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1 The Galois representations associated to mod-

ular forms: main results.

We begin with the main results, to get motivated for the work that follows. The
following theorem was proved by Eichler and Shimura for k = 2 in the 1950’s
(but formulated in terms of zeta-functions), and by Deligne for k ≥ 2 in 1969.

Theorem 1. Let N and k be positive integers such that k ≥ 2, ε∶ (Z/NZ)× → C×

a character, and f = ∑n≥1 an(f)qn a normalized (a1(f) = 1) newform of type

(N,k, ε). Then Kf ∶= Q(a1(f), a2(f), . . . ) is finite over Q, and for every prime

l there exists a unique continuous representation

ρf,l∶GQ → Gal(Q/Q)→ GL2(Ql ⊗Kf)

that is unramified at all primes p ∤ lN and such that for every such p:

det(ρf,l(Frobp)) = ε(p)pk−1, and tr(ρf,l(Frobp)) = ap(f).

Remark 2. We note the following.

1. These ρf,l are not smooth, i.e., not continuous for the discrete topology

on GL2(Ql ⊗Kf).

2. Ql ⊗Kf =∏λ∣lKf,λ.

3. Kuga, Sato and Shimura had already treated some higher weight cases for

certain Shimura curves (no cusps) in terms of zeta functions.

4. For the uniqueness in the theorem: the ρf,l are irreducible (Ribet, Deligne?)

5. Deligne-Serre proved the theorem for k = 1. Then the representations ρf,l

have finite image, independent of l. These cannot be constructed in the

same way as the others.

The theorem above gives us information on (ρf,l)p ∶= ρf,l∣GQp
for primes p

not dividing lN :

(i) (ρf,l)p is unramified and,

(ii) det(1 − T ⋅ ρf,l(Frobp)) = 1 − ap(f)T + ε(p)pk−1T 2.

To describe (ρf,l)p for p∣N (p /= l) one needs representation theory. We will see
(hopefully) that f induces an automorphic form ϕ on GL2(A), which induces a
cuspidal, irreducible automorphic representation πf = ⊗′vπf,v (restricted tensor
product) in A0(GL2,Q, ε).
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Theorem 3 (Langlands, Deligne, Carayol, Nyssen). (vaguely formulated here)

For all primes l and for all primes p which are different from l, the represen-

tations (ρf,l)F−s.s.p and πf,p correspond to each other via a suitably normalized

local Langlands correspondence.

Remark 4. 1. The normalisation of the local Langlands correspondance is

up to V ↦ V ∨ and ρ ↦ ρ ⊗ χml where χl∶GQ ↠ Z×l = Aut(Q̄×[l∞]) and

m ∈ Z on the Galois side, and up to π ↦ π∨ and π ↦ π ⊗ (∣ ⋅ ∣ ○ det)n/2

(n ∈ Z).

2. πf is complex, but can naturally be defined over Kf , hence also πf,p.

3. F-s.s.= Frob. semi-semisimplification. This is a functor. If there ex-

ists an α∶GQp → Q̄×
l such that (ρf,l)p ⊗ α is unramified, then it makes

((ρf,l)p ⊗ α)(Frobp) semi-simple. Conjecturally, this is never necessary.

Details: Tate’s ’Number theoretic background,’ in Corvallis, 1979.

4. For p = l: (WD(ρf,l)p)F−s.s. corresponds with πf,p (Saito, 1997); WD

stands for Weil-Deligne representation, its definition involves functors of

Fontaine. In p-adic LL: (ρf,l)p itself should correspond to what? A rep-

resentation of GL2(Qp) on some infinite dimensional Banach space. See

the work of Breuil, Colmez, etc.

5. All this is crucial for the recent work of Wiles, Taylor, Khare, Kisin. . .

Goal of my series of 3 lectures: sketch a proof of Theorem 1, sketch Deligne’s
proof that (ρf,l)F-s.s.

p is determined by πf,p if πf,p is cuspidal if there is time, and
say something about computational aspects of Galois representations to GL2 of
finite fields.

The ρf,l are constructed in the cohomology of certain sheaves on modular
curves (and in the torsion of the Jacobian if k = 2). So now we will turn to
modular curves.

2 Modular curves over C
As usual, H denotes the complex upper half plane, and we view it as half
of P1(C) − P1(R). The group GL2(R)+ of 2 by 2 real matrices with positive
determinant acts on it, and therefore SL2(R) as well. The subset

{τ ∈ H ∶ ∣τ ∣ ≥ 1 ∧ ∣R(τ)∣ ≤ 1/2}

is the standard fundamental domain for the action of SL2(Z). For Γ ⊂ SL2(Z)
any subgroup, the quotient YΓ(C) ∶= Γ/H is a 1-dimensional complex analytic
manifold.
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Example 5. The function j∶H→ C sending τ to the j-invariant of the complex

elliptic curve C/Z + Zτ factors via the quotient YSL2(Z)(C), and induces an

isomorphism from YSL2(Z)(C) to C. In a diagram:

H C

YSL2(Z)(C)

j

≃

For Γ ⊂ SL2(Z) a subgroup of of finite index, YΓ(C) → YSL2(Z)(C) = C is a
finite, possibly ramified, cover. The ramification occurs at points τ of H whose
stabiliser in SL2(Z) is bigger than {1,−1}, that is, at the points in the orbits of
i and e2πi/3 under the action of SL2(Z).

Compactification

For Γ ⊂ SL2(Z) of finite index, we compactify YΓ(C) by “normalization.” That
means that we first compactify YSL2(Z)(C). The following identity and inequal-
ity, for τ ∈ H and g = ( a bc d ) in SL2(R) with c ≠ 0:

I(aτ + b
cτ + d

) = I(τ)
∣cτ + d∣2

and
I(τ)

∣cτ + d∣2
≤ I(τ)
I(cτ)2

= 1

c2I(τ)

show that on the part “I(τ) > 1” of H the equivalence relation given by the
SL2(Z-action is given by the action of Z by translation. A quotient for that ac-
tion is the map τ ↦ exp(2πiτ), onto D∗, the punctured open disk of radius e−2π.
This gives us an open immersion of D∗ into YSL2(Z)(C). The compactification
XSL2(Z)(C) is then obtained by replacing D∗ with the non-punctured disk D,
that is, by adding the center back into into the punctured disk; this extra point
is called the cusp ∞. One can see that the function j on YSL2(Z)(C) has a pole
of order 1 at ∞, giving an isomorphism from XSL2(Z)(C) to P1(C).

