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1 Introduction

The present project is entirely copied from part of a paper of M. Kaneko and
D. Zagier [2] that you can find on Zagier’s web page. It is almost entirely
theoretical, with only a little experimental aspect.

Definition 1.1 (1) We let V be the C-vector space of holomorphic functions
on the upper half-plane H which are invariant under the full modular group.

(2) For any subfield K of C (in practice K = R or K = Q) we denote by
V (K) the K-vector space of elements of V whose Fourier expansion has
coefficients in K.

Exercise 1. Recall that the set of all Γ-invariant meromorphic functions on H
is C(j), where j is the elliptic j-function, and that j induces an isomorphism
between H and C.

(1) Show that V = C[j], polynomials in j, and that V (K) = K[j] for any
subfield K of C.

(2) If F ∈ V show that F grows at most like q−N for a suitable N as τ → i∞
(i.e., q → 0).

Recall that we choose q = e2πiτ as uniformizer at infinity, but that we could
choose more generally any power series in q of the form a(1)q + a(2)q2 + · · ·
with a(1) 6= 0, so in particular ∆ = q− 24q2 + · · · , j−1 = q− 744q2 + · · · , etc...

Exercise 2.

(1) Show that d∆/∆ = E2dq/q, that dE4/E4 = ((E2 − E6/E4)/3)dq/q, and
that dj/j = −(E6/E4)dq/q.

(2) Let F and G be in V (R). Show that the following four expressions are
equal:

(a) The constant term of FG as a Laurent series in ∆.

(b) The constant term of FGE2E4/E6 as a Laurent series in j−1.
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(c) The constant term of FGE2 as a Laurent series in q.

(d) The integral

6

π

∫ π/2

π/3

F (eiθ)G(eiθ) dθ .

(3) Show that j(eiθ) is real for 0 < θ < π, and deduce from the last condition
that the common value in (2) defines a positive definite scalar product on
V (R).

Definition 1.2 For F , G in V we define the Atkin scalar product < F,G >
as the common value of the above expressions.

2 Orthogonal Polynomials

The following is well-known, but perhaps needs a refresher.

Exercise 3. Let W = R[X], let φ be a linear form from W to R, and assume
that < F,G >= φ(FG) defines a positive definite Euclidean scalar product on
W .

(1) Prove that there exists a unique sequence of monic polynomials Pn ∈W of
degree exactly equal to n which are orthogonal with respect to the scalar
product.

(2) We have P0 = 1, P1 = X− < X, 1 > / < 1, 1 >= X − φ(X)/φ(1). After
explaining why Pn is orthogonal to all polynomials of degree less than or
equal to n − 1, prove that for n ≥ 1 the polynomials Pn satisfy a second
order linear recurrence

Pn+1(X) = (X − an)Pn(X)− bnPn−1(X)

for suitable constants an and bn given by

an =
< XPn, Pn >

< Pn, Pn >
and bn =

< Pn, Pn >

< Pn−1, Pn−1 >
.

Unfortunately, the above formulas are not very useful in practice to com-
pute an and bn. The following exercises give a usually much better method to
compute them.

Exercise 4. Define the nth moment wn by wn =< Xn, 1 >= φ(Xn), and let
Φ(T ) be the formal power series in T−1 defined by

Φ(T ) =
∑
n≥0

wnT
−n−1 .

(1) Show that < F,G > is the coefficient of X−1 in the Laurent expansion of
F (X)G(X)Φ(X).
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(2) Note that Pn(X)Φ(X) = Qn(X) + O(X−1) for some polynomial Qn of
degree exactly equal to n− 1. Show that in fact

Pn(X)Φ(X) = Qn(X) +O(X−n−1) ,

in other words that the coefficients of X−m in Pn(X)Φ(X) vanish for
1 ≤ m ≤ n.

(3) Deduce thatQn satisfies exactly the same recursion as Pn, and thatQ0 = 0
and Q1 = w0 =< 1, 1 >.

(4) Show that

Qn(X)

Pn(X)
= Φ(X) +O(X−2n−1) =

w0

X
+
w1

X2
+ · · ·+ w2n−1

X2n
+O(X−2n−1) .

Exercise 5. Let φ∗ be the linear form on W deduced from φ defined by
φ∗(X2n+1) = 0, φ∗(X2n) = φ(Xn) = wn, and extended by linearity (equiv-
alently, if F (X) +F (−X) = 2F ∗(X2) we define φ∗(F ) = φ(F ∗)), and let P ∗

n be
the corresponding orthogonal polynomials as in the previous exercise.

