1 Projects

Project 1 (Endomorphisms of hyperelliptic Jacobians). Zarhin has proven [Zar00] the following remarkable theorem:

Theorem 1 (Zarhin). Let f(x) be a separable polynomial of degree $n \ge 5$ with coefficients in a number field K. Let C be the hyperelliptic curve $y^2 = f(x)$, and suppose that the Galois group of f(x) over K is either A_n or S_n . Then for the Jacobian J of C we have $\operatorname{End}_{\overline{K}}(J) = \mathbb{Z}$.

The aim of this project is to find similar criteria which give information on $\operatorname{End}_{\overline{K}}(J)$ (or $\operatorname{End}_{K}(J)$) in terms of properties of the Galois group G of f(x): here are two possible extensions for you to think about.

- 1. are there assumptions on G (weaker than G containing A_n , of course) that ensure that J is geometrically irreducible?
- 2. fix a (small) value of g and a proper subgroup H of A_n . Is there a polynomial $f_H(x)$ of degree n with Galois group H and such that the Jacobian J_H of $y^2 = f_H(x)$ has (geometrically) nontrivial endomorphism ring? If the answer is yes, then you have found an abelian variety with an 'interesting' Galois representation (nontrivial endomorphisms and prescribed structure on $J_H[2]$). If the answer is no, you have found a strengthening of Zarhin's theorem.

Project 2 (Small torsion of non-hyperelliptic Jacobians). The purpose of this exercise is to investigate the geometry of torsion points of small order on Jacobians of non-hyperelliptic curves.

- 1. Let C be a genus-3 non hyperelliptic curve, presented as a smooth plane quartic F(X, Y, Z) = 0. Can you describe the 2-torsion in J = Jac(C) in terms of the geometry of F? [This is known, but still interesting].
- 2. Can you find a similar geometric description for a non-hyperelliptic genus 4 curve presented as the intersection of a quadric and a cubic in \mathbb{P}^3 ?
- 3. Can you find further interesting classes of curves C for which some of the groups $\operatorname{Jac}(C)[\ell]$ are easy to describe in geometric terms?

Project 3 (A surjectivity criterion in genus 2). As described in Sara's lectures on elliptic curves, there is a surjectivity criterion for Galois representations attached to elliptic curves (due to Serre) which reads as follows:

Theorem 2 (Serre). Let E be an elliptic curve over a number field K. Let $p \ge 5$ be a prime number and let G_p be the image of the representation ρ_p attached to E. Suppose that G_p contains:

1. an element g such that $\operatorname{tr}(g) \neq 0$ and $\operatorname{tr}(g)^2 - 4 \operatorname{det}(g)$ is a nonzero square in \mathbb{F}_p^{\times}

2. an element g' such that $\operatorname{tr}(g') \neq 0$ and $\operatorname{tr}(g')^2 - 4 \det(g')$ is not a square in \mathbb{F}_p^{\times}

3. an element g'' such that $u := \operatorname{tr}(g'')^2 / \det(g'')$ satisfies $u \neq 0, 1, 2, 4$ and $u^2 - 3u + 1 \neq 0$

Then G_p contains $SL_2(\mathbb{F}_p)$. In particular, if p is unramified in K, then $G_p = GL_2(\mathbb{F}_p)$.

Can you find a similar criterion for abelian surfaces (the classification of proper subgroups of $\text{GSp}_4(\mathbb{F}_\ell)$ given in [Lom16] might be useful)?

Project 4 (Prime values of some quadratic polynomials). Consider the elliptic curve E: $y^2 = x^3 + x$ over the field \mathbb{Q} . Let $p \equiv 1 \pmod{4}$ be a prime number; it is well-known that p can be written as $p = a^2 + b^2$ in an essentially unique¹ way.

- 1. Compute the trace of the Frobenius at p in terms of a and b.
- 2. Notice that whenever the trace of the Frobenius at p is ± 2 the prime number p is of the form $x^2 + 1$ (and recall that it is not known whether there exist infinitely many primes of this form).
- 3. Google the Lang-Trotter conjecture (a good reference for the purposes of this project is [BJ09]). Combined with the previous remarks, what does the Lang-Trotter conjecture imply on the distribution of primes p of the form $x^2 + 1$?
- 4. Can you derive the same prediction from analytic number theory, without resorting to the theory of elliptic curves?
- 5. Apply the same argument to other CM elliptic curves over Q. What are the corresponding predictions about the prime values taken by certain quadratic polynomials?
- 6. Can you support these predictions by analytic arguments and/or with numerical experiments?
- (*) Can you find a higher-dimensional analogue of these heuristics? (That is, can you make similar predictions by looking at CM abelian varieties of dimension 2 or more?)

References

- [BJ09] Stephan Baier and Nathan Jones. A refined version of the Lang-Trotter conjecture. Int. Math. Res. Not. IMRN, (3):433–461, 2009.
- [Lom16] D. Lombardo. Explicit surjectivity for Galois representations attached to abelian surfaces and GL₂-varieties. *Journal of Algebra*, 460C:26–59, 2016.
- [Zar00] Yu. G. Zarhin. Hyperelliptic Jacobians without complex multiplication. *Math. Res. Lett.*, 7(1):123–132, 2000.

¹that is, up to exchanging a and b and to a choice of signs