Now let Γ ⊂ SL2(Z) be of finite index, and let f ∶YΓ(C) → YSL2(Z(C be the
natural map. Then the restriction of f to f−1D∗ is a covering map, and hence
a disjoint union of connected coverings of D∗. Now the fundamental group of
D∗ is Z, hence the connected covers are of the form D∗

n → D∗, z ↦ zn, with
n ∈ Z>0, and Dn the disk of the appropriate radius. We compactify each D∗

n by
D∗n ⊂Dn, that is, by adding one cusp. In a diagram:

XΓ(C) XSL2(Z(C) P1(C)

YΓ(C) YSL2(Z(C) C

f

f

Serre’s GAGA theorem tells us that XΓ(C) is a projective complex algebraic
curve and YΓ(C) is an affine complex algebraic curve.

For administrative use, we note that, as sets, XΓ(C) is the quotient of
H ∪ P1(Q) by the action of Γ.
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3 Modular curves over C as moduli spaces

Let us first look at them as complex analytic spaces. For V be a complex
vector space of dimension 1 and Λ ⊂ V a lattice, V /Λ is a complex ellip-
tic curve. The theory of Weierstrass-functions gives an embedding in P2(C),
showing that they are algebraic curves. In the other direction, the exponential
map of a complex elliptic curve E, expE ∶TE(0) → E, gives a natural isomor-
phism from TE(0)/ker(expE) to E. Another way to get Λ and V from V /Λ is:
Λ = H1(V /Λ,Z), V = R⊗Λ with the C-vector space structure given as tangent
space TV /Λ(0).

Morphisms. For V and Λ and V ′ and Λ′:

Hom(V /Λ, V ′/Λ′) = {f ∶V → V ′ C-linear ∶ f(Λ) ⊆ Λ′}.

Now we interpret the upper half plane H as a moduli space for all com-
plex elliptic curves together with a basis of their lattice. That is, we look
at triples (V,Λ, ϕ) with ϕ∶Z2 → Λ an isomorphism of Z-modules, such that
ϕ((1,0))/ϕ((0,1)) (yes, we can divide in a 1-dimensional vector space) has pos-
itive imaginary part. And we look at pairs (E,ϕ) with E a complex elliptic curve
and ϕ∶Z2 → H1(E,Z) an isomorphism such that I(ϕ((1,0))/ϕ((0,1))) > 0.
Then we have bijections:

H {(V,Λ, ϕ)}/ ≅ {(E,ϕ}/ ≅

τ (C,Zτ +Z, (n,m)↦ nτ +m) (C/(Zτ +Z), ϕ)

ϕ((1,0))/ϕ((0,1)) (V,Λ, ϕ)

≃

We can interpret the SL2(Z)-action on H as an action on the set of (E,ϕ).
For γ ∈ SL2(Z) one has:

H {(E,ϕ)}/ ≅

τ ↦ γτ (E,ϕ)↦ (E,ϕ ○ γt)

≃

In this way, we get, for Γ a subgroup of SL2(Z), a bijection

YΓ(C) {(E,ϕ)}/ ≅ ϕ ∈ Γ/Isom+(Z2,H1(E,Z))≃

Examples of some congruence subgroups

Let N ≥ 1, f ∶SL2(Z) ↠ SL2(Z/NZ) be the group morphism induced by the
ring morphism Z→ Z/NZ. The group SL2(Z/NZ) acts on (Z/NZ)2.
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1. Γ(N) ∶= ker(f), called the principal congruence subgroup of level N . A
subgroup Γ of SL2(Z) is called a congruence subgroup if it contains some
Γ(N); this implies that it is of finite index, but there are subgroups of
finite index that are not congruence subgroups.

2. Γ1(N) ∶= f−1Stab((1
0)).

3. Γ0(N) = f−1Stab( ¯(1
0)) where ¯(1

0) is the class of (1
0) in P1(Z/NZ).

This gives the following interpretations of the various YΓ(C)’s:

YΓ(N)(C) = {(E,ϕ∶ (Z/NZ)2 → E[N] symplectic isomorphism)}/ ≅
YΓ1(N)(C) = {(E,P ) ∶ P ∈ E has order N}/ ≅

YΓ0(N)(C) = {(E,G) ∶ G ⊂ E cyclic subgroup of order N}/ ≅

Actually, over H we have an SL2(Z)-equivariant family of elliptic curves:

((nm), τ) (nτ +m,τ)

Z2 ×H C ×H E

H

On this diagram we have an action of the semi-direct product Z2 ⋊ SL2(Z),
described as follows. The normal subgroup Z2 acts trivially on H and on E, and
acts by translations on Z2 ×H and C ×H: (nm) sends ((ab), τ) to ((a+nb+m), τ), and
sends (z, τ) to (z + nτ +m,τ). An element γ = ( a bc d ) ∈ SL2(Z) sends (z, τ) to
( z
cτ+d , γτ), and sends ((nm), τ) to (γ−1,t(nm), γτ).

If Γ ⊂ SL2(Z) acts freely on H, then we get an elliptic curve E → YΓ(C), by
taking the quotient by the action of Γ on E above.

This freeness condition is true for Γ1(N) for N ≥ 4, Γ(N) for N ≥ 3 and
never for Γ0(N).

4 Modular forms

The family of elliptic curves E → H with its section 0∶H → E gives us the
invertible sheaf of OH-modules ω ∶= 0∗Ω1

E/H. We have ω = OHdz (where z is our
coordinate on C, and τ will be our coordinate on H, that is, z is the identity
function on C, and τ is the incusion of H in C). For γ = ( a bc d ) in SL2(Z) we
have

(γ⋅)∗dz = 1

cτ + d
dz ,

so
(γ⋅)∗(f(dz)⊗k) = (f ○ γ)⋅(cτ + d)−k(dz)⊗k.

