corresponding continuous homomorphism. By Lemma 5.1.2 and by (8), δG

k∞/k(ϕ)+γ is the

dimension of the space consisting of all elements η′ ∈⊕n
i=1

(
Hom(

∏
P|pi K×

P,Qp)
)
[ϕ] satisfying

the conditions of Lemma 5.2.1 and which are proportional to A(η). This last condition means
that for all 1≤ i ≤ n, the restriction to K×

Pi
of η′ and A(η) are proportional, i.e.,

η′($i) · A(η)|O×
KPi

= A(η)($i) ·η′|O×
KPi

,

where $i is a uniformizer of KPi . In terms of coordinates S, S̃ and T, T̃, this last equality
is equivalent to t̃isi = s̃i ti, an equality for all i which can be rephrased as Diag(S)LϕT =
Diag(L1S)T. Therefore, δG

k∞/k(ϕ)+γ is the dimension of the space of all T ∈Qn
p in the kernel

of both Diag(S)Lϕ−Diag(L1S) and Mϕ, as claimed. �

Example 5.2.3. If k is an imaginary quadratic field, then M1 is of size 0 and Proposition
5.2.2 (1) provides a bijection between Z (k) and P1(Qp). The ratio s1/s2 ∈Qp ∪ {∞} attached
to any k∞ ∈ Z (k) of coordinates S = (s1, s2) ∈ P1(Qp) is referred to as the slope of k∞. For
instance, the cyclotomic extension of k has slope 1, whereas its anticyclotomic extension has
slope −1.

5.3. Proof of Theorem 5.1.1. We keep the notations of the preceding sections and we
abbreviate L1, M1 and N1(S) as L, M and N(S) respectively. Note that, by Proposition 5.2.2
(1), the set Z (k) can be identified with a closed linear subvariety of Pn−1(Qp) of dimension
n− r−1= r2 +δL

k .
Proposition 5.3.1. Assume that n− r ≤ 2.
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(1) Let C (k) = {k∞ ∈Z (k) : δG
k∞/k 6= 0}. If C (k) 6=Z (k), then C (k) is finite with |C (k)| ≤

n−1. If, moreover, k is imaginary quadratic, then C (k)=;.
(2) Let Cϕ(k) = {k∞ ∈ Z (k) : δG

k∞/k(ϕ) 6= 0}. If Cϕ(k) 6= Z (k), then Cϕ(k) is finite with
|C (k)| ≤ n.

Proof. Let us prove (1). Notice first that all S ∈ ker M lie in the kernel of N(S). By Proposition
5.2.2 with ϕ = 1 and K = k, C (k) is in bijection with the set of all S ∈ Pn−1(Qp) such that
MS = 0 and rk N(S)< n−1.

Assume first that k is quadratic, so n = 2 and r = 0. Given any S = (s1, s2) ∈ P1(Qp), the
matrix N(S)=Diag(S)L−Diag(LS) has the form(−s2L1,2 s1L1,2

s2L2,1 −s1L2,1

)
.

As logp is injective on Z×
p, logp(ιp1(u2)) and logp(ιp2(u1)) both are non-zero, so at least one of

the two non-diagonal entries of N(S) is non-zero. Therefore, this matrix has rank one for any
S ∈P1(Qp), and C (k)=;.

We no longer assume that k is imaginary quadratic, but we still assume that n− r ≤ 2.
The case where n− r = 1 is trivial, because it forces Z (k)= {kcyc}. We may then assume that
n−r = 2. Since M has full rank r, there exist invertible matrices P,Q such that PMQ = (Ir | 0),
where Ir is the identity matrix of size r. The change of variables S′ =Q−1S induces a linear
bijection between ker M ⊂ Pn−1(Qp) and the projective line {0}×P1(Qp) ⊂ Pn−1(Qp). Now
consider the list P1(S′), . . . ,Pt(S′) of all (n−1)× (n−1)-minors of the matrix

N(S)= N(QS′)=
[
Diag(QS′)L−Diag(LQS′)

M

]
.

All the Pk’s are two-variable homogeneous polynomials of degree ≤ n−1. In particular, if
C (k) 6=Z (k), then at least one of the Pk ’s is not the zero polynomial and hence, it has at most
n−1 zeros in {0}×P1(Qp), so we can conclude that |C (k)| ≤ n−1.

The proof of point (2) very similar to the previous one. Indeed, by Proposition 5.2.2, Cϕ(k)
is in bijection with the set of all S ∈Pn−1(Qp) such that MS = 0 and rk Nϕ(S)< n. The same
argument with the (n−1)×(n−1) minors of N(S) replaced by the n×n minors of Nϕ(S) shows
that, if Cϕ(k) 6=Z (k), then |C (k)| ≤ n. �

We end the proof of Theorem 5.1.1 with the case where k is imaginary quadratic. We let τ
be the complex conjugation of k. Recall that τ acts on ϕ via ϕτ(g)=ϕ(τgτ) and that ϕτ =ϕ if
and only if ϕ cuts out an extension of k which is abelian over Q.
Proposition 5.3.2. Assume that k is imaginary quadratic and that ϕ 6=1.

