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Introduction

These notes correspond to the course Elliptic Curves taught at the Summer School Explicit and com-
putational approaches to Galois representations that took place at the University of Luxembourg, 3-7
July 2018. This course consisted of three lectures, and is focused on presenting some background
material on elliptic curves and introducing the Galois representations attached to their torsion.

As such, these notes hardly contain any proof, and is rather a comprehensive collection of defin-
itions and statements that will allow to formulate some interesting questions concerning these rep-
resentations for the project sessions (included as Section 12 in these notes), and tackle them compu-
tationally. I claim no originality of any of the material presented. In fact, for most of the content,
I followed the presentation in the books of Silverman [Sil92] and [Sil94], complemented with some
material from Serre’s book [Ser98].

I hope these notes are useful as a quick introduction to the compatible system of Galois repres-
entations attached to an elliptic curve defined over a number field. Any comments, corrections and
remarks are very welcome!

Thanks to Alexander Rahm for several remarks on a previous version of these notes.

Notations

Some notations to be used thoughout the lecture notes:
K will denote a field; most of the time it will be either a number field or a local field. K denotes a

(fixed) algebraic closure of K, and GK := Gal(K/K) the absolute Galois group, endowed with the
Krull topology. When K is a local field, v will denote the valuation of K, usually normalised in such
a way that v(K×) = Z. The valuation ring will be denoted by OK , its maximal ideal by mK and the
residue field will be usually denoted by k.

GK acts on the projective space Pn(K) coordinatewise; for any P ∈ Pr(K) and σ ∈ GK , we
denote by P σ the point obtained from P via the action of σ.

Given a curve C defined over a field K, and F/K a field extension, we denote by C(F ) the set
of points of C defined over F , and F (C) the field of F -rational functions of C. GK acts on K(C) as
follows; given f ∈ K(C), we can choose a polynomial representing it; then fσ is obtained from f by
letting σ act on its coefficients.

IfC1, C2 are curves defined overK and φ : C1 → C2 a morphism of curves, then φ can be written
as (φ1, . . . , φr) for some r ∈ N, φ1, . . . , φr ∈ K(C1); GK acts on φ coordinatewise. We denote by
φσ the morphism obtained from φ by the action of σ ∈ GK .

The image in the title page was drawn using GeoGebra 4 (http://www.geogebra.org)
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1 Weierstrass equations

Definition 1.1. Let K be a field. An elliptic curve E/K is a genus 1 curve1, endowed with a rational
point OE ∈ E(K).

Every elliptic curve E/K can be expressed as a plane curve given by a homogeneous equation

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3, (1.1)

where a1, a2, a3, a4, a6 ∈ K and where the point OE corresponds to the projective point [0 : 1 : 0].
Such an equation is called a Weierstrass equation for E. Since the only point of E belonging to the
infinity hyperplane {Z = 0} is the point OE , we will usually work with the dehomogeneization of
Equation (1.1) with respect to Z, that is,

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6. (1.2)

Weierstrass equations for E are not unique. In general, if we perform the change of variablesx = u2x′ + r

y = u3y′ + u2sx′ + t
(1.3)

we obtain another Weierstrass equation for E. If the characteristic of K is different from 2 or 3, we
can perform a particularly nice change of variables to obtain an equation of the shape

y2 = x3 +Ax+B, (1.4)

with A,B ∈ K.
It is not true that any equation of the shape (1.2) defines an elliptic curve, since the geometric

locus of the points satisfying the equation (together with the point OE at infinity) could be a singular
curve. There are two important quantities attached to a Weierstrass equation; one is the discriminant
∆, and another one is the j-invariant. Both quantities can be defined in terms of the coefficients
a1, a2, a3, a4, a6 of the equation as follows:

b2 := a21 + 4a2;

b4 := 2a4 + a1a3;

b6 := a23 + 4a6;

b8 := a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24;

c4 := b22 − 24b4;

c6 := b32 + 36b2b4 − 216b6;

∆ := −b22b8 − 8b34 − 27b26 + 9b2b4b6;

j := c34/∆;

1By a curve, we mean a smooth, projective, algebraic variety of dimension 1.
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The curve defined by (1.2) is nonsingular (thus an elliptic curve) if and only if ∆ 6= 0. The j-invariant
classifies elliptic curves up to K-isomorphisms; if the j-invariant of two equations coincide, then
there is an isomorphism, defined over K, between the curves defined by the two equations. Thus, we
can speak of the j-invariant of the elliptic curve, since it does not depend on the Weierstrass equation
of the curve. For each j0 ∈ K there exists an elliptic curve E defined over K(j0) such that the j-
invariant of E is j0; thus, there is a bijection between the set of equivalence classes of elliptic curves
defined over K (up to isomorphism) and the set K.

2 Group law and torsion points

The main feature of an elliptic curve E/K is that, for any field extension F/K, the set of F -points of
E is endowed with the structure of a commutative group, where OE is the neutral element. The next
figure illustrates the geometric definition of addition of points.

The fact that E(F ), together with the addition defined geometrically, is a group, can be proved in
a completely elementary way (but the proof of associativity requires a great amount of patience).

Given a Weierstrass equation (1.2) for E, and the (affine) coordinates of the points P1 = (x1, y1),
P2 = (x2, y2), we can express the coordinates of the sum P3 = (x3, y3) := P1 ⊕ P2 in terms of

The image was drawn using GeoGebra 4 (http://www.geogebra.org)
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x1, y1, x2, y2 as follows: x3 = λ2 + a1λ− a2 − x1 − x2;

y3 = −(λ+ a1)x3 − ν − a3;
(2.5)

where λ = y2−y1
x2−x1 ;

ν = y1x2−y2x1
x2−x1 ;

if x2 − x1 6= 0; otherwise λ = 3x1+2a2x1+a4−a1y1
2y1+a1x1+a3

;

ν =
−x31+a4x1+2a6−a3y1

2y1+a1x1+a3
;

if x2 = x1 and 2y1+a1x1+a3 6= 0. In case x1 = x2 and 2y1+a1x1+a3 = 0 we have P1+P2 = OE .
From this formulae, one can see that the map ⊕ : E(K)× E(K)→ E(K) is in fact a morphism

of algebraic varieties, except at the points (P, P ), (P,−P ), (P,OE), (OE , P ), (OE , OE), where
different formulae hold. However, one can check that, in fact, it is a morphism of algebraic varieties
(cf. [Sil92, Remark 3.6.1, Chapter III]). The oposite of an (affine) point (x0, y0) can be computed as
follows: −P = (x0,−y0− a1x0− a3). Thus, the map − : E(K)→ E(K) mapping P to −P is also
a morphism of algebraic varieties.

Another way to introduce the addition law on E is by means of divisors. Given E/K an elliptic
curve, we define the group Div(E) as the free abelian group generated by the points of E(K). De-
noting by (P ) the divisor corresponding to the point P , any divisor D can be expressed as a finite
sum

D =
n∑
i=1

an(Pn),

where n ∈ N, a1, . . . , an ∈ Z, P1, . . . , Pn ∈ E(K). For such a divisor D we define its degree
as degD =

∑n
i=1 an ∈ Z; the subset of degree-0 divisors is a subgroup of Div(E), denoted by

Div0(E).
Given a rational function f ∈ K(E), which is not constantly equal to zero, one can attach to it a

divisor in the following way: if P1, . . . , Pn are the points where f vanishes and Q1, . . . , Qm are the
points where f has a pole, we set

div(f) :=
n∑
i=1

ai(Pi)−
m∑
j=1

bj(Qj),

where for each i = 1, . . . , n, ai is the order of vanishing of f at Pi, and for each j = 1, . . . ,m, bj is
the order of f at the pole Qj . The divisors of the form D = div(f) for f ∈ K(E) \ {0} are called
principal divisors, and they for a subgroup of Div(E). It holds that, for any f ∈ K(E) not identically
zero, deg div(f) = 0 (cf. [Har77, (II.6.10)]).

Now we can define an equivalence relation in Div(E) as follows: D1 ∼ D2 if and only if there
exists f ∈ K(E), non-identically zero, such that D1 = D2 + div(f). The quotient group, denoted
by Pic(E), is called the Picard group of E. Since the subgroup of principal divisors is contained in
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Div0(E), we can also consider the quotient Pic0(E) of Div0(E) by the equivalence relation above;
we obtain a subgroup Pic0(E) ⊂ Pic(E).

We have the following exact sequence

1→ K \ {0} → K(E) \ {0} → Div0(E)→ Pic0(E)→ 0.