We see that the following conditions, for Γ a subgroup of SL2(R), and f ∶H→ C
any function, are equivalent:
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1. f ⋅(dz)⊗k is Γ-invariant,

2. for all ( a bc d ) ∈ Γ, for all τ ∈ H, f((aτ + b)/(cτ + d)) = (cτ + d)k ⋅f(τ).

If Γ acts freely on H then we get ω on YΓ(C), by dividing out the action of Γ.
From now on we assume that Γ is of finite index in SL2(Z). We want to

extend ω to XΓ(C), and for that we need the notion that Γ acts regularly at the
cusps. At the cusp ∞ ∈ P1(Q) this means that the stabiliser Γ∞ of ∞ ∈ P1(Q)
under the action of Γ is contained in {( 1 ∗

0 1 )} ⊂ SL2(Z). At the other cusps c:
for each element γ ∈ SL2(Z) with γ⋅c = ∞, γΓcγ

−1 (which is (γΓγ−1)∞) must
be contained in {( 1 ∗

0 1 )} ⊂ SL2(Z). In more technical terms: all stabilisers of
cusps in Γ must consist of unipotent elements. Note that the stabiliser of ∞ in
SL2(Z) is {±( 1 ∗

0 1 )} ⊂ SL2(Z), and consists of quasi-unipotent elements.
For N ≥ 1, Γ(N) acts regularly at the cusps precisely when N ≥ 3, Γ1(N)

does so precisely when N ≥ 5, and Γ0(N) never does.
Let us now assume that Γ acts freely on H, and regularly at the cusps. Then

we already have ω on YΓ(C). We extend it to the neighborhood D of ∞ as
follows. Note that dz on H is invariant under all γ = ( 1 n

0 1 ): (γ⋅)∗dz = dz. This
gives that ω∣D∗ = OD∗dz. We extend ω to D by deciding that our generating
section dz on D∗ has order 0 at ∞:

ω∣D = ODdz .

At the other cusps: use that SL2(Z) acts transitively on P1(Q).
Why did we do all this work? Well, to get that (still assuming Γ acts freely

on H and regularly at the cusps):

Mk(Γ) = H0(XΓ(C), ω⊗k) and Sk(Γ) = H0(XΓ(C), ω⊗k(−cusps))

that is, we can interpret these spaces of modular forms as spaces of global
sections of holomorphic line bundles on compact Riemann surfaces.

Kodaira-spencer isomorphism

On H, we have bases dz and dτ for the locally free OH-modules ω and Ω1
H:

ω = OH(dz) and and Ω1
H = OHdτ . Now one may note that for γ = ( a bc d ) in

SL2(Z) we have

(γ⋅)∗dτ = (cτ + d)−2dτ, and (γ⋅)∗(dz)⊗2 = (cτ + d)−2(dz)⊗2 .

Hence there is a SL2(Z)-equivariant isomorphism, called the Kodaira-Spencer
isomorphism,

ω⊗2 Ω1
H ,

≃ (dt
t
)⊗2 dq

q
= 2πidτ ,

where q = e2πiτ and t = e2πiz. Note that (dt
t
)⊗2 = (2πi)2(dz)2.

7



We have, for Γ acting freely on H and regularly at the cusps, the Kodaira-
Spencer isomorphism between invertible O-modules on XΓ(C):

ω⊗2(−cusps) Ω1
XΓ(C) .

≃

For k ≥ 2 this gives us:

Sk(Γ) = H0(XΓ(C),Ω1 ⊗ ω⊗k−2) .

We deduce that deg(ω) > deg(Ω1
XΓ

(C))/2, hence Riemann-Roch gives the di-

mension of Sk(Γ) for k ≥ 2, because the corresponding H1 is zero by Serre
duality and negative degree.

Eichler-Shimura isomorphism for k = 2

This isomorphism links spaces of modular forms to singular cohomology and
hence also to cohomology of constant sheaves. It is given by the Hodge decom-
position.

Assume that Γ acts freely on H and regularly at the cusps. We have seen
that S2(Γ) = H0(XΓ(C),Ω1). We consider the de Rham resolution

C⊗H1(XΓ(C),Z) = C⊗R H1(C∞
R (XΓ(C))→ real 1-forms→ real 2-forms) .

Now S2(Γ) is the space of holomorphic 1-forms, hence closed 1-forms, so it
maps to C ⊗ H1(XΓ(C),Z). This map is injective because if ω = df , then f
is holomorphic, hence constant because XΓ(C) is compact and connected, and
ω = 0.

On C ⊗ H1(XΓ(C),Z) we have ι ⊗ id, with ι the complex conjugation. We

denote the image of S2(Γ) under this by S2(Γ). It consists of anti-holomorphic

1-forms. As S2(Γ) ∩ S2(Γ) = {0}, and both have C-dimension g (the genus of
XΓ(C)) and H1(XΓ(C),Z) is free as Z-module of rank 2g, we conclude that we
have an isomorphism, called the Eichler-Shimura isomorphism:

C⊗H1(XΓ(C),Z) = S2(Γ)⊕ S2(Γ) .

The Jacobian of XΓ(C)

For γ in H1(XΓ(C),Z) (a 1-cycle, modulo boundaries of 2-cycles), and for ω
in S2(Γ) = Ω1(XΓ(C)), we have a well-defined integral ∫γ ω. This gives an
embedding

H1(XΓ(C),Z) S2(Γ)∨ , γ (ω ↦ ∫γ ω) .

The the Jacobian of XΓ(C) is defined as

JΓ(C) ∶= Ω1(XΓ(C))∨/H1(XΓ(C),Z) = S2(Γ)∨/H1(XΓ(C),Z) .
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So, S2(Γ) is the tangent space at 0 of JΓ(C).
We also have the following description of JΓ(C):

JΓ(C) Pic0(XΓ(C)) Div0(XΓ(C))/principal divisors

(ω ↦ ∑i ∫
Pi
∞ ω) P1 + ⋅ ⋅ ⋅ + Pd − d∞

Hecke operators as endomorphisms of JΓ(C)

Here it matters what kind of Γ we consider. For example, for Γ(N) we would
not get a commutative algebra of Hecke operators, as the group ring Z[SL2(Fp)]
would be part of it. So, we specialise to the congruence subgroups Γ1(N).

