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1 Introduction

The present project is extracted from an unpublished preprint of the author [1],
which will be on the author’s web page at the end of July 2018. It is almost
entirely experimental : mainly computer experiments, and a few exercises.

1.1 Definitions

Recall the Dedekind eta function

η(τ) = q1/24
∏
n≥1

(1− qn)

with q = e2πiτ (where by convention qa/b = e2πi(a/b)τ ). It is a modular form
of weight 1/2 on SL2(Z) with a complicated multiplier system formed of 24th
roots of unity. Its 24th power is the discriminant function ∆(τ).

There are two GP syntaxes for η: either simply eta(x+O(x^m)), which com-
putes the Fourier expansion of η to m terms, omitting the factor q1/24 which
cannot be represented in the GP language. Or eta(z,1), which computes η(z)
with z in the upper half-plane numerically (including of course the e2πiz/24).
We will not need this second syntax for the present project.

However, for very large values of m (such as m = 107 or 108), the available
GP function is extremely slow. Fortunately, there exists a Pari library func-
tion which is highly optimized for other uses, and which in addition provides
directly η(vτ) (corresponding to eta(x^v)), and I strongly suggest using it. For
this, write install(eta inflate ZXn,LL), which gives GP access to this func-
tion, whose syntax is eta inflate ZXn(m,v) which provides the power series
expansion of eta(x^v) to m terms.

Definition 1.1 (1) If m, r and s are in Z, we define the function

Fm(r, s) = η(τ)rη(mτ)s ,

and we set k = (r + s)/2 ∈ (1/2)Z, its weight.
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(2) Set (r +ms)/24 = e/d with gcd(e, d) = 1 and d ≥ 1, and let

E(d) = {n ≥ e, n ≡ e (mod d)} .

We define the Fourier coefficients b(n) = bm(r, s;n) by

Fm(r, s) =
∑

n∈E(d)

b(n)qn/d .

(3) We define the set Z(F ) of Fourier zeros of F as the set of n ∈ E(d) such
that b(n) = 0.

(4) The (normalized) counting function of the Fourier zeros is defined by

N(F ;X) = d · |{n ∈ Z(F ), n ≤ X}| ,

and the Fourier zero density as z(F ) = lim infX→∞N(F ;X)/X.

Some remarks: first, since η(τ) ∈ q1/24Z[[q]], we have η(mτ) ∈ qm/24Z[[qm]],
so

Fm(r, s) ∈ q(r+ms)/24Z[[q]] = qe/dZ[[q]] ,

so the only coefficients to consider are indeed those of the form qe/d+λ =
q(e+λd)/d with λ ∈ Z≥0, i.e., qn/d with n = e+ dZ ∈ E(d).

Second, we normalize the counting function by multiplying by d since the
density of E(d) is equal to 1/d. For the same reason, it is clear that z(F ) ≤ 1.

Since η(τ) is modular on Γ (with a complicated multiplier system), η(mτ)
and hence also Fm(r, s) is modular on Γ0(m) (with a complicated multiplier
system), and since η has weight 1/2, Fm(r, s) has weight k = (r + s)/2. The
following proposition says when Fm(r, s) is holomorphic:

Proposition 1.2 Fm(r, s) is a modular form (i.e., is holomorphic on H and at
the cusps) if and only if r ≥ max(−s/m,−sm), in which case it will be modular
of weight k = (r + s)/2 ≥ 0 on Γ0(m) with a complicated multiplier system.

Exercise 0. (Not part of the project.)

(1) Let γ ∈ Γ and m ∈ Z≥1. Show that there exist δ ∈ Γ and some upper-
triangular matrix T such that (m 0

0 1 ) γ = δT .

(2) Deduce that the order of vanishing of η(mτ) at a cusp a/c is equal to
gcd(m, c)2/(24m).

(3) Using this, prove the proposition.