Given a field extension F/K, the Galois group Gal(K/F ) acts naturally on E(K). This action
carries through to an action on Div(E), and we can consider the subset DivF (E) = {D ∈ Div(E) :

Dσ = D for all σ ∈ Gal(K/F )}. Since the group of principal divisors is preserved by the Galois
action, we can also consider the subset PicF (E) = {[D] ∈ Pic(E) : D ∈ DivF (E)} (where [D]

denotes the equivalence class of D in the quotient group) and Pic0F (E) = {[D] ∈ Pic0(E) : D ∈
DivF (E)}. All these subsets are subgroups. Moreover, it can be proved (but is not trivial, cf. [Sil92,
Ex. II.2.13]) that Pic0F (E) is the quotient group of Div0

F (E) by F (E) \ {0}.
Now, Div0(E) and Div0

F (E) are naturally abelian groups, and we can make use of this group law
to define a group law on the set of points in the elliptic curve. We need the following proposition
(cf. [Sil92, (III.3.4(a))]).

Proposition 2.1. For every D ∈ Div0(E) there exists a unique point P ∈ E(K) such that D ∼
(P )− (OE). Thus, we obtain a bijection

Ψ : Pic0(E)→ E(K)

such that Ψ((P )− (OE)) = P .

Using the bijection Ψ, we can define a group law ⊕ : E(K) × E(K) → E(K) by P1 ⊕ P2 =

Ψ(Ψ−1(P1) + Ψ−1(P2)). It turns out that this addition law coincides with the addition law defined
geometrically using a Weierstrass equation (2.5). Note that, in particular, this result shows that the
addition law defined in terms of the coefficients of a Weierstrass equation for E does not depend on
the choice of equation, but is an intrinsic feature of the curve.

3 Isogenies

In this section we consider morphisms between elliptic curves. We start with the definition of isogeny.

Definition 3.1. Let E1, E2/K be elliptic curves. An isogeny between E1 and E2 is a morphism of
algebraic varieties, φ : E1 → E2, such that φ(OE1) = OE2 .

Remark 3.2. In the definition of isogeny, we are not asking that φ induces a group morphism between
E1(K) and E2(K). However, it turns out that every isogeny is also a group morphism; this is a
consequence of the definition of isogeny (cf. [Sil92, (III.4.8)]).

Remark 3.3. Let φ : E1 → E2 be an isogeny. There are two possibilities: either φ is a constant map
(thus constantly equal to OE2), or else it is a surjective map (cf. [Har77, (II.6.8)]). Assume we are in
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the second case. Recall that φ, as a morphism of algebraic varieties, defines a map φ∗ from the field of
rational functions ofE2 to the field of rational functions ofE1 by composition, φ∗ : K(E2)→ K(E1),
f 7→ f ◦ φ. Since φ is surjective, the map φ∗ is an injection, thus we obtain an inclusion of fields
φ∗(K(E2)) ⊂ K(E1). This extension of fields has finite degree (cf. [Har77, (II.6.8)]); the degree of
φ is defined as

deg φ := [K(E1) : φ∗K(E2)].

We can write deg φ as the product of the separable degree degs φ (defined as the separable degree
of the extension K(E1)/φ

∗K(E2)) and the inseparable degree degi(φ) (defined as the inseparability
degree of K(E1)/φ

∗K(E2)).
When φ is a non-constant isogeny, it holds that ker(φ) = φ−1(OE2) is a finite group, whose

cardinality coincides with degs φ (cf. [SZ14, Theorem 1.4.1] for a proof in the separable case).

If E1, E2 are elliptic curves defined over K, we can consider the isogenies defined over K, that is
to say, the set of isogenies φ : E1 → E2 such that, for all σ ∈ Gal(K/K), φσ = φ.

Example 3.4. Let E/K be an elliptic curve. For any m ∈ Z, we can define a map:

[m] : E(K)→ E(K)

P 7→ P + · · ·︸︷︷︸
m times

+P.

Since the addition in E is a morphism of algebraic varieties, [m] is also a morphism of algebraic
varieties from E to E. Clearly, [m](OE) = OE . Thus, [m] is an isogeny. If m 6= 0, the isogeny [m]

is not constant, of degree m2 (cf. [Sil92, (III.6.2-(d)]).

We denote by Hom(E1, E2) the set of isogenies from E1 to E2. This set is endowed with the
structure of an abelian group; namely, for each φ1, φ2 ∈ Hom(E1, E2), we can define φ1 + φ2 by the
formula (φ1 + φ2)(P ) := φ1(P ) + φ2(P ). It turns out that Hom(E1, E2) is a torsion-free Z-module
(cf. [Sil92, (III.4.2-(b))]).

If we look at isogenies from an elliptic curve into itself, we obtain the group of endomorphisms of
E, denoted by End(E). In this group there is another operation, namely the composition of isogenies.
Thus, End(E) is endowed with the structure of a (non-necessarily commutative) ring. Example 3.4
provides an injection Z ↪→ End(E). If End(E) is strictly larger than Z, we say that E has complex
multiplication. Note that, for all φ ∈ End(E) and m ∈ Z, it holds that

[m] ◦ φ = φ ◦ [m].

If there exists a non-constant isogeny between two elliptic curves E1 and E2, we say that E1

and E2 are isogenous. Being isogenous is an equivalence relationship. The reflexive and transitive
properties are clear (because the identity is an isogeny, and the composition of two isogenies is an
isogeny). The fact that the symmetric property holds is more interesting: if there is an isogeny φ :

E1 → E2, then there is another isogeny ψ : E2 → E1. In fact, one can prove the following (cf. [Sil92,
III.6.1] for a proof in the separable case).
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Proposition 3.5. Let φ : E1 → E2 be a non-constant isogeny of degree m. Then there is a unique
isogeny, called the dual isogeny,

φ̂ : E2 → E1

such that φ̂ ◦ φ = [m].

Moreover, if E1, E2 and φ are defined over K, it can be shown that φ̂ is also defined over K
(because φ is surjective and [m] is defined over K). It holds that̂̂

φ = φ.

4 Torsion points of E

Let E/K be an elliptic curve. For each m ∈ Z>0, we can consider the set of m-torsion points of E,

E[m] := ker[m] = {P ∈ E(K) : P + · · ·︸︷︷︸
m times

+P = OE}.

By definition, this set is a subgroup of E(K), whose structure is given as follows (cf. [Sil92,
(III.6.4)])

Proposition 4.1. 1. If charK = 0 or charK does not divide m, then

E[m] ' (Z/mZ)× (Z/mZ)

2. If charK = p > 0, there are two possibilities for E[p]:

(a) E[p] = {OE} or

(b) E[p] ' Z/pZ.

In the first case, E[pe] = {0} for all e ∈ Z>0; in the second case, E[pe] ' Z/peZ for all
e ∈ Z>0.

Since [m] is defined over K, the group E[m] is stable under the action of GK . In particular, when
m = ` is a prime number, different from charK, then E[`] is a 2-dimensional F`-vector space, and
the action of GK gives rise to a representation

ρE,` : GK → GL(E[`]) ' GL2(F`).

LetK(E[`]) be the field extension generated overK by the coordinates of the `-torsion points ofE. It
is clear that the above representation factors through Gal(K(E[`])/K), thus ρE,` is continuous with
respect to the Krull topology on the left hand side and the discrete topology on the right hand side.

Remark 4.2. Note that Gal(K(E[`])/K) ' ImρE,`. Thus, the group ImρE,` can be realized as a
Galois group over the field K. For example, Serre proves [Ser72, Example 5.5.6] that the elliptic
curve defined over Q by the Weierstrass equation y2 + y = x3 + x satisfies that, for all prime ` ≥ 2,
ImρE,` ' GL2(F`). Thus, all these groups can be realized as Galois groups over Q.
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When E is an elliptic curve defined over a number field, the study of ImρE,` (for ` a prime
number) is an active research topic. We have the following fundamental result of Serre (cf. [Ser72]).

Theorem 4.3 (Serre, 1972). Let K be a number field and E/K be an elliptic curve without complex
multiplication. Then ρE,` is surjective for all except finitely many primes `.

For more details, look at the first project in Section 12.

Remark 4.4. For the second project in Section 12, we will need the following fact: If φ : E1 →
E2 is a nonzero isogeny defined over K, and if m ∈ Z≥2 is such that gcd(m, char(K)) = 1,
gcd(m,degϕ) = 1, then φ induces an isomorphism of Galois modules between E1[m] and E2[m].
Indeed, we have that [deg φ] : E1[m] → E1[m] is an isomorphism of Galois modules, and φ ◦ φ̂ =

φ̂ ◦ φ = [deg φ].

5 The Tate module of E

Let ` be a prime. Informally, we can define the ring of `-adic integers as the set of infinite `-adic
expansions

Z` :=

{ ∞∑
n=0

an`
n : a0, a1, · · · ∈ {0, . . . , `− 1}

}
,

endowed with a natural addition and product (these operations are well defined, since to compute the
n-th term of the sum or product of two infinite series, only a finite number of operations is involved).

In a formal way, we can consider the collection of rings {Z/`nZ : n ∈ N} and the connecting
maps between them:

πn+1 : Z/`n+1Z→ Z/`nZ.

x+ `n+1Z 7→ x+ `nZ

Then we can form the inverse limit
lim
←−

n→∞

Z/`nZ.