For N ≥ 1, we define X1(N) ∶= XΓ1(N)(C) as algebraic curve over C (just
C-points, Zariski topology, sheaf of regular functions O; not (yet) as scheme).
We recall that

Y1(N) = {(E,P ) ∶ E ell. curve /C and P in E of order N}/ ≅ .

We have an action of the multiplicative group (Z/NZ)× on X1(N) given explic-
itly by

⟨a⟩(E,P ) = a ⋅ (E,P ) = (E,aP )

for any a ∈ (Z/NZ)×. These automorphisms (and whatever they induce by
functoriality) are called “diamond” operators (for the spape of the symbol). For
example, the C-vector space S2(Γ1(N)) = Ω1(X1(N)) splits under the action
of (Z/NZ)× into a direct sum of eigenspaces

S2(Γ1(N)) =⊕
ε

S2(Γ1(N), ε) ,

where the sum is over the characters ε∶ (Z/NZ)×)→ C×.
For any n ≥ 1 we have a correspondence

Tn∶ (E,P ) ∑G ⊂ E of order n
and ⟨P ⟩ ∩G = {0}

(E/G, P̄ ) .

Note that for p prime, Tp has degree p+1 if p ∤ N (it sends a divisor of degree d
to a divisor of degree (p + 1)d), and degree p otherwise.

Let Y1(N ;n) be the modular curve whose points are isomorphism classes of
(E,P,G) with E a complex elliptic curve, P in E of order N , and G ⊂ E a
subgroup of order n such that ⟨P ⟩ ∩G = {0}, and let X1(N ;n) be its compact-
ification. Then Tn is given by two morphisms s (source) and t (target):

X1(N ;n)

X1(N) X1(N)

s t
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Then Tn sends a divisor D to t∗s
∗D. It sends a divisor of degree 0 to a divisor

of degree 0, and sends principal divisors to principal divisors. Therefore Tn
induces

J1(N) J1(N ;n) J1(N)

Tn

s∗ t∗

Let TN ⊂ End(J1(N)) be the subring generated by all Tn and diamond op-
erators. Note: End(J1(N)) is a finitely generated free Z-module since it is
contained in EndZ(H1(X1(N)),Z)).

Formulas on q-expansions show:

1. The pairing (TN)C × S2(N)→ C sending (t, ω)↦ a1(t∗ω) is perfect.

2. S2(N)∨ is a free (TN)C-module of rank 1.

3. S2(N) is a free (TN)C-module of rank 1, use (ω, η)↦ i
2 ∫X1(N) ω ⋅ η̄.

4. H1(X1(N),Q) is a free (TN)Q-module of rank 2.

For l prime, N ≥ 1, define WN,l ∶= Q ⊗ (lim←ÐJ1(N)[ln]) = H1(X1(N),Ql). This

is a free (TN)Ql -module of rank 2.

Hecke operators, more conceptually

The above section on Hecke operators is not so inspiring: why precisely these
correspondences, and why only for the Γ1(N)’s? So here we explain in a few
lines what is behind it.

On H we have the action of GL2(Q)+. Even better, on H± = P1(C) − P1(R)
we have the action of GL2(Q). For k ≥ 0, GL2(Q) acts on the union Sk of
all Sk(Γ), where Γ ranges over all congruence subgroups of GL2(Z). For Γ
a congruence subgroup, we have Sk(Γ) = SΓ

k . So it makes sense to ask: for
Γ a congruence subgroup of GL2(Z), and for M a Z-module with an action of
GL2(Q), what are the natural endomorphisms of MΓ. In other words: what are
the endomorphisms of the functor from Z[GL2(Q)]-Mod to Z-Mod, M ↦MΓ?
The answer is: the Hecke algebra TΓ. And what is this algebra? Well, the
functor in question is representable:

MΓ = HomΓ(Z,Res
GL2(Q)
Γ M) = HomGL2(Q)(Ind

GL2(Q)
Γ Z,M) .

Hence, by Yoneda,

TΓ = EndGL2(Q)(Ind
GL2(Q)
Γ Z) .

With this knowledge, one can see that the choice of the Γ1(N) is motivated by
the facts that they are sufficiently small to capture all congruence subgroups in
the sense

(n
−1 0
0 1

)Γ(n)(n 0
0 1

) ⊃ Γ1(n2) ,

and that their Hecke algebras are commutative. More precisely, there is the
theory of newforms (Atkin, Lehner, Li).
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5 Arithmetic moduli of elliptic curves

Definition 6. Let S be a scheme. An elliptic curve over S is a proper smooth

morphism f ∶E → S of relative dimension 1 with section 0∶S → E such that the

geometric fibers are connected and of genus 1. Equivalently, locally on S, E/S
is given by a Weierstrass equation in P2

S:

Y 2Z + a1XY Z + a3Y Z
2 =X3 + a2X

2Z + a4XZ
2 + a6Z

3

whose discriminant is a unit, and 0 = (0 ∶ 1 ∶ 0).

Let now S be any scheme, and (f ∶E → S,0) be an elliptic curve. For every
S-scheme T → S we have the base changed curve:

ET E

T S

fT f0T
0 .

We consider the following functor, from Sch/S to Set, contravariant:

PicE/S ∶ Sch/S → Set, T ↦ Pic(ET )/f∗TPic(T ).

We remark that the section 0T gives a decomposition Pic(ET ) = ker(0∗T )⊕Pic(T ),
so we could also have defined PicE/S(T ) as ker 0∗T ∶Pic(ET )→ Pic(T ).

For every d ∈ Z we have the subfunctor PicdE/S of PicE/S such that PicdE/S(T )
is given by invertible O-modules on ET that are fibrewise of degree d. Then
PicE/S is the coproduct of all PicdE/S .

Theorem 7. The morphism (of functors) E → Pic1
E/S that sends, for T an

S-scheme, P in E(T ) to the [OET (P )], is an isomorphism.

Here OET (P ) is the invertible OET -module of rational functions on ET that
may have a pole of order at most one at P (technically speaking, the image of
P is a relative Cartier divisor, effective, of degree 1). It is the dual of the ideal
sheaf of P defined by the short exact sequence

IP OET P∗OT

This theorem is useful in 2 ways: first of all it tells us that Pic1
E/S is rep-

resented by E itself. and secondly it gives us an S-groupscheme structure on
E/S:

E Pic1
E/S Pic0

E/S

L L⊗OET I0T

≃ ≃
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It is not hard to deduce that any morphism f ∶E1 → E2 between elliptic curves
over a scheme S with f(01) = 02 is automatically a morphism of S-groupschemes.