(1) If ϕτ =ϕ, then Cϕ(k)=;.
(2) If ϕτ 6=ϕ, then any k∞ ∈Cϕ(k) has transcendental slope.
(3) If ϕτ 6= ϕ, then |Cϕ(k)| ≤ 1. Moreover, if the p-adic Schanuel conjecture holds, then

Cϕ(k)=;.

Proof. Let k∞ ∈Z (k) of coordinates S = (s1, s2). Take K to be the Galois closure over Q of the
field cut out by ϕ. Note that K 6= k and that p totally splits in K . By Proposition 5.2.2, k∞
belongs to Cϕ(k) if and only if the matrix

Nϕ(S)=
s1(L1,1,ϕ−L1,1)− s2L1,2 s1L1,2,ϕ

s2L2,1,ϕ s2(L2,2,ϕ−L2,2)− s1L2,1
M1,1,ϕ M1,2,ϕ


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has rank 1. The definition of Lϕ (and also Lϕτ) involves the choice, for i = 1,2, of a
prime Pi of K above pi and a Pi-unit ui of non-zero valuation. Since τ(p1) = p2, one
may take τ(P1) = P2 and τ(u1) = u2, so that L1,1 = L2,2, L1,2 = L2,1, L1,1,φ = L2,2,φτ and
L1,2,φ = L2,1,φτ for φ ∈ {ϕ,ϕτ}. We may also take τ(ε1,ϕ) to be ε1,ϕτ , so that M1,2,ϕ = M1,1,ϕτ .
Moreover, the sets {u1,ϕ,u1,1,u2,ϕ,u2,1,ε1,ϕ} and, under the additional condition ϕ 6= ϕτ,
{u1,ϕ,u1,ϕτ ,u1,1,u2,ϕ,u2,ϕτ ,u2,1,ε1,ϕ,ε1,ϕτ} are sets of linearly independent p-units. To see
this, it suffices to consider their valuations at P1 and P2, and use the simple fact that units
belonging to distinct isotypic components are linearly independent.

Now, consider first the case where ϕ = ϕτ. Then Nϕ(S) has rank 1 if and only if its two
columns are equal. This last condition easily implies that s1 =±s2 and that u1,ϕ/u1,1, u2,1

and u2,ϕ have Q-linearly dependent P1-adic logarithms. But all of these units have trivial
P1-valuation, so they must be linearly dependent by Proposition 2.1.2. We have already
justified that this is not the case, so Nϕ(S) has rank 2 and Cϕ(k)=;.

Assume now that ϕ 6= ϕτ and that k∞ has an algebraic slope, i.e., s1/s2 ∈ P1(Q). We may
assume that both s1 and s2 are algebraic numbers, hence Nϕ(S) has coefficients in the Q-
linear subspace Λ of Qp introduced in Section 2. Moreover, Nϕ(S) has Q-linearly independent
rows and columns. Indeed, the sets {ε1,ϕ,ε1,ϕτ} and {u1,ϕ/u1,1,u2,1,u2,ϕ,ε1,ϕ} are two sets of
independent units with trivial P1-valuation. Therefore, their images under logp ◦ιP1 are
again linearly independent by Proposition 2.1.2. We thus may apply Corollary 2.2.2 and
conclude that rk Nϕ(S)= 2.

Finally, assume that ϕ 6=ϕτ and that k∞ ∈Cϕ(k), i.e., Nϕ(S) has rank 1. We already know
that s1/s2 ∈P1(Qp)−P1(Q) and in particular, both s1 and s2 are non-zero. Since L1,2 ·M1,2,ϕ 6= 0,
the vanishing of the minor obtained by removing the second row uniquely determines the slope
s1/s2, so |Cϕ(k)| ≤ 1. Using the vanishing of the other minors, an elementary computation
yields the polynomial relation

M1,1,ϕ ·M1,1,ϕτ ·L2
2,1 =

(
M1,1,ϕ · (L1,1,ϕτ −L1,1)−M1,1,ϕτ ·L2,1,ϕ

)(
M1,1,ϕτ · (L1,1,ϕ−L1,1)−M1,1,ϕ ·L2,1,ϕτ

)
.

The elements of the set {u1,ϕ/u1,1,u1,ϕτ /u1,1,u2,ϕ/u2,1,u2,ϕτ /u2,1,ε1,ϕ,ε1,ϕτ} are linearly in-
dependent, and they all have a trivial P1-adic valuation, so their images under logp ◦ιP1 are
also Q-linearly independent. Therefore, the above polynomial identity contradicts the p-adic
Schanuel conjecture. This shows that Cϕ(k)=; under the p-adic Schanuel conjecture. �
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