In a similar way, we want to collect all the GK-modules E[`n], for n ∈ N, attached to an elliptic
curve E/K, into a single object.

Definition 5.1. Consider the collection of groups {E[`n] : n ∈ N} and the connecting maps [`] :

E[`n+1]→ E[`n] among them. We define the `-adic Tate module of E as

T`(E) = lim
←−

n→∞

E[`n].

By definition, T`(E) has a Z-module structure, since it is the inverse limit of groups. It is easy
to check that this structure extends to a Z`-module structure; if (αn + `nZ)n∈N ∈ lim← Z/`nZ and
(Pn)n∈N ∈ T`(E), then we can define the product

(αn)n∈N · (Pn)n∈N := ([αn]Pn)n∈N.
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If ` 6= char(K), we have that T`(E) is a free Z`-module of rank 2. Moreover, T`(E) is endowed
with an action of GK , where each σ ∈ GK acts as (Pn)n≥0 7→ (P σn )n≥0. Thus, we obtain a Galois
representation

ρE,` : GK → GL(T`(E)) ' GL2(Z`).

It holds that ρE,` is a continuous Galois representation, when we consider on GL2(Z`) the `-adic
topology (cf. [Sil92, Section III.7]).

Since the representations theory of a group with coefficients in a field is easier than if we take
coefficients on Z`, we consider also the Q`-vector space V`(E) = Q` ⊗Z`

T`(E), and extend the
representation ρE,` to a representation (denoted in the same way) ρE,` : GK → GL(V`(E)) '
GL2(Q`).

For each prime `, we have a representation ρE,`. These representations are related to each other
in a very precise way; namely, they form a so-called strongly compatible system (see Definition
8.4 below). In order to formulate the definition of this concept, we need to make a review of the
ramification theory of extensions of number fields (see Section 7), as well as the theory of reduction
of elliptic curves (see Section 6).

Endomorphisms of the elliptic curveE give rise to endomorphisms of T`(E) as a Q`-vector space.
For future use, we state the following result (cf. [Sil92, (III.8.6)]):

Proposition 5.2. Let E/K be an elliptic curve, φ ∈ EndK(E). For ` 6= char(K) a prime number, let
φ` : T`(E) → T`(E) be the morphism induced on the `-adic Tate module, and denote by trace(φ`),
det(φ`) the trace and determinant of φ` as a morphism of Q`-vector spaces. Then

det(φ`) = deg(φ)

trace(φ`) = 1 + deg(φ)− deg(1− φ)
(5.6)

In particular, the elements trace(φ`),det(φ`) ∈ Z and are independent of `.

6 Reduction of elliptic curves defined over a local field

LetKv be a local field, with valuation ringOv, maximal ideal mv, and residue field kv. For further use,
we fix a uniformising element π. Consider an elliptic curve E/Kv. We want to study the reduction
of E modulo mv. To reduce the curve modulo mv, the first thing we need is a Weierstrass equation
of E whose coefficients are all in OKv . We can easily achieve this as follows: fix a Weierestrass
equation (1.2), and make a change of variables (1.3) with u divisible by a sufficiently high power of
π, say (x, y) 7→ (u−2x, u−3y); then ai is replaced by aiui. Now that we have an equation whose
coefficients are all in OKv , we can look at the reduction of the equation modulo mv, and we obtain a
new Weierstrass equation

y2 + ã1xy + ã3y = x3 + ã2x
2 + ã4x+ ã6. (6.7)

where ã1, ã2, ã3, ã4, ã6 ∈ kv. If the discriminant ∆̃ of this equation is nonzero, then it defines an
elliptic curve over kv, which we will call the reduction of E. However, the vanishing of ∆̃ depends
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on the Weierstrass equation (1.3) chosen, as well as on the change of variables performed. The
discriminant ∆ of the original equation is replaced by u12∆; if we replace u by an even higher power
of π, we might even get that all coefficients ãi vanish. We address this issue by defining a minimal
Weierstrass equation for E to be an equation of the shape (1.2), such that all ai ∈ OKv , and such
that v(∆) is minimal amongst the possible values of v(∆), when ∆ is the discriminant of such an
equation. Thus, the vanishing of a discriminant of a minimal Weierstrass equation is well-defined.
There is a characterisation of minimal Weierstrass equations when charkv 6= 2, 3 (cf. [Sil92, Remark
1.1, Chapter VII]):

Proposition 6.1. Let E/Kv be an elliptic curve, defined by a Weierstrass equation (1.2) with all
ai ∈ OKv . Then the following are equivalent:

(i) Equation (1.2) is a minimal Weierstrass equation.

(ii) v(∆) < 12 or v(∆) = 12 and v(c4) < 4.

Definition 6.2. Let E/Kv be an elliptic curve and Equation (1.2) a minimal Weierstrass equation.
Then the curve Ẽ defined over kv by Equation (6.7) is called the reduction of E. If ∆̃ 6= 0, then Ẽ
is an elliptic curve, and we say that E has good reduction (at v). Otherwise, we say that E has bad
reduction (at v).

In the case when ∆̃ = 0, the curve Ẽ is a singular curve. According to the type of singularity, we
can distinguish two cases:

1. E has multiplicative reduction if Ẽ has a node (two different tangent lines at the singularity).
In this case, the reduction is called split if the slopes of the tangent lines at the node belong to
Kv; otherwise it is called nonsplit.

2. E has additive reduction if Ẽ has a cusp (a single tangent line at the singularity).

We will say that E has semistable reduction if the reduction of E is either good or multiplicative.
The first case is characterised by the conditions ∆̃ = 0 and c̃4 6= 0; in the second case ∆̃ = 0 = c̃4

(cf. [Sil92, (VII.5.1)]). We say that E has semistable reduction if E has either good or multiplicative
reduction.

Assume Lw/Kv is a finite extension. An elliptic curve E defined over Kv can be considered to
be defined over Lw; this is called a base change or extension of scalars. We denote the elliptic curve
obtained fromE by extending scalars fromKv to Lw as Lw⊗KvE, when it is necessary to distinguish
it from E. The type of reduction can change after a finite base change, but there are certain rules that
are followed (cf. [Sil92, (VII.5.4-(a, b))]).

1. If Lw/Kv is an unramified extension, Lw ⊗Kv E has the same type of reduction (good, multi-
plicative or additive) as E.
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2. If E has good (resp. multiplicative) reduction overKv, then Lw⊗Kv E has the good (resp. mul-
tiplicative) reduction.

In general, we will say that E has potential good reduction (resp. potential multiplicative re-
duction) if, after a finite base change, the curve acquires good (resp. multiplicative) reduction. An
important result, which can be stated and proved in much greater generality, addresses the case of
additive reduction (cf. [Sil92, (VII.5.4-(c))]):

Theorem 6.3 (Semistable reduction theorem). Let E/Kv be an elliptic curve. Then there exists a
finite extension Lw/Kv such that Lw ⊗Kv E has semistable reduction.

These results show that the fact that the (potential) reduction is good or semistable is independent
on the base field on which E is defined, and should be read from the j-invariant of the curve. Indeed,
this is the case, as the next proposition shows (cf. [Sil92, (VII.5.5)]):

Proposition 6.4. Let E/Kv be an elliptic curve. Then E has potential good reduction if and only if
its j-invariant satisfies j ∈ OKv .

7 Interlude on Galois theory

Let K be a number field, with ring of integers OK . Each nonzero prime ideal p of OK gives rise to a
discrete valuation vp on the field K. Such valuations will be called finite places of K, and the set of
all finite places will be denoted by ΣK . Further, for each v = vp ∈ ΣK , we denote by kv the residue
field of v, defined as OK/p.

Let L/K be a finite Galois extension and denote by G := Gal(L/K) its Galois group. For any
v ∈ ΣK , there exist only finitely many places w ∈ L extending the valuation v ∈ K. We write w|v to
denote that w|K = v. The subgroup Dw := {σ ∈ G : w ◦ σ = w} is called the decomposition group
of w. If w1, w2|v, then Dw1 and Dw2 are conjugate subgroups. By abuse of notation, we will write
Dv to denote a representative in this conjugacy class.

If we denote by Kv (resp. Lw) the completion of K at v (resp. of L at w), the inclusion map
L ↪→ Lw induces an isomorphism of groups Gal(Lw/Kv) → Dw. Thus, to study Dw, we can make
use of extensions of local fields, which are much easier to handle than global fields.

The reduction map OLw → kw from OLw into its residue field induces a surjective morphism
Gal(Lw/Kv) → Gal(kw/kv). Now, the group Gal(kw/kv) has a very easy structure: it is a cyclic
group, with a distinguished generator Frobw, defined as follows: if card(kv) = pf , then Frobw(a) =

ap
f
. By definition, the kernel of the projection Gal(Lw/Kv) → Gal(kw/kv) is the inertia group at

w, which we denote by Iw. We have an exact sequence:

1→ Iw → Gal(Lw/Kv)→ Gal(kw/kv)→ 1.