Now do not panic because of the next definition: you do not need to know
what a stack is, you will actually learn a lot about through this example.

Definition 8. The stack [Ell] is the category with objects elliptic curves (f ∶E → S,0)
and with morphisms cartesian diagrams

E1 E2

S1 S2

◻01 02

We have the functor [Ell]→ (Sch)) that sends (E → S) to S. This makes it
into a kind of ”sheaf of categories” on the category Sch with a suitable topology
(Zariski, etale).

Fact: [Ell] has no final object (since, for example, ±1 ∈ AutS(E) for all
E/S).

Let N ≥ 1, then for any elliptic curve over S E/S, we have a “multiplication
by N” map N ⋅∶E → E which is finite locally free of rank N2 and etale precisely
when N is invertible on S.

For N ≥ 1 we define the stack [Γ1(N)]Z[1/N] to be the category with objects
elliptic curves (f ∶E → S,0, P ) with S a scheme over Z[1/N] and where P ∈ E(S)
is of order N in all fibers. The morphisms in [Γ1(N)]Z[1/N] are the cartesian
diagrams

E1 E2

S1 S2

◻01P1 02 P2

Theorem 9 (Igusa). For N ≥ 4, [Γ1(N)]Z[1/N] has a final object:

E

Y1(N)Z[1/N]

0 P

where Y1(N)Z[1/N] is a smooth affine curve over Z[1/N] with geometrically

irreducible fibers, which can uniquely be compactified into a smooth proper curve:

Y1(N)Z[1/N] X1(N)Z[1/N] cusps

Spec(Z[1/N])
finite etale

Let J1(N)Z[1/N] ∶= Pic0
X1(N)Z[1/N] . It is an abelian scheme over Z[1/N]. The

Hecke algebra TN acts on it.

12



Then for all primes l, we have

WN,l = Q⊗ (lim←ÐJ1(N)(Q)[ln]) ,

which is a free (TN)Ql -module of rank 2 with a natural action of the Galois
group Gal(Q/Q). Any choice of basis gives a Galois representation

Gal(Q/Q) GL2((TN)Ql) .
ρl

The eigenform f gives us a ring morphism TN →Kf , Tn ↦ an(f). Composition
gives us the representation ρf,l whose existence was promised:

Gal(Q/Q) GL2((TN)Ql) GL2(Kf,l) .

ρf,l

ρl f

We remark that ρf,l is unramified at p ∤ Nl because p ≠ l and J1(N)Fp is an
abelian variety (more correctly: J1(N)Zp is an abelian scheme over Zp). Now
we want to prove that tr(ρf,lFrobp) = ap(f) for p ∤ Nl. This result follows from
the Eichler-Shimura relation

Tp = Frob + ⟨p⟩ ⋅ V in EndFp(J1(N)Fp) ,

of which we will explain the meaning, and the proof of wich we take some time
to sketch.

The fact that J1(N)Z[1/N] is an abelian scheme over Z[1/N] implies that
every endomorphism of J1(N)Q extends over Z[1/N], uniquely, and that the
reduction map from EndZ[1/N](J1(N)Z[1/N]) to EndFp(J1(N)Fp) is injective.
In a diagram:

EndQ(J1(N)Q) EndZ[1/N](J1(N)Z[1/N]) EndFp(J1(N)Fp) .
≃

We want to understand the element Tp of EndFp(J1(N)Fp). We use that

J1(N)Fp = Pic0(X1(N)Fp), and that Tp is given by the correspondence of p-
isogenies:

X1(N ;p)Fp

X1(N)Fp X1(N)Fp ,

s t

with s and t both finite locally free of rank p+1. Over an algebraically closed
field k of characteristic p an ordinary elliptic curve E has E[p] ≅ µp,k×(Z/pZ)k.
This group scheme has precisely 2 subgroupschemes of rank p: the 2 factors. The
quotient by µp,k is the relative Frobenius isogeny F ∶E → E(p), given on coordi-
nates as the p-power map, and where E(p) is given by the Weierstrass equation

13



with coefficients api , with ai the coefficients of the equation for E. The quotient

by (Z/pZ)k is the isogeny V ∶E → E(1/p) (equation with coefficients a
1/p
i ). It is

unique for the property that FV = p⋅:

E E(1/p) E .V

p⋅

F

Apart from ordinary elliptic curves, there are only finitely many supersin-
gular ones (about p/12). This explains that the curve X1(N ;p)Fp has two ir-
reducible components, meeting at the supersingular points. For the most basic
case, that of N = 1, Kronecker already observed that the reduction over Fp of
the polynomial Φp ∈ Z[x, y] whose zero set is the image of Y0(p) in the product
of the j-line with itself is (xp − y)(x − yp).

Replacing X1(N ;p)Fp by its normalisation ̃X1(N ;p)Fp does not change the

endomorphism Tp of J1(N)Fp . The two irreducible components of ̃X1(N ;p)Fp
induce the following correspondences:

P P(p)

E E(p)

P E Y1(N)Fp E P

Y1(N)Fp Y1(N)Fp

FE/Y1(N)Fp

id F

and

P(p) p⋅P

E(p) E

P E Y1(N)Fp E P

Y1(N)Fp Y1(N)Fp

VE/Y1(N)Fp

F ⟨p⟩

The first of these induces the endomorphism F of J1(N)Fp , and the second
induces ⟨p⟩V .

14



6 Construction of ρf,l for k ≥ 2
One can use congruences modulo powers of l with weight 2 forms of varying
level lnN to construct ρf,l, but that does not, for example, give the Ramanujan
conjecture. Thus, we want the construction in the cohomology.

Assume N ≥ 5, then Γ1(N) acts freely on H, regularly at the cusps. The
universal elliptic curve (as complex manifold)

E

Y1(N)(C) X1(N)(C)

p

j

gives the sheaf (R1p∗)ZE on Y1(N)(C); it is a locally constant sheaf of free Z-
modules of rank 2. The k−2th symmetric power, and pushforward to X1(N)(C)
give us

Fk ∶= j∗Symk−2((R1p∗)ZE) on X1(N)(C).
As in the case of weight 2, there is an Eichler-Shimura isomorphism:

C⊗H1(X1(N)(C),Fk) Sk(N)⊕ Sk(N)≃

This is a Hodge decomposition: Sk(N) is of type (k − 1,0) and Sk(N) of type
(0, k − 1) (see [BN81] for a nice exposition).