(1) Show that P ∗
n(−X) = (−1)nP ∗

n(X), and deduce that the recursion of the
previous exercise is of the form

P ∗
n+1(X) = XP ∗

n(X)− cnP ∗
n−1(X)

with cn =< P ∗
n , P

∗
n > / < P ∗

n−1, P
∗
n−1 > (with the new scalar product).

(2) Show that P ∗
2n(X) = Pn(X2), and deduce that the coefficients an and bn

of the recursion for Pn are given in terms of the cn by

an = c2n + c2n+1 and bn = c2n−1c2n .

(3) Denote by Q∗
n the corresponding Q-polynomials given by the previous

exercise. Noting that the above recursions are exactly those for continued
fractions, show that

Q∗
n+1(X)

P ∗
n+1(X)

=
w0

X − c1

X − c2

X −
. . . − cn

X

=
w0X

−1

1− c1X
−2

1− c2X
−2

1−
. . . − cnX−2

.

(4) Show that Q∗
2n(X) = XQn(X2) and deduce from the previous exercise

that we have the following formal identity giving a direct link between the
moments wn and the coefficients cn:

Φ(T−1) = w0T + w1T
2 + w2T

3 + · · · = w0T

1− c1T

1− c2T

1−
. . .

.

Together with the formulas obtained above expressing an and bn in terms
of the cn, this allows to compute these quantities directly from the wn.

3



3 The Atkin Polynomials

Exercise 6. We now restrict to the Atkin scalar product on V (R). We denote
by An(X) the corresponding orthogonal polynomials.

(1) Let Q(T ) be the reverse of the series expressing 1/j in terms of q, so that
1/j(Q(T )) = T . Keeping the notation of the previous exercises, show that

Φ(1/T ) =
∑
n≥0

wnT
n+1 = TE2(Q(T ))E4(Q(T ))/E6(Q(T )) ,

where by abuse of notation Ek(q) is the Fourier expansion of Ek.

(2) After computing explicitly wn for 0 ≤ n ≤ 6 using this formula, compute
An(X) for 0 ≤ n ≤ 3.

(3) Using a computer, compute the constants cn of the previous exercise for
n ≤ 20, and then guess an (easy) conjectural formula for cn. (Hints: first
guess (a multiple of) the denominator of cn, for instance by looking at
c14, then setting aside c1 = 720 and separating n even and n odd guess a
formula for the numerator.)

(4) Compute the constants an and bn of the recursion for n = 1 and n = 2.

(5) Using the conjectural formula for cn and the previous exercise, give a
conjectural formula for an and bn.

(6) Using this, compute An(X) for n ≤ 6.

The reader can refer to [2] for a proof of these formulas as well as many
more important results. In particular, with a suitable definition of the Hecke
operators one can show that they are self-adjoint with respect to the Atkin
scalar product. Also, the Atkin polynomials themselves are closely linked to
the supersingular polynomials, and this link was Atkin’s initial motivation for
introducing them.

Exercise 7. Using the previous exercises (and the fact that all the conjectural
formulas are indeed true thanks to Kaneko–Zagier), do the following:

(1) Using the general formulas for orthogonal polynomials, find a recursion
for < An, An > and then compute it. It will be useful to use the standard
Pochhammer symbol

(x)n = x(x+ 1) · · · (x+ n− 1) = Γ(x+ n)/Γ(x) .

(2) Using the formula P ∗
2n(X) = Pn(X2) proved above, find a recursion for

An(0), and deduce its value.

(3) Using the values of An(X) that were computed above for n ≤ 6, compute
An(1728)/An−1(1728) for 1 ≤ n ≤ 6, guess a formula (very similar to the
one for An(0)/An−1(0)), and then prove that your guess is correct using
the recursion for An(X).
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[1] H. Cohen and F. Strömberg, Modular Forms: A Classical Approach, Grad-
uate Studies in Math. 179, American Math. Soc., (2017).

[2] M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric se-
ries, and Atkin’s orthogonal polynomials, in Proceedings of the Confer-
ence on Computational Aspects of Number Theory, AMS/IP Studies in
Advanced Math. 7, International Press, Cambridge (1997), pp. 97–126.

[3] D. Zagier, Elliptic modular forms and their applications, in The 1-2-3 of
modular forms, Universitext, Springer (2008), pp. 1–103.

5