For all except finitely many v, it turns out that Iw = {id}, thus Gal(Lw/Kv) is cyclic, generated
by an element projecting onto Frobw, which by abuse of notation we also denote by Frobw. Since all

12



Dw are conjugate for w|v, we have a well-defined conjugacy class in Gal(L/K), which we denote
by Frobv. However, for a finite set of places of K, it can happen that Iw is not trivial; those are the
places corresponding to primes p of K such that pOL = Pe

1 · · · · · Pe
r with e 6= 1; in other words,

those are the primes that ramify in the extension L/K.
These notions carry through to the case where L is an infinite Galois extension ofK. In particular,

fix an algebraic closure of K. For each v ∈ ΣK , the sets {ΣL : L/K finite Galois} form a projective
system with respect to restriction; we can consider the projective limit ΣK = lim←ΣL. For each
w ∈ ΣK , we can define Dw as before; we have an isomorphism Dw ' Gal(Kv/Kv), and an exact
sequence

1→ Iv → Gal(Kv/Kv)→ Gal(kv/kv)→ 1.

where Iv is by definition the kernel of the projection. The fixed field of Kv by Iv is the maximal
unramified subfield of Kv containing Kv, denoted by Kunr

v ; thus

Iv = Gal(Kv/K
unr
v ).

Let p be the residue characteristic of Kv. The wild inertia group is the maximal pro-p-subgroup of Iv,
denoted Iwild

v . We denote by Ktame
v the fixed field of Kv by Iwild

v ; it is the maximal tamely ramified
subfield ofKv containingKv, and satisfies that Iwild

v = Gal(Kv/K
tame
v ). If π denotes a uniformising

element of Kv, then we can describe Ktame
v as

Ktame
v = Kunr

v ({π1/d : p - d}).

Finally, we define the tame inertia group Itame
v as the quotient Iv/Iwild

v ' Gal(Ktame
v /Kunr

v ).
In order to define the conductor of an elliptic curve (Definition 9.1 below), we need a refinement of

the wild inertia group, the so-called higher ramification groups. The natural setting for this definition
is a finite extension of local fields, like Lw/Kv.

Definition 7.1. Let L/K be a finite Galois extension of local fields, with valuations w|v, and denote
by vL = ew the normalization of w, so that vL(L×) = Z. Then for each i ∈ Z≥−1 we define the i-th
ramification group as

Gi(L/K) := {σ ∈ Gal(L/K) : vL(σ(a)− a) ≥ i+ 1 for all a ∈ OL}.

Note that the higher ramification groups form a descending sequence

Gal(L/K) = G−1(L/K) ⊇ G0(L/K) ⊇ G1(L/K) ⊇ · · ·

of normal subgroups of Gal(L/K).

Remark 7.2. When L/K is a finite Galois extension of number fields, and w|v are finite places, it
holds thatG−1(Lw/Kv) = Dw,G0(Lw/Kv) = Iw andG1(Lw/Kv) = Iwild

w (cf. [Neu99, (II.9.12)]).
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8 Compatible systems of Galois representations attached to the torsion
of an elliptic curve

Let E be an elliptic curve defined over a number field K. For each prime `, we have attached to E an
`-adic Galois representation ρE,` : GK → GL2(Q`) We denote by

ρE,• := {ρE,` : GK → GL2(Q`)}` prime number

the set of all these representations. Even though they are representations into different groups, they
share many properties, since they all come from the elliptic curve E. In this section we formulate
this relationship more precisely. The key observation is that, for each finite place v of K, the type of
reduction of E at v carries information about the image of the decomposition group Dv by the repres-
entation ρE,`. The main result in this regard is the following, known as the Néron-Ogg-Shafarevich
criterion (cf. [Sil92, (VII.7.1)]).

Theorem 8.1 (Néron-Ogg-Shafarevich). Let E be an elliptic curve defined over a number field K, v
a finite place of K. The following are equivalent:

1. E has good reduction at v.

2. For all primes ` with v - `, ρE,` : GK → GL(T`(E)) is unramified at v.

3. For some prime ` with v - `, ρE,` : GK → GL(T`(E)) is unramified at v.

In the setting of the above theorem, fix a prime `, and choose a place v - ` of good reduction
for E. Denote by kv the residue field of K at v, and pick an element Frobv ∈ Dv projecting onto
the Frobenius map in Gal(kv/kv). Then by the Néron-Ogg-Shafarevich criterion, the image of Iv
is trivial, thus the image of Frobv is a well-defined element in GL(T`(E)) up to conjugacy, and the
characteristic polyomial charpoly(ρE,`(Frobv)) is well defined. We can give a precise description of
this polynomial:

Proposition 8.2. Let E be an elliptic curve defined over a number field K, ` a prime number and
v - ` a finite place of K of good reduction for E. Let Frobv ∈ Dv be an element of GK projecting
onto the Frobenius map in Gal(kv/kv). Then

charpoly(ρE,`(Frobv)) = T 2 − avT + Nv,

where
Nv := card(kv), and

av := 1 + Nv − card(Ẽ(kv)).
(8.8)

Remark 8.3. The quantity av can be interpreted as the deviation of the number of points of Ẽ
over kv from the “expected value” 1 + Nv. Note that Proposition 8.2 shows, in particular, that
charpoly(ρE,`(Frobv)) depends only on the reduction Ẽ of E at the finite place v.
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Proof. First, we need to compare the Galois representations ρE,` and ρ
Ẽv ,`

, for a place v - ` of good
reduction for E. For all σ ∈ Dv, denote by σ̃ ∈ Gal(kv/kv) its projection. Choosing compatible
bases for T`(E) ' Z` × Z` and T`(Ẽv) ' Z` × Z`, we obtain that, for all σ ∈ Dv, ρE,`(σ) =

ρ
Ẽv ,`

(σ̃). In particular, if we denote by α : kv → kv the morphism mapping x 7→ xNv, we have that
ρE,`(Frobv) = ρ

Ẽv ,`
(α). Thus, it suffices to compute charpoly(ρ

Ẽv ,`
(α)).

Since char(K) > 0, we can define an isogeny ψ : Ẽv → Ẽv by P = (x, y) 7→ (xNv, yNv); this
isogeny is related to α as follows: if (Pn)n ∈ T`(Ẽ),

ρ
Ẽv ,`

(α)((Pn)n) = (ψ(Pn))n.

Now we can apply Proposition 5.2 to the endomorphism ψ to conclude that detα = degψ and
trace(α) = 1 + deg(ψ) − deg(1 − ψ). But we know that degψ = card(kv) = Nv (cf. [Sil92,
(II.2.11)]) and deg(1− ψ) = card(ker(Id− ψ)) = card(Ẽv(kv)) (cf. 3.3).

As a consequence of Proposition 8.2, the knowledge of the representation ρE,` for a single prime
` of good reduction for E determines the representation ρE,`′ for any other prime `′, up to semi-
simplification. Indeed, we know the characteristic polynomial of ρ′E,`′(Frobv) for all places v of good
reduction for K, which do not lie above ` or `′, and this is enough, according to [Ser98, page I-10].

The strong relationship between the representations in ρE,• can be formalized in the following
definition:

Definition 8.4. Let K be a number field. A strictly compatible system of Galois representations is
a set {ρ` : ` prime} consisting of continuous representations ρ` : GK → GLn(Q`), such that there
exist:

1. A finite set S of finite places of K (called exceptional set of the system);

2. For each v 6∈ S, a polynomial Pv(x) ∈ Q[x];

satisfying that, for each v 6∈ S and v - `, then the representation ρ` is unramified at v, and

charpoly(ρ`(Frobv)) = Pv(x).

From the discussion above, we obtain the following proposition:

Proposition 8.5. Let E be an elliptic curve defined over a number field K, and let S be the set of
finite places of K where E has bad reduction. Then {ρE,` : ` rational prime} is a compatible system
of Galois representations, with exceptional set S.

Now we turn to the mod ` representation ρE,` : GK → GL2(E[`]) ' GL2(F`). From the Néron-
Ogg-Shafarevich criterion, it follows that, if E has good reduction at finite place v - `, then ρE,` is
unramified at v (in other words, the Galois extension K(E[`])/K is unramified at v. However, the
converse does not hold in general. You can find some examples in the Projects. Nevertheless, there is
a result in this direction (cf. [Sil94, (IV.10.3)]).
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Proposition 8.6. Let K be a number field, E/K an elliptic curve with j-invariant jE and v a place
of K of good reduction for E such that v(jE) ≥ 0. Then the following are equivalent:

1. E has good reduction at v;

2. K(E[m])/K is unramified at v for all m coprime to v;

3. There exists a prime ` ≥ 3 with ` - v such that K(E[`])/K is unramified at v.

Remark 8.7. From the proposition above, it follows that, given a prime `, the only places v - ` of K
where E can fail to have good reduction while K(E[`])/K is unramified are those appearing in the
factorization of the denominator of jE .