In view of the fundamental difference between modular forms of integral and
half-integral weight, it is clear that there will be a sharp distinction between r+s
even (integral weight), and r + s odd (half-integral weight).
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1.2 The Cases rs = 0

Note that if r = 0 we have Fm(0, s) = η(mτ)s = F1(s, 0)(mτ), so without loss
of generality we may assume that s = 0, so we are dealing with a pure eta power
F (r) := η(τ)r. In the case r even (integral weight), we have the following nice
result of Serre [3]:

Definition 1.3 We say that F is lacunary if N(F ;Z) ∼ X, or equivalently
z(F ) = 1.

Theorem 1.4 (Serre) If r ≥ 2 is even, ηr is lacunary if and only if r = 2, 4,
6, 8, 10, 14, and 26, and in all these cases it is a linear combination of Hecke
theta series.

No need to define these theta series: simply note that this means that the
there is an efficient explicit formula for the Fourier coefficients.

Conjecture 1.5 For r even not in Serre’s list we have N(ηr, X) = O(log log(X)).

Experiment 1. (Don’t waste time on this negative result). Show that in fact
N(ηr, X) = 0 for r ≤ 30 even and not in Serre’s list for X as large as you can
(I went up to X = 5 · 107), or find an example of a nonzero Fourier coefficient
(I did not find any, but it seems reasonable to expect that there are some).

For r odd (half-integral weight) the problem is much more interesting. First
note that η and η3 have very simple explicit lacunary expansions, so we assume
r ≥ 5 odd and set the following definition:

Definition 1.6 Let F = Fm(r, s) be a form of half-integral weight. We will say
that a · u2 for a fixed integer a are Shimura zeros if for all n ∈ E(d) of the form
n = au2 we have n ∈ Z(f), i.e., b(n) = 0.

The name comes from the construction of Shimura lifts from modular forms
of half-integral weight k ∈ 1/2 + Z to forms of integral weight 2k − 1, which
implies in particular that if b(n) = 0 then b(nu2) = 0 if suitable conditions are
satisfied. Note the trivial fact that if there exist at least one Shimura zero then
N(F,X) ≥ C(F )X1/2 for a suitable positive constant C(F ). In fact, we can
formulate a very weak analogue of Conjecture 1.5 in the case of half-integral
weight:

Conjecture 1.7 For r odd we have N(ηr, X) = o(X), or equivalently z(ηr) =
0.

In fact a more rash conjecture would be that N(ηr, X) = O(X1/2+ε) for all
ε > 0, or even N(ηr, X) = O(X1/2 log(X)).

Experiment 2.

(1) For r = 5, find as many Shimura zeros as you can (for instance a = 37445,
43253,...) Can you find a pattern, or some estimate of the number of a up
to some bound ? (I do not know).

(2) For r = 7, find at least one Shimura zero (it exists, and I found only one).
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(3) For r = 15, find at least one Shimura zero (it exists, and I found only
one).

(4) For r = 9, 11, 13, 17,... I have not been able to find any, but maybe you
can.

In this experiment, as well as all the others, one asks only to check whether it
seems conjecturally true. For instance, when we say that a = 37445 is a Shimura
zero, this means that one should at least check that b(n) = 0 for n = au2 with
u = 1, 5, and 7 say (recall that we need that n ∈ E(d)). In particular checking
a single zero would not be sufficient.

For the cases r = 5 and r = 7, you may be helped by the following proposition
which follows trivially from the explicit expansions of η and η3, and which can
avoid handling power series with millions of coefficients:

Proposition 1.8 We have

η5(τ) =
1

8

∑
(x,y,z)∈Z3

(
12

xy

)(
−4

z

)
zq(x

2+y2+3z2)/24 and

η7(τ) =
1

8

∑
(x,y,z)∈Z3

(
12

x

)(
−4

yz

)
yzq(x

2+3y2+3z2)/24 .