One can also embed Sk(N) in Hk−1(Ek−2,∗,C) where Ek−2 is the k − 2 fold
fiber product of E→ Y1(N)(C), and Ek−2,∗ is a suitable non singular compactifi-
cation of it over X1(N)(C). Then f ∈ Sk(N) gives f ⋅dτ ⋅dz1⋯dzk−2 on H×Ck−2,
then on Ek−2 and then on Ek−2,∗.

As before, we have Hecke operators Tn and diamond operators ⟨a⟩ on the
cohomology group H1(X1(N)(C),Fk), which is a finitely generated Z-module.
We let TN,k be the subring of endomorphisms of Q ⊗ H1(X1(N)(C),Fk) gen-
erated by the Tn and ⟨a⟩; it is a free finitely generated Z-module. Arguments
similar to the weight 2 case show that Q⊗H1(X1(N)(C),Fk) is free of rank 2
over TN,k,Q.

Let l be a prime. We define Fk,l ∶= j∗Symk−2((R1p∗)Ql,E,et where now
p∶EQ → Y1(N)Q. Then Fk,l is an l-adic sheaf on X1(N)Q,et and it extends well
over X1(N)Z[1/N]: “lisse” away from the cusps, and tamely ramified along the
cusps.

We put WN,k,l ∶= H1(X1(N)Q,et,Fk,l)
∨; this is free of rank 2 over (TN,k)Ql .

By construction, Gal(Q/Q) acts on WN,k,l: σ acts as (id × Spec(σ−1)∗,∨).
As in the weight 2 case, a basis of WN,k,l as (TN,k)Ql -module gives us the

desired ρf,l:

Gal(Q/Q) GL2((TN,k)Ql) GL2(Kf,l) .

ρf,l

ρl f

15



Unramifiedness and tr(ρf,l(Frobp)) = ap(f) and det(ρf,l(Frobp)) = ε(p)pk−1 are
proved, modulo technicalities, as before.

7 What about ρf,l,p for p∣N , p ≠ l?
We want to understand the local Galois representations ρf,l,p ∶= ρf,l∣GQp for p∣N ,
p ≠ l. The good question to ask is: in terms of what do we want to describe
these local Galois representations? And the answer to that question is: in terms
of the representation theory of GL2(A∞) (where A∞ = Q⊗ Ẑ = ∪n≥1n

−1Ẑ is the
Q-algebra of finite adèles of Q), using the formalism of Shimura varieties (don’t
panic, you do not need to know what a Shimura variety is, you just get a nice
example in your hands, here).

The case k ≥ 2 is not really harder than the case k = 2. So we only discuss
k = 2.

We start with the Shimura datum (GL2,Q,H±), where H± = P1(C) − P1(R),
acted upon, transitively, by GL2(R). Actually, we consider the GL2(R)-orbit
in Hom(C×,GL2(R)), on which GL2(R) acts by post-composition with inner
automorphisms, of

h0∶a + bi↦ ( a −b
b a

)

One easily checks that the stabiliser in GL2(R) of h0 is the same as the stabiliser
of i ∈ H±, and that gives an isomorphism from the orbit of h0 to that of i. In
fact, we are now viewing H± as the set of R-Hodge structures on R2 of type
{(−1,0), (0,−1)}.

For K ⊂ GL2(A∞) a open compact subgroup, we define

YK(C) ∶= GL2(Q)/(H± ×GL2(A∞)/K) .

As GL2(Q)/GL2(A∞)/K is finite, YK(C) is a finite disjoint union of quotients
Γi/H. One compactifies by adding cusps, XK(C) ∶= YK(C) ∪ cusps, a compact
Riemann surface (not necessarily connected). We let XK,C be the algebraic
curve over C attached to XK(C). The interpretation as moduli space of elliptic
curves gives a canonical model XK,Q over Q.

Example 10. For N ≥ 1 we define KN ∶= ker(GL2(Ẑ) → GL2(Z/NZ)). Then,

for any Q-scheme S, the set of S-points of YKN ,Q is the set of isomorphism

classes of pairs (E/S,ϕ), where E/S is an elliptic curve, and ϕ is an isomor-

phism from the constant group scheme (Z/NZ)2
S to E[N]:

YKN ,Q(S) = {(E/S,ϕ) ∶ ϕ∶ (Z/NZ)2
S→̃E[N]}/ ≅ .

The XK,Q form a filtered system: K ′ ⊂K gives a morphism XK′,Q →XK,Q.
As these transition morphisms are finite, the limit exists as a scheme (colimit
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of structure sheaves) profinite over the j-line:

XQ ∶= limKXK,Q GL2(A∞)

The group GL2(A∞) acts on this limit because it acts on the system (that is pre-

cisely the reason why we do not only consider K that are contained in GL2(Ẑ)).
This action is smooth in the sense that the stabiliser of every ϕ ∈ OXQ(U) is
open. From the limit we can recover the XK,Q: for each K ⊂ GL2(A∞) open
compact, XK,Q = XQ/K. All Hecke correspondences can be described in terms
of XQ with its GL2(A∞)-action.

For l prime we define

Hl ∶= colimK H1(XK,Q,et,Ql) = colimK (Ql ⊗Zl lim
n
JK(Q)[ln])

∨
.

By construction, the Ql-vector space has an action by Gal(Q/Q)×GL2(A∞). We
choose en embedding of Q (defined as a subset of C) into Ql. From q-expansion
formulas we get a decomposition:

Ω1(XQ)(C) colimK Ω1(XK,Q(C)) ⊕f πf ,

where the direct sum is over the newforms of weight 2 of all levels, and where πf
is defined as follows. Let f be a newform on some Γ1(N), and let p∶XC →X1(N)C
be the quotient morphism. Then we have p∗f in Ω1(XQ(C)) and then Vf is the
sub-C-vector space of Ω1(XQ(C)) generated by the g⋅p∗f , g ∈ GL2(A∞), and
πf denotes the representation of GL2(A∞) on Vf .