9 Conductor of an elliptic curve

In this section, we fix an elliptic curve E defined over a number field K; we are going to define an
invariant of E, the conductor, which contains information about the action of inertia groups Iv on the
torsion of E at all finite places v ofK. We follow closely the presentation of [Sil94, §10, Chapter IV].

First, for each finite place v of K we define an integer, the exponent of the conductor at v, which
measures how complicated the action of Iv on the torsion of E is. Afterwards, we will combine all
this information into a product (in principle over all places v of K, but, as we will see, only those
of bad reduction contribute a non-trivial factor) of ideals of OK . The exponent of the conductor at
v consists of two parts; the tame part, which is obtained from the action of Iv on the `-adic Tate
module V`(E) := Q` ⊗Z`

T`(E), and the wild part, which depends only on the `-torsion points of E;
as we will see below, it is defined in terms of the higher ramification groups of the Galois extension
K(E[`])/K.

Definition 9.1. Let K be a number field, v a finite place of K, and E/K be an elliptic curve. Choose
a prime ` such that v - `.

1. We define the tame part of the conductor of E at v as

εv(E) = dimQ`
(V`(E)/V`(E)Iv) = 2− dimQ`

(V`(E)Iv).

2. We define the wild part of the conductor of E at v as follows: if L = K(E[`]), then

δv(E) :=
∞∑
i=1

gi(L/K)

g0(L/K)
dimF`

(E[`]/E[`]Gi(L/K)),

where gi(L/K) = card(Gi(L/K)).

3. We define the exponent of the conductor of E at v as the sum

fv(E) = εv(E) + δv(E).
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The first remark we should make is that, in order to define εv(E) and δv(E), we chose a prime
`, so in principle this definition depends on this choice. However, we will see below that, in fact, we
obtain the same quantities if we choose a different prime `′ with `′ - v.

Next, let us unravel the easiest case, namely the case when E has good reduction at v. In this
case, Iv acts trivially on V`(E), thus V`(E)Iv = V`(E) has dimension 2, whence εv(E) = 0.
Moreover, since E[`] is a quotient of T`(E), it follows that Iv acts trivially on E[`], thus the ex-
tension K(E[`])/K is unramified at v. Therefore all Gi(L/K) equal {Id}, so E[`]Gi(L/K) = E[`]

and the dimension of the quotient E[`]/E[`]Gi(L/K) is zero, whence δv(E) = 0. We can conclude
that fv(E) = 0 whenever v is a place of good reduction for E. Conversely, if E has bad reduction
at the place v, by the Néron-Ogg-Shafarevich criterion, the action of Iv on T`(E) is non-trivial. Thus
V`(E)Iv 6= V`(E), which implies that εv(E) > 0, hence fv(E) > 0.

The next remark we should make is that fv(E) is always a non-negative integer number. This is
clear for the tame part of the conductor, but from the definition it is not immediate to conclude that
δv(E) ∈ Z≥0. For a proof, the reader can look at [Ser79, Cor. to Prop. 5, Chap. VI].

It turns out that the tame part of the conductor at v is completely determined by the type of
reduction of E at v (good, multiplicative or additive) as follows (cf. [Sil94, (IV.10.2)]).

Theorem 9.2. Let E be an elliptic curve defined over a number field K, v a finite place of K. Then

εv(E) =


0 if E has good reduction at v;

1 if E has (bad) multiplicative reduction at v;

2 if E has (bad) additive reduction at v.

Remark 9.3. The main ingredient in the proof of the above theorem is the isomorphism

V`(E(Kv))
Iv ' V`(Ẽv,ns(kv)),

where Ẽv,ns(kv) is the set of non-singular points of the reduced curve Ẽv/kv. When E has good
reduction at v, Ev,ns = Ev is an elliptic curve and we know that Ẽv(kv) has a group structure. If
the reduction is bad, we still can define a group structure on Ẽv,ns(kv), which is isomorphic to the
multiplicative group k

×
v if E has multiplicative reduction at v, and to the additive group kv if E has

additive reduction at v (whence the terminology). The `-adic Tate module of k
×
v is a free rank 1

Z`-module, whereas the `-adic Tate module of kv is zero, since it does not have any `-torsion points.

The wild part of the conductor is more complicated, since in general it cannot be determined only
by knowing if the reduction of E at v is good, multiplicative or additive. However, it vanishes most
of the time (cf.[Sil92, (VI.102)]).

Proposition 9.4. Let E be an elliptic curve defined over a number fieldK, v a finite place ofK. Then
δv(E) = 0 if at least one of the following conditions hold:

1. E has good reduction or split multiplicative reduction at v.
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2. p = char(kv) ≥ 5.

Remark 9.5. The case of good reduction follows from the Néron-Ogg-Shafarevich criterion. In the
case of multiplicative reduction, we will see later that the extension K(E[`])/K is tamely ramified.
The second part follows from (the proof of) Proposition 8.6. In Section 11 we will see a general
formula for computing fv(E) for all residue characteristics.

Finally, we can collect together the exponents introduced in Definition 9.1 as follows.

Definition 9.6. Let K be a number field with ring of integers OK and E/K be an elliptic curve. We
define the conductor of E as the ideal

NE =
∏

p maximal
ideal of K

pfvp (E),

where vp is the (normalized) discrete valuation defined by the ideal p.

Note that the primes of OK dividing NE are precisely those corresponding to the finite places vp
satisfying that the valuation of the minimal discriminant of E with respecto to vp is nonzero.

10 p-adic uniformization of elliptic curves: Tate’s Curve

In this section we take a closer look at elliptic curves, defined over a local field K, with (bad) mul-
tiplicative reduction. The key idea is that such curves admit (after possibly a quadratic base change)
a p-adic uniformization, that is, an isomorphism E(K) ' K

×
/qZ for a certain value of q ∈ K×.

We proceed in two steps: first, we define a special class of elliptic curves, the so-called Tate curves,
that admit this uniformization, and then we show that, if an elliptic curve has multiplicative reduction,
then it is isomorphic to some Tate curve, possibly after a quadratic base change.

For the rest of the section, K is a finite extension of Qp, v is the valuation of K (which we can
assume normalized), OK the valuation ring, m its maximal ideal, kv is the residue field of K and | · |v
is the absolute value attached to v, defined by |x|v = card(kv)

−v(x) for all x ∈ K×.
For each q ∈ K× with |q|v < 1, consider the following power series:

a4(q) = −5
∑
n≥1

n3qn

1− qn
and a6(q) = − 1

12

∑
n≥1

(7n5 + 5n3)qn

1− qn
.

These series are convergent and define elements in OK . The Weierstrass equation

y2 + xy = x3 + a4(q)x+ a6(q) (10.9)

has discriminant
∆ = q

∏
n≥1

(1− qn)24;

since |q|n < 1, this infinite product converges to a nonzero element. Thus, Equation (10.9) defines an
elliptic curve. This elliptic curve will be denote by Eq/K, and is called a Tate curve.
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Remark 10.1. Clearly ∆ ∈ m. However, the invariant c4 = 1− 48a4(q) 6∈ m, thus the curve Eq has
multiplicative reduction at v (cf. Section 6).

Now we give the p-adic uniformization (cf. [Sil94, (V.3.1)]). For each q ∈ m, we can define

x(u) =
u

(1− u)2
+
∑
n≥1

(
qnu

(1− qnu)2
+

q−nu

(1− q−nu)2
− 2

qn

(1− qn)2

)

y(u) =
u2

(1− u)3
+
∑
n≥1

(
(qnu)2

(1− qnu)3
+

(q−nu)2

(1− q−nu)3
+

qn

(1− qn)2

)

These series converge for all u ∈ K× \ qZ.

Theorem 10.2. The map

φ : K
× → Eq(K)

u 7→

(x(u), y(u)) if u 6∈ K× \ qZ;

OEq otherwise

is a surjective homomorphism, compatible with the action of Gal(K/K) on both sides.

As a consequence, we have a very explicit description of the action of GK on the torsion points
of Eq (cf. [Ser98, Apendix A.1.2]).

Corollary 10.3. Let Eq/K be a Tate curve, and ` 6= p a prime number. Then we have the following
exact sequence of Gal(K/K)-modules

1→ µ`(K
×

)→ Eq[`]→ Z/`Z→ 0,

where the action of Gal(K/K) on Z/`Z is trivial.

In particular, the Galois representation ρE,` : GK → GL(E[`]) is (at most) tamely ramified.
Given a Tate curve Eq/K, we can compute its j-invariant in terms of q by means of the formula

j =
c34
∆

=
(1− 48a4)

3

∆
=

(
1 + 240

∑
n≥1

n3qn

1−qn
)

q
∏
n≥1(1− qn)24

=
1

q
+ 744 + 196884q + · · · .