2 The Case m = 2

We now study the case m = 2, i.e., functions F2(r, s) = η(τ)rη(2τ)s. Here,
several new types of families of zeros occur. In particular, there are many cases
where the density z(F ) is not 0 nor 1 (which conjecturally cannot happen for
pure eta powers, see Conjectures 1.5 and 1.7), so we give a formal definition of
such zeros:

Definition 2.1 We say that F has congruence zeros if there exists (u, v) with
d | v and u ≡ e (mod d) such that n ≡ u (mod v) implies b(n) = 0, in other
words u + vZ ⊂ Z(F ), and we will simply say that u mod v is a congruence
zero.

Clearly if such congruence zeros exist then z(F ) ≥ 1/(v/d). Note that
congruence zeros may exist both in integral and half-integral weight.

The lacunary functions F2(r, s) have been classified (there are 45 in all), so
in the following experiments we restrict to z(F ) < 1.

2.1 Implementation Remarks

You may skip this section, but it will allow to go much further in the experi-
ments.

We will need to compute the Fourier expansions of F (τ) = η(τ)rη(2τ)s for
different values of r and s, certainly at least to 106 terms, but if possible to 107

terms or more. When r and s are positive, one can do this naively (although
there are better methods). In Pari/GP you would write for instance:
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L=10^6; /* for instance */

E=eta(x+O(x^L)); /* or eta_inflate_ZXn(L,1) */

ED=eta(x^2+O(x^L)); /* or eta_inflate_ZXn(L,2) */

/* better and much faster than substituting x for x^2 in E. */

F=E^r*ED^s

On the other hand, if r or s is negative, computing the inverse of a series with
106 terms will be extremely expensive, and the coefficients very large. Since
we are only looking for zero coefficients and not the coefficients themselves, the
natural idea is to work modulo p for a sufficiently large prime p (of course we
may get false positives if a coefficient is divisible by p, but then first we can start
again with a different p, and second, in view of the incredible regularity of the
appearance of the zeros that we will find, any deviation would be immediately
spotted). This already solves the problem of explosion of coefficients, but not
the problem of inverting a series. Solving the latter problem is specific to the
package that you use. The following implementation exercise assumes that you
are working with Pari/GP.

Implementation Exercise 1.

(1) For L = 10m with 4 ≤ m ≤ 7, compare the times taken by the GP function
eta(x+O(x^L)) and the installed library function eta inflate ZXn(L,1);
you can also compare with your own homemade GP script.

(2) For L = 10m with 4 ≤ m ≤ 5 (not m ≥ 6, it would be too long),
look at the time to compute 1/η using the simple command 1/E, where
E has been computed beforehand (either with the command eta, or with
eta inflate ZXn).

(3) Let us choose p = 109+7 (nextprime(10^9)), which is the prime I usually
choose because p2 < 263, and set Ep=Mod(E,p). For L = 104 (only!), look
at the time taken for 1/Ep. Much longer than 1/E, so why did we reduce
modulo p?

(4) However, there is a very efficient program in the Pari library for in-
verting a series, called ser inv. To be able to use it, you must type
install(ser inv,G) (don’t worry about the syntax). Now look at the
time taken for ser inv(Ep) for L = 10m for 4 ≤ m ≤ 6 (even m = 7 if
you want): considerably faster than 1/E. Note: ser inv is really useful
modulo p, but not otherwise: ser inv(E) is only 2 or 3 times faster than
1/E.

Implementation Exercise 2.
So as to considerably simplify the experiments that we are going to do, write

the following three small programs:

(1) A precomputation program which, given a number L0 of coefficients and
a prime p0 such as 109 + 7, puts these values in global variables L and p

(declaration: global), and computes modulo p to L terms and stores in
global variables the four power series eta(x), 1/eta(x), eta(x^2), and
1/eta(x^2) (corresponding of course to η(τ), 1/η(τ), η(2τ), and 1/η(2τ)
as modular forms), using of course the indications given in the previous
exercise.
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(2) A program computing F2(r, s) modulo p to L terms.