Hodge decomposition at level K gives us:

H1(XK,Q(C),C) Ω1(XK,Q(C))⊕Ω1(XK,Q(C)) .

This implies that all πf have multiplicity 2 in the colimit of all H1(XK,Q(C),C).
We conclude that Hl decomposes as

Hl =⊕
f

ρ∨f ⊗ πf ,

where f ranges over the newforms of weight 2 in Ω1(XQl
), and where ρf is as

characterised by Theorem 1.
In a letter to Piatetski-Shapiro from 1973, [Del73], the following was proved.

Theorem 11 (Deligne). For all p ≠ l, πf,p determines ρf,p.

The ingredients of the proof are:

1. a good model over Z of XQ (Drinfeld level structures),
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2. vanishing cycle theory,

3. Serre-Tate theory at the supersingular points,

4. Jacquet-Langlands correspondence.

We will now briefly mention all of these things.

Models over Z (Katz-Mazur)

For N ≥ 1 and E/S an elliptic curve over any base scheme, a Drinfeld level N
structure on E/S is a ϕ∶ (Z/NZ)2 → E(S) such that

E[N] = ∑
x∈(Z/NZ)2

ϕ(x)

as relative effective Cartier divisors on E → S. A basic result that one can find
in [KM85] is the following. For N divisible by at least 2 distinct prime powers
both ≥ 3, the stack [Γ(N)] has a final object (E→ YKN , ϕ), with YKN an affine
curve over Z, with a compactification

YKN XKN cusps

Spec(Z)

f
finite

with YKN affine, and f projective and XKN regular. The morphism f factors
naturally (by the Weil pairing) as

XKN Spec(Z[ζN ]) Spec(Z)g

f

The geometric fibers of g are connected. For p prime, writing N = pnN ′ with
p ∤ N ′, and XKN ,Fp obtained by a base change Z[ζN ′] → Fp, the irreducible

components of XKN ,Fp are smooth, meeting all at all supersingular points, and

the set of these irreducible components is in bijection with P1(Z/pnZ). So, if
n > 0, this curve XKN over Spec(Z[ζN ]) is not stable at p. However, the fibres
at p are reduced, and their singular points are precisely the supersingular points.
The closed subscheme of XKN where the morphism g is not smooth consists of
precisely the supersingular points over the primes dividing N .

Vanishing cycle theory

Here, for the details, see [Del73] or [Car86], or the more recent work of Scholze
and Weinstein, or [EN01].
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Let p be a prime, and let N ≥ 5 be prime to p. Let K1
N be the inverse image

in GL2(Ẑ) of the stabiliser of (1
0) in GL2(Z/NZ). Let

XN ∶= lim
n
XKpn∩KN .

This XN , where the level at p has gone to infinity and the level outside p is
fixed, has an action by GL2(Qp). We let

Hl,p ∶= H1(XN,Qp,et
,Ql), it has an action by Gal(Qp/Qp) ×GL2(Qp) ×T′N .

where T′N is generated by Tn for p ∤ n and the ⟨a⟩ for a ∈ (Z/NZ)×. We consider
the cohomology of the fiber at p:

Hs
l,p ∶= H1(XN,Fp,et,Ql) action by same, Gal(Qp/Qp) factors through Z×p .

Then the vanishing cycle sequence is

Hs
l,p Hl,p ⊕xΨx small cokernel from H2,

Ψ

where the sum is over the singular points in XN,Fp . Langlands determined Hs
l,p

in [Lan73]; the action of GL2(Qp) is through non-cuspidal (induced from Borel)
representations. For Ψ, wait and see.

Serre-Tate theory

The vanishing cycle space Ψx depends only on the O∧
XKn,N ,x

, that is, on the de-

formation theory of Ex, hence, only on the deformation theory of the p-divisible
group Ex[p∞]. Hence the automorphism group Aut(Ex[p∞]) acts on O∧

XKn,N ,x
.

This automorphism group is the unit group of the endomorphism ring, and so
it is equal to (Zp ⊗ B)×, where B ∶= End(Ex) is a maximal order in BQ, the
quaternion algebra “ramified” at p and ∞.

Gal(Qp/Qp) × GL2(Qp) × T′N and Gal(Qp/Qp) × GL2(Qp) ×B×
Qp act on Ψ.

Now note that Gal(Qp/Qp) ×GL2(Qp) ×B×
Qp is the product of 3 local groups.

As a representation of this, Ψ is a direct sum of finitely many copies of Deligne’s
“fundamental local representation,” which decomposes as ⊕i ρi ⊗ πi ⊗ π′i, with
ρi, πi and π′i irreducible representations of Gal(Qp/Qp), GL2(Qp), and B×

Qp ,
respectively.

Now isogenies of degree prime to p between the Ex induce isomorphisms
between the completed local rings of XKn,N . This implies that T′N act on Ψ as

matrices with coefficients in Ql[B×
Qp], via B×

Q ⊂ B×
Qp . A consequence: in each

triple ρi ⊗ πi ⊗ π′i, π′i determines πi and ρi.
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Jacquet-Langlands correspondence

Relates automorphic representations of the algebraic groupB× to those of GL2,Q).
This is not so surprising (if one is sufficiently optimistic), as for all l ≠ p,
B×(Ql) = B×

Ql and GL2(Ql) are isomorphic. In [JL70] Jacquet and Langlands
pioneered this approach to modular forms. One of the consequences is that
newforms for B× correspond to newforms on GL2,Q), and that the image of this
consists of the newforms on GL2,Q) with a special behaviour at the places where
B is ramified.

What has in fact happened in this story is that the geometry of the XKn,N

has provided an inverse of the Jacquet-Langlands correspondence: a newform f
that contributes to Ψ gives a newform f ′ on B×. One can express this in terms
of automorphic representations (each πf ′ gives a πf , this satisfies local rules,
and the local map is injective), but the more classical Brandt matrices do the
same (but give less information).

Anyway: the results of [JL70] give that in each triple ρi⊗πi⊗π′i, πi determines
π′i and hence also ρi.