Thus, every element of K that can be expressed as 1
q + 744 + 196884q + · · · = j(q) like in the

formula above, for some value of q with v(q) > 0, is the j invariant of a Tate curve. An application
of the Fixed Point Theorem allows one to prove that the map q 7→ j(q) is a bijection between the
sets {q ∈ K : 0 < |q|v < 1} and {j ∈ K : |j|v > 1} (cf. [Hus04, Lemma 5.4, Chapter 10]). As a
consequence, an elliptic curve is isomorphic to a Tate curve if and only if v(j) < 0. One can prove
the following precise result (cf. [Sil92, Appendix C]).

Proposition 10.4. Let E/K be an elliptic curve such that v(j) < 0 (in particular, it has bad reduc-
tion). Let q ∈ m be such that jE = j(q). Then:
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1. If E has split multiplicative reduction, then E and Eq are isomorphic.

2. If E has non-split multiplicative reduction, then there exists an unramified quadratic extension
K ′/K such that E and E′ are isomorphic over K ′.

3. If E has bad additive reduction,then there is a ramified quadratic extension K ′/K such that E
and E′ are isomorphic over K ′.

11 Ogg’s formula for the conductor

The aim of this section is to provide a formula for computing the exponent of the conductor fv(E) of
an elliptic curve E defined over a number field K, at any finite place of K, in terms of the reduction
of E at v. This purpose leads us the issue of reduction of curves defined over local fields, which,
in turn, brings us to the theory of models of curves, which requires scheme theory to be formulated
properly. Following the spirit of these notes, we try to keep as little technical as possible, at the cost
of ommiting most of the details. A rigorous and complete treatment can be found in [Liu02, Chapter
10, Section 10.1].

We already discussed the reduction theory of elliptic curves defined over local fields in Section
6, where we encountered the first difficulty, namely that not every Weierstrass equation (1.1) defining
an elliptic curve can be reduced modulo a finite place v (since there could be denominators in the
coefficients a1, . . . , a6 ∈ K with positive v-adic valuation), and even when this was the case, we
could obtain different reduced Weierstrass equations for the same elliptic curve E. In Section 6 we
addressed this question in an elementary way by introducing the concept of minimal discriminant. For
the purposes of this section, this solution will not be enough.

We recall briefly some key concepts from arithmetic geometry. The appropriate setting for study-
ing models of curves is that of arithmetic surfaces, that is to say, schemes X → S over a discrete
valuation ring S (or, more generally, a Dedekind domain) of dimension 2. In particular, we will work
with fibered surfaces, which are integral, projective, flat S-schemes of dimension 2 (cf. [Liu02, Defin-
ition 8.3.1]). A fibered surface X/S satisfies that both the generic fibre Xη/KS and the special fibre
Xs/kS are curves (where by KS we denote the field of fractions of S and kS the residue field of S).

Definition 11.1. Let K be a local field, with ring of integers OK; denote by S = SpecOK . Let C be
a smooth projective curve defined over K. A model of C over S is a normal fibered surface C → S,
together with an isomorphism f from the generic fibre of C to C.

We will be interested in the regular models of a curve C. If the genus of C is at least 1, then
there exists a (unique) minimal regular model Cmin (cf. [Liu02, (9.3.21)]). If the curve C has good
reduction (which, in general, means that there exists some model of C over OK which is smooth),
then the minimal regular model Cmin is smooth.

When E/K is an elliptic curve, we have two (different in general) models of E over OK ; one
is provided by a minimal Weierstrass equation, and the other one is the minimal regular model Cmin.
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If E/K has good reduction at the (unique) maximal ideal mK , then they coincide, and the special
fibre of Cmin coincides with the projective curve defined by the reduction of the minimal Weierstrass
equation. However, when E/K has bad reduction, the two models are different. The reason why
we are interested in the minimal regular model of E/K is because there is a formula that relates the
valuation of the minimal discriminant of E, the number of components of the special fibre of Cmin,
and the exponent of the conductor of E/K (cf. [Sil94, (IV.11.1)]).

Theorem 11.2 (Ogg’s Formula). Let K/Qp be a finite extension, E/K an elliptic curve. We denote
by

• v(∆E/K) the valuation of the minimal discriminant of E/K,

• m(E/K) the number of components, defined over Fp, of the special fibre of the minimal regular
model Cmin of E/K, (where each component is counted once, even if they occur with higher
multiplicity).

Then
f(E/K) = v(∆E/K)−m(E/K) + 1.

There is a classification, due to Néron and Kodaira, of the special fibre of the minimal regular
model of an elliptic curve defined over a p-adic field K. They distinguish 10 types, denoted by
I0, In, II , III , IV , I∗0 , I∗n, IV ∗, III∗, II∗. The type I0 corresponds to good reduction (thus the
special fibre is an elliptic curve), and the rest correspond to different configurations of intersecting
curves (cf. [Sil94, (IV.8.2)]). Given an elliptic curve E defined over a p-adic field K by means of a
Weierstrass equation, there is an algorithm, due to Tate, that computes the special fibre of the minimal
regular model ofE. This algorithm is presented in detail in [Sil94, Chapter IV, §9], and is implemented
e.g. in SageMath. Combining this algorithm with Theorem 11.2, we can compute the conductor of an
elliptic curve E defined over a number field K.

12 Project work

The summer school Explicit and computational approaches to Galois representations included three
sessions for project work, where several exercises are proposed to the participants, to solve with the
help of the computer algebra system SageMath, and the database of L-functions, modular forms and
related objetcts (LMFDB). Here are the three projects corresponding to the course Elliptic curves.

12.1 First Project: Computing images of mod ` Galois representations attached to
elliptic curves

In this project we consider elliptic curves E defined over the field of rational numbers, which we
assume defined by an affine Weierstrass equation of the general shape

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (12.10)
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for some coefficients a1, a2, a3, a4, a6 ∈ Q.
Given a prime number `, the action of GQ = Gal(Q/Q) on the group of `-torsion points of E

induces a Galois representation

ρE,` : GQ → GL2(E[`]) ' GL2(F`).

Let K = Q(E[`]) be the extension of Q obtained by adjoining the coordinates of the points of
`-torsion of E; in other words, K is the fixed field of Q by ker ρE,`. The extension K/Q is finite and
Galois, satisfying that ImρE,` ' Gal(K/Q). In this project, we want to compute this Galois group in
some examples.

Our main tool will be to consider the Frobenius elements at primes different from `. Given a prime
p 6= `, which is unramified in the extension K/Q, choose a prime p of the ring of integers OK of K
which lies above p, and set Dp := {σ ∈ Gal(K/Q) : σp = p}. This is the decomposition group at p.
Denoting by kp the residue field OK/p, the reduction map

Dp → Gal(kp/Fp)

is an isomorphism. Let Frobp ∈ Gal(K/Q) be the element in Dp projecting onto the map x 7→ xp

(the Frobenius element in Gal(kp/Fp)). This element depends on the choice of p|p, but if we choose
a different prime of OK above p, we obtain an element conjugate to Frobp. Thus, abusing notation,
we will denote it by Frobp. The next proposition (cf. [Ser72, §4]) tells us what is the characteristic
polynomial of the image of Frobp by ρE,` (which is well-defined, since it is invariant by conjugation).

We will see in the morning lectures that those primes p such that the elliptic curve has good
reduction mod p are unramified in the extension K/Q (this follows from the so-called Néron-Ogg-
Shafarevich criterion).

Proposition 12.1. Let E/Q be an elliptic curve, ` a prime number, ρE,` the Galois representation
attached to the `-torsion points of E, and p 6= ` a prime number such that E has good reduction at p.
Then trace(ρE,`(Frobp)) = 1 + p− card(Ẽp(Fp)) mod `

det(ρE,`(Frobp)) = p mod `

where Ẽp denotes the reduction of E at p.

The above proposition provides us with the characteristic polynomials of many elements in ImρE,`.
In fact, Chebotarev’s Density Theorem tells us that, if we computed ρE,`(Frobp) for all primes p of
good reduction for E (with possibly finitely many exceptions), we would obtain elements belonging
to each conjugacy class of ImρE,`.

Theorem 12.2 (Chebotarev). LetL/K be a finite Galois extension of number fields, letX ⊂ Gal(L/K)

be a subset that is fixed by conjugation. Then the set S of primes p of OK such that Frobp ∈ X has a
density, equal to

cardX/ card(Gal(L/K)).
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For more details regarding density of sets of primes in number fields, as well as references for a
proof, see [Ser98, Chapter 1].

Remark 12.3. In particular, it follows from Theorem 12.2 that det ρE,` : Gal(K/Q)→ F×` coincides
with the mod ` cyclotomic character, which is surjective.

Our aim is to determine Gal(K/Q) by computing the image of enough Frobenius elements. We
know that Gal(K/Q) ' ImρE,` is a subgroup of GL2(F`), such that the restriction of the determinant
to this subgroup is surjective. A result of Serre (cf. [Ser72, Proposition 19]) shows that, when ` ≥ 5,
the information provided by the characteristic polynomial of the image of Frobp for all p is enough to
determine if Gal(K/Q) is isomorphic to GL2(F`) or not.