(3) A program to compute the list of zero Fourier coefficients of F2(r, s) mod-
ulo p to L terms, as elements of E(d) as given by Definition 1.1.

As a check on your implementation, compute the (Shimura) zeros of η5 for
L = 104, say (which will correspond to n ≤ 24L+ 5).

Experiment 3.

(1) For F = F2(−8, 24) find a congruence zero. Apparently there is only one,
and it would imply z(F ) = 1/4. Can you prove it ? (I did not).

(2) For F = F2(r, s) with (r, s) = (−5, 13), (1, 7), (7, 1), and (13,−5), (all of
weight 4), look for congruence zeros, and show that apparently odd powers
of 31 enter the picture. This would imply z(F ) = 1/32. True ?

(3) For F = F2(r, s) with (r, s) = (−3, 13), (1, 9), (9, 1), and (13,−3), (all
of weight 5), do the same, and show that apparently odd powers of 1223
enter the picture, so that z(F ) = 1/1224. True ?

(4) Can you find any other F2(r, s) of integral weight such that 0 < z(F ) < 1
? I could not.

Exercise 1. The goal of this exercise is to prove that b(n) = 0 when v31(n)
is odd for one of the forms in (2) above, for instance for (r, s) = (1, 7). It will
be useful to use the latest version of Pari/GP for this, but can of course use
another package if you prefer.

(1) Let F (τ) = η(8τ)η(16τ)7 = F2(1, 7)(8τ). Show that F ∈ S4(Γ0(128), χ8),
and that it is a newform (in GP, you can use the functions F=mffrometaquo([8,1;16,7]);,
mfparams(F), and mf=mfinit(F,0);).

(2) Compute a basis of eigenforms of the newspace, and express F as a linear
combination of these eigenforms. You can do this using linear algebra,
but more amusingly, using Petersson products.

(3) Compute the eigenvalues of T31 on these eigenforms, and deduce that
b(n) = 0 when v31(n) is odd.

Experiment 4. Similar to the above, but now in half-integral weight. One
can show that F = F2(r, s) is lacunary if and only if (r, s) = (−2, 5), (−1, 2),
(2,−1), and (5,−2), so we exclude those.

Find all F2(r, s) of half-integral weight outside of these four which have
congruence zeros. I found exactly 10, and they all have z(F ) = 1/6, and the
congruence zeros are all of the form a · 22k−2 (mod d · 22k+1). Find all these
forms and the corresponding values of a. Are there more ?

Experiment 5. Find non-lacunary F2(r, s) having Shimura zeros (I found 12
in weight 5/2, 13 in weight 7/2, 6 in weight 9/2, 1 in weights 11/2 and 13/2,
and none in higher weight). Can you find them, and can you find more ?

We finish with still another kind of Fourier zero.
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Definition 2.2 We say that F has a Hecke zero (for the prime p) if b(n) = 0
whenever n is of the form n = a·pj, n = a·p2j, or, in the case where k ∈ 1/2+Z,
n = a · p4j, for some fixed a and all j.

Note that this is the weakest kind of zero: if F has a Hecke zero it implies
only that N(F ;X) ≥ C(F ) log(X) for a suitable positive constant C(F ).

Experiment 6. Assume that z(F ) = 0 (in particular F is not lacunary and
has no congruence zeros). Find all forms which have Hecke zeros. I found 8 for
p = 2 (all in even weight), and 8 for p = 31 (all in weight 8 in that case), and no
other, in particular none in odd or half-integral weight. Can you reproduce this,
and/or do better ? For instance, in view of Experiment 3, there are perhaps
Hecke zeros for p = 1223 ?.

Problem (Difficult, I needed J.-P Serre’s help!) Prove the following result:
n = 2j is a Hecke zero for F2(−16, 68); in other words, if we set

η(τ)−16η(2τ)68 =
∑
n≥5

b(n)qn ,

then for all j we have b(2j) = 0.

Experiment ∞ Repeat the same experiments for Fm(r, s) for m ≥ 3.
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