To conclude: πf,p determines ρf,p. At the unramified places this rule is
what we saw (Eichler-Shimura congruence relation). At the ramified places this
is more complicated, but for p > 2 wild intertia at p cannot act irreducibly and
CM-forms plus class field theory tell us the rule. For p = 2 wild inertia at 2
can act irreducibly, the corresponding forms are called extraordinary, and base
change was used by Carayol in [Car86] for deal with this. Later, Nyssen obtained
a much simpler proof in [Nys99] via congruences with forms of weight 1.

Let us finish by mentioning that the local Langlands correspondence is char-
acterised conceptually in terms of L-factors and (more importantly at the ram-
ified places) ε-factors (constants in the functional equations). If I’m not mis-
taken, the only direct proof that the global correspondence in the cohomology
of modular curves respects local L and ε-factors is by Colmez, using p-adic coef-
ficients p = l, and indeed, in this situation one can sufficiently deform the action
of wild inertia and get the required identities by “analytic continuation.”

8 Computational aspects

Let us start with the good news: although this section comes after the very
difficult Section 7, that section is not needed for what we want to do here.

What does it mean to compute a Galois representation? We tend to write
such a representation as ρ∶Gal(Q/Q) → GL(V ), where V is finite dimensional
vector space over some field. But the group Gal(Q/Q) = Aut(Q) is too big, and
so is Q. So, we only want to compute such representations that factor as

Gal(Q/Q) Gal(K/Q) GL(V ) ,ρ

withK a finite Galois extension of Q, contained in Q, and Gal(Q/Q)→ Gal(K/Q)
is the map that restricts an automorphism to K. Then we can describe K as
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Q[x]/(f), with f the minimal polynomial of a generator α of K. And each σ
in Gal(K/Q) can be described as a matrix with coefficients in Q, and ρ(σ) can
be described as a matrix with coefficients in k.

So we will not compute the l-adic Galois representations attached to eigen-
forms, because those do not have a finite image (well, unless the weight is 1).
But we will compute the residual reprepsentations. So let f be an eigen-
form on some Γ1(N) and of some weight k, and with character ε, and let
ρf,λ∶Gal(Q/Q) → GL2(E), with E a finite extension of Ql be a Galois repre-
sentation attached to it. The compactness of Gal(Q/Q) implies that after a
suitable change of basis of E2, ρf,λ has values in GL2(OE), where OE is the
ring of integers of E. But then we can reduce ρ modulo the maximal ideal
of OE , which means that we consider the composition

Gal(Q/Q) GL2(OE) GL2(F) ,
ρf,λ

ρf,λ

where OE → F is the map to the residue field. This ρf,λ factors through a finite
Galois group:

Gal(Q/Q) Gal(K/Q) GL2(F) ,
ρf,λ

and we ask ourselves how we can compute it.
Of course, the construction in Section 6 tells us how to do this: the represen-

tation ρf,λ is realised by J1(N)(Q)[l∞] (or its Tate-module) if k = 2, or in the
dual of the l-adic etale cohomology group H1(X1(N)Q,et,Fk,l) if k > 2. Then
we use the principle that algebraic geometry is so nice that almost everything
in it that admits a finite description can be made explicit and even be com-
puted. And indeed, there are results by Mumford that make abelian varieties
explicit via theta functions, and results by Madore-Orgogozo and Jin that etale
cohomology of constructible sheaves can be computed. But it is far from easy
or even feasible to actually do such computations. A basic tool in computer
algebra, Groebner basis computations, takes a lot of time (at least exponential
in the number of variables).

Anyway, especially the appearance of etale cohomology seems to make it
difficult. Fortunately, this is easily solved by congruences between modular
forms: at the cost of replacing Γ1(N) by Γ1(Nl) (assuming l ∤ N , we get a
modular form g on Γ1(Nl) of weight 2 such that g gives the same representation
as ρf,λ.

Let TNl be the weight 2 Hecke algebra, it is the subring of End(J1(Nl)
generated by the Tn and ⟨a⟩. Then g can be seen as a morphism of rings
ϕg ∶TNl → F such that for all t in TNl: t∗g = ϕg(t)⋅g, it sends each Hecke
operator to its eigenvalue on g. Let m ∶= ker(ϕg). Note that l ∈m.

Under a mild multiplicity one assumption, our representation is realised by

V ∶= J1(Nl)(Q)[m] = {x ∈ J1(Nl)(Q)[l] ∶ for all t ∈m, t(x) = 0.}
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In principle, everything here is explicit. One can describe the curve X1(Nl)
as a cover of the j-line by computing the minimal polynomial over Q(j) of a
generator of the function field. Then one can (theoretically) compute J1(Nl)
as an abelian variety over Q, or one can choose to work with the complex
uniformisation of J1(Nl)(C). One can locate the points in V , and the field
extension of Q generated by their coordinates. That’s all.

Now to actually do this, one should see the work of Johan Bosman: [Bos11b],
[Bos11a], [Bos07]. And that of Nicolas Mascot: [Mas18], [Mas13] (note that all
this can be found on arxiv). And by Jinxiang Zhen and Linsheng Yin: [ZY15]
and [Yi ], and by Peng Tian: [Tia14].

And for the theoretical framework, even including a theorem that says that
such computations can be done in polynomial time, and an application to the
computation of coefficients of modular forms, see [EC11], and of course the work
of Peter Bruin (where complex computations are replaced with computations
over finite fields): [Bru11] and [Bru13]. For an introduction to this that gives
ideas of how to do the computations, see [CE12].

9 Guide to the literature

I’m sorry for the horrible haste with which I finish this section. Hopefully I
will get an opportunity to improve it, but the lectures almost start, and the
organisers are at my heels.

A nice introduction is in [DS05], and at a slightly higher level, without
proofs but with complete references in [DI95]. The book [EC11] gives a brief
description, with references (often to [DI95]).

For modular curves, at a high technical level: [KM85], and [DR75].
For Weil-Deligne representations, how they are related to Local Langlands,

and how one computes with this (even implemented in Magma and Sage): [LW12].
But see also [EN01], and appendix A in [Edi02].

For p-adic local Langlands, see [Col13], and the recent work of Scholze
(and Weinstein), hopefully mentioned in Scholze’s ICM lecture of this Sum-
mer [Sch17] (otherwise: use MathSciNet).
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