Proposition 12.4. Let ` ≥ 5 be a prime, H ⊂ GL2(F`) be a subgroup such that:

1. There exists s1 ∈ H with trace(s1)
2 − 4 det(s1) a nonzero square in F` and trace(s1) 6= 0.

2. There exists s2 ∈ H with trace(s2)
2 − 4 det(s2) a non-square in F` and trace(s2) 6= 0.

3. There exists s3 ∈ H with u = trace(s3)
2/ det(s3) satisfying: u 6= 0, 1, 2, 4 and u2−3u+1 6= 0.

Then H contains SL2(F`). If det |H is surjective, then H = GL2(F`).

In particular, if ` ≥ 5, it suffices to show that, for any pair (a, b) ∈ F` × F×` , there exists s ∈ H
such that charpoly(s) = T 2 + aT + b.

Note that, while Proposition 12.4 allows you to prove that ImρE,` ' GL2(F`), it does not al-
low you to prove anything if the image is smaller. Using explicit versions of Chebotarev’s Density
Theorem, one can determine a bound, depending on E, such that, if some polynomial T 2 + aT + b

does not appear as the characteristic polynomial of Frobp for some prime p strictly smaller than this
bound, then it will not appear as the characteristic polynomial of the Frobenius element for any p. As
a consequence, a finite computation will provide a proof that the image is not surjective. For more
details, see [Sut16].

If ` = 2 or 3, the situation is more complicated, since only the characteristic polynomials of
Frobenius elements are not enough to determine if ImρE,` is the whole group GL2(F`). Luckily, in
these cases the equations that define the `-torsion points of E are still simple enough to be manipu-
lated.

For ` = 2, we have that GL2(F2) ' S3, and it has only three proper subgroups up to conjugation,
namely

H1 =

{(
1 0

0 1

)}
, H2

{(
1 0

0 1

)
,

(
1 1

0 1

)}
, H3 =

{(
1 0

0 1

)
,

(
0 1

1 1

)
,

(
1 1

1 0

)}
.

The coordinates of the points of order exactly 2 of E(Q) are the roots of the polynomial

P (x) = 4x3 + b2x
2 + 2b4x+ b6.

23



Using the group of points of 2-torsion which are defined over Q and the discriminant of E, we can
determine ImρE,` completely, as shown in the next proposition (cf. [RV01, Proposition 2.1]).

Proposition 12.5. Let E(Q)[2] the group of 2-torsion points defined over Q, and let ∆E be the
discriminant of E. Then it holds:

ImρE,` =



H1 if E(Q)[2] 6= {O} and ∆E ∈ Q2

H2 if E(Q)[2] 6= {O} and ∆E 6∈ Q2

H3 if E(Q)[2] = {O} and ∆E ∈ Q2

GL2(F`) if E(Q)[2] = {O} and ∆E 6∈ Q2

For ` = 3, recall that the 3-division polynomial

ψ3(x) = 3x4 + b2x
3 + 3b4x

2 + 3b6x+ b8

satisfies that its roots are precisely the x-coordinates of the 3-torsion points of E (cf. [Sil92, Exercise
3.7, Chapter III]). We can complete this information with the discriminant ofE to obtain a surjectivity
criterion (cf. [RV01, Theorem 2.3]).

Proposition 12.6. Let E/Q be an elliptic curve. The following conditions are equivalent:

• ψ3 does not have any rational roots and ∆E 6∈ Q3;

• ImρE,` ' GL2(F3).

Exercise 12.1. For the following elliptic curves, check whether the image of ρE,` ' GL2(F`), for the
primes ` = 2, 3, 5, 7, 11:

1. E1 : y2 + y = x3 − x2

2. E2 : y2 + xy + y = x3 − x

3. E3 : y2 + y = x3 − x

Exercise 12.2. Consider the elliptic curveE defined over Q by the Weierstrass equationE : y2+xy =

x3 − x2 − 107x+ 552. Can you find a single prime ` such that ρE,` ' GL2(F`)?

The previous exercise shows an example of an elliptic curve E/Q with complex multiplication,
that is to say, such that the ring of endomorphisms EndQ(E) is strictly bigger than Z. There are only
13 j-invariants in Q corresponding to elliptic curves with complex multiplication.

Assume E/Q has complex multiplication; then EndQ(E) is an order in an imaginary quadratic
field (cf. [Sil92, Cor. 9.4, Chap. III]), say K. Then any φ ∈ EndQ(E) is in fact defined over K
(cf. [Sil94, Theorem 2.2.b, Chap. II]). Thus, if we take any φ ∈ EndQ(E), and consider its restriction
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to E[`], we obtain a morphism of F`-vector spaces that commutes with the image of any σ ∈ GK

by the representation ρE,`. In particular, we conclude that ρE,`(GK) is isomorphic to a subgroup of
GL2(F`) whose commutator is strictly greater than Z. It can be shown that such a subgroup is abelian
(cf. [Sil94, Ex 2.6, Chap. II]). Therefore, ImρE,` is either an abelian group or has an abelian group of
index 2; in both cases, it is strictly smaller than GL2(F`) if ` > 2.

For the computational part of this project, we will rely on the data collected in the database of
L-functions, modular forms and related objetcts (LMFDB), which can be found at

http://www.lmfdb.org/

Here you can find lists of elliptic curves, together with many data related to them, including the images
of ρE,` in many cases. You can check whether your computations in Exercise 1.1 were correct.

The elliptic curves are usually ordered according to their conductor. This is an integer number
which contains information about the reduction of the elliptic curve at different primes, via the action
of the inertia group at all rational primes on the `-adic Tate module. We will tackle it in the morning
lectures; for the moment, it suffices to know that the conductor of an elliptic curve E/Q is a number,
whose prime factors are those primes where E has bad reduction.

Each curve is uniquely determined by a label. The label consists of two parts: a number, which
equals the conductor or the elliptic curve, a letter, which identifies the isogeny class, and a number,
which distinguishes the curves inside each isogeny class. For example, the labels of the elliptic curves
in the exercise above are (11.a3), (14.a5) and (37.a1).

Remark 12.7. To compute the characteristic polynomial of ρE,`(Frobp), you needed to compute the
number of points of the reduction Ẽp for many primes p. In fact, this information is also contained in
the LMFDB. For each elliptic curve, there appears a modular form in the database. For example, for
the curve E3 above the modular form is

f(q) = q − 2q2 − 3q3 + 2q4 − 2q5 + 6q6 − q7 + 6q9 + 4q10

− 5q11 − 6q12 − 2q13 + 2q14 + 6q15 − 4q16 − 12q18 +O(q20)

For each prime p 6= ` of good reduction of E (that is, not dividing the conductor of E), the coeffi-
cient ap of qp coincides with p+ 1− card(Ẽp(Fp)). The existence of a modular form which encodes
information about the number of points of the reduction of E modulo p is precisely the statement of
the Shimura-Taniyama conjecture. You can check this fact in the examples you computed.

Serre conjectured that the largest prime ` such that there exists some elliptic curve E/Q, without
complex multiplication, with ImρE,` 6= GL2(F`) is ` = 37. D. Zywina refines this conjecture as
follows (cf. [Zyw15a, Conjecture 1.12]):

Conjecture 12.8. If E is an elliptic curve over Q, without complex multiplication, and ` ≥ 17 is a
prime such that the pair (`, jE) 6∈ {(17,−17 ·3733/217), (17,−172 ·1013/2), (37,−7 ·113), (37,−7 ·
1373 · 20833)}. Then ImρE,` ' GL2(F`).
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Zywina has verified this conjecture for all elliptic curves E/Q with conductor at most 360000
(cf. [Zyw15b]).

12.2 Second Project: Elliptic curves with isomorphic `-torsion modules

In this project, we fix an elliptic curve E/Q, and a prime ` such that ρE,` is surjective onto GL2(F`).
LetK = Q(E[`]). Then we know thatK/Q is a finite Galois extension with Galois group isomorphic
to GL2(F`). We ask the following question:

Question 1: Is there some other elliptic curve E′/Q such that the field K ′ = Q(E′[`]) coincides with
K?

Actually, we can also consider a more restrictive question, namely:

Question 2: Is there some other elliptic curve E′/Q such that the representations ρE,` and ρE′,` are
isomorphic?

It is clear that if E′/Q is an elliptic curve such that ρE′,` is isomorphic to ρE,` (meaning that the
GQ-modulesE[`] andE′[`] are isomorphic), thenK = K ′. However, it is not immediate to determine
whether the other implication holds (can you say something about it?)

Note that, if we have an isogeny ϕ : E → E′ defined over Q, then ϕ induces an isomorphism of
GQ-modules between E[`] and E′[`]. Thus, isogenous elliptic curves provide us with a trivial answer
to Question 2. In the rest of the project, we will look for non-isogenous elliptic curves providing a
positive answer to the questions.

To address the second question, we need to recall some facts from the representation theory of
groups. First of all, we state the following classical result (cf. [CR62, (30.16)]).

Theorem 12.9 (Brauer-Nesbitt). Let ` be a prime and V a finite dimensional F`-vector space. Let
ρ, ρ′ : G → GLn(V ) be two irreducible representations. Then ρ and ρ′ are isomorphic if and only if
for all g ∈ G, the characteristic polynomials of ρ(g) and ρ′(g) coincide.

Combining this result with Chebotarev’s Density Theorem, we obtain the following result:

Proposition 12.10. Let E/Q, E′/Q be two elliptic curves. Assume that, for all primes p of good
reduction for E and E′, we have the equality

charpoly(ρE,`(Frobp)) = charpoly(ρE′,`(Frobp)). (12.11)

Then ρE,` and ρE′,` are isomorphic.

Note that, since det ρE,`(Frobp) = p = det ρE′,`(Frobp), condition (12.11) is equivalent to
ap ≡ a′p mod `, where ap = p+ 1− card(Ẽp(F`)) and a′p = p+ 1− card(Ẽ′p(F`)).

However, in finite time we can only check finitely many of the congruences above. Luckily for
us, if the first few congruences hold, then one can prove that all congruences will hold as well. This
result makes use of the theory of modular forms and the proof of the Shimura-Taniyama conjecture.
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The bound C up to which one needs to check the congruences depends on the conductors N and N ′

of E and E′ respectively. This invariant carries information about the reduction of the elliptic curve
at each prime p. For example, the exponent of p in N is 1 if and only if the reduction of E at p is
multiplicative.

The next proposition is taken from [KO92, Proposition 4]:

Proposition 12.11. Let E,E′ be two elliptic curves defined over Q, with conductors N and N ′ re-
spectively. Let S be the set of prime numbers where E has split multiplicative reduction and E′ has
non-split multiplicative reduction. Define the quantities:

M = lcm(N,N ′)
∏
p∈S

p

µ(M) = M
∏
p|M
p prime

(
1 +

1

p

)

Then the following conditions are equivalent:

1. ρE,` and ρE′,` are isomorphic.

2. For all p < µ(M)/6 not dividing NN ′, we have ap ≡ a′p (mod `), and for all p < µ(M)/6

with p|NN ′ but p2 - NN ′, we have apa′p ≡ p+ 1 (mod `).

Before starting to compare representations coming from different elliptic curves, some further
considerations about the conductor are in order. The conductor N of an elliptic curve E/Q is a
number defined in terms of the ramification of the `-adic representations ρE,` : GQ → GL2(Q`). If
E′/Q is another elliptic curve, a necessary condition for ρE,` and ρE′,` to be isomorphic is that, for
all primes p 6= `, the exponent of p in N coincides with the exponent of p in N ′.

Since ρE,` is the mod ` reduction of ρE,`, it turns out that ρE,` can only be ramified at p if ρE,`
is ramified at p. However, in the process of reducing mod `, some ramification can be lost. Thus,
in order for ρE,` and ρE′,` are isomorphic is no longer necessary that the conductors of E and E′

coincide (away from the prime `). But, the loss of ramification is a relatively rare phenomenon, so we
can expect that the conductors of E and E′ should not be too different.

Exercise 12.3. Compare the mod ` representations attached to the following pair of elliptic curves
(this example is taken from [KO92]):

` = 7,

(26.a2) E : y2 + xy + y = x3 − 5x− 8

(182.a1) E′ : y2 + xy + ‘y = x3 − 4609x+ 120244

Exercise 12.4. Can you find an example of a prime ` and a couple of non-isogenous elliptic curves
E,E′/Q, with the same conductor, such that ρE,` ' ρE′,`?
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Exercise 12.5. Does it always happen that, whenever ρE,` ' ρE′,`, then E and E′ have either the
same conductor, or the same conductor outside of `? Check the following example (this example is
taken from [FK17]).

` = 7,

(52.a1) E : y2 = x3 − 4x− 3

(988.c1) E′ : y2 = x3 − 362249x+ 165197113

What do you observe? Can you make a conjecture about a necessary condition on the conductors
of E and E′ in order for ρE,` ' ρE′,` to be isomorphic?

Exercise 12.6. Compare the mod ` representations attached to the following pair of elliptic curves
(this example is taken from [KO92]):

` = 3,

(11.a3) E : y2 + y = x3 − x2;

(121.c2) E′ : y2 + xy = x3 + x2 − 2x− 7;

12.3 Third Project: GL2(F`)-extensions of Q coming from the mod `-torsion of elliptic
curves

Fix a prime `, and consider a fixed Galois extension K/Q such that Gal(K/Q) ' GL2(F`). In the
second project, we considered the question of determining if there can be two “essentially different”
elliptic curves such that K = Q(E[`]) = Q(E′[`]). In this project, we address the question of the
existence of at least one elliptic curve with K ' Q(E[`]), once we have fixed K.

Exercise 12.7. Knowing that det ρE,` = χ`, can you give a necessary condition for a number field K
to satisfy K = Q(E[`])?

Given a Galois extension K/Q with Galois group GL2(F`), its discriminant ∆K gives us inform-
ation about the primes that ramify in K/Q. We give here a precise formulation (cf. Theorem 3.12.11
of [Koc00])

Theorem 12.12 (Dedekind’s Discriminant Theorem). Let K/Q be a finite extension, ∆K its discrim-
inant and p a prime number. Suppose that

pOK = pe11 · · · · · p
eg
g

is the decomposition of the ideal pOK into prime ideals of OK , and let fi be the inertia degree
[OK/pi : Fp].

Then the exponent of p in ∆K satisfies

vp(∆K) ≥ (e1 − 1)f1 + · · ·+ (eg − 1)fg,

with equality if and only if p - ei for all i = 1, . . . g.
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In our case, K/Q is a Galois extension, hence denoting by e the ramification index at p, f the
inertia degree at p, and g the number of primes of OK above p, we have vp(∆K) ≥ (e − 1)fg, with
equality if and only if p is tamely ramified in K/Q.

Can you find a necessary condition for a number field K to be equal to Q(E[`]), in terms of the
discriminant ∆K and the conductor of E?

In the database of L-functions, modular forms, and related objects (LMFDB), we can find lists of
polynomials whose decomposition fields have prescribed Galois groups.

Exercise 12.8. For ` = 2, go through the list of Galois extensionsK/Q with Gal(K/Q) ' GL2(F2) '
S3 (label 6T2), and try to find elliptic curves E/Q satisfying that K = Q(E[`]). Can you find some
number field K/Q which (conjecturally) does not correspond to any elliptic curve?

Exercise 12.9. Prove that, for any Galois extension K/Q with Gal(K/Q) ' GL2(F2) ' S3, there
exists an elliptic curve E/Q such that Q(E[2]) ' K (Hint: Look at the equations that give the
coordinates of the 2-torsion points of an elliptic curve).

For ` ≥ 3, the situation is more complicated because the degree [K : Q] is too big to make
explicit computations! In the LMFDB you can find polynomials P (X) ∈ Q[X] of degree 8 whose
splitting field K is GL2(F3). However, you only have information about the number field F :=

Q[X]/(F (X)). If we have a tower of fields Q ⊂ F ⊂ K, we have the following relationship between
the discriminants ∆K , ∆F and δK/F (which is an ideal of OF ):

∆K = NormF/Q(δK/F )∆
[K:F ]
F

Exercise 12.10. Fix ` = 3. The LMFDB includes a list of polynomials P (X) of degree 8 whose Galois
group is isomorphic to GL2(F3) (label 8T23). Go through the list of elliptic curves E/Q, ordered by
conductor, and take those with ImρE,` ' GL2(F3). For each such curve, there exists a degree-8
polynomial P (x) ∈ Q[X] whose splitting field coincides with Q(E[`]) (prove it!). Try to match up the
polynomials P (x) and the elliptic curves E/Q. Is there some polynomial which (conjecturally) does
not correspond to any elliptic curve?

In fact, it can be proven that, if ` = 3, 5, given a Galois extension K/Q with Gal(K/Q) '
GL2(F`), there exist (infinitely many) elliptic curves E/Q such that Q(E[`]) = K, cf. [Rub97,
Theorem 3]. The situation changes drastically when we consider primes ` ≥ 7: There exist Galois
extensions K/Q with Galois group GL2(F`) which do not come from elliptic curves defined over Q,
that is, there is no elliptic curve E/Q such that Q(E[`]) = K. You can find a proof in [Cal06, §3].
The different behaviour for small values of ` and large values of ` is due to the fact that the modular
curves X(`), ` = 2, 3, 5, have genus 0, whereas X(`) has genus g ≥ 1 for all primes ` ≥ 7.
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