Modular Forms Project: Zero Fourier Coefficients
of Eta Quotients

Henri Cohen,
Université de Bordeaux, Institut de Mathématiques de Bordeaux,

351 Cours de la Libération, 33405 TALENCE Cedex, FRANCE
July 8, 2018

1 Answers and Programs

Exercise 0.

(1). Let a/c € P1(Q) be a cusp with ged(a,c) = 1, let b and d be arbitrary
integers such that ad — bc = 1, and let v = (‘Z g) € I'. If F is a meromorphic
function which is modular on §) for some subgroup of I', the order of vanishing
of F at a/c is by definition the order of vanishing of F|;~y at infinity.

Fix some integer m, let g = ged(am,c) = ged(m,¢), A = am/g, C = ¢/g,
let B and D be arbitrary such that AD — BC =1, and set h = mbD — dB. We
have the following matrix equality:

m 0\ (fa b\ (A B\ (g h
0 1)\e d) \C D)\0O m/g)"’
which we abbreviate into 3,y = ¢ (g ")

0m/g

(2). Since 1|y /28m = m'/4n(mr), we thus have

n(mt)|y /27 = m71/477|1/26m7 = Cm71/4711/2 (3 mh/g)
for some 24th root of unity ¢ since 7 is modular on I'. Thus

n(m)1y2y = ((m/g) " *n((g°T + gh)/m) ,

and the order of vanishing at infinity of this expression is clearly equal to
g%/(24m) = ged(m, c)?/(24m).

(3). Thus, the order of vanishing of F,(r,s) at the cusp a/c is equal to
(r + sged(m, c)?/m) /24, so F,, is holomorphic if and only if for all ¢ we have
r+ sged(m,c)?/m > 0.

Now 1 < ged(m, ¢) < m, and both ends of the interval are trivially attained
(for ¢ = 1 and ¢ = m), so the above condition reduces to r + s/m > 0 and
r+sm >0, ie., r > max(—s/m, —sm).

Experiment 1.

Even for r < 50 and X = 5-107 I did not find any zero Fourier coefficient.

Experiment 2.
(1). We simply write the following naive program:

/* Given a power series F with L terms, output
vector of zeros. */
findzeros(F,L)=

{
my (ct=0,V);
for(n=0,L,if (polcoeff (F,n)==0,ct++));
V=vector(ct); ct=0;
for(n=0,L,if (polcoeff (F,n)==0,ct++;V[ct]l=n));
return(V);

}

L=10"6; /* On a machine with at least 32 GO of main memory
one can go to L=10"8. I only went to 5.1077. */

E=eta(x+0(x~(L+1)));

E2=E"2; /* Will be needed later. */

E3=E*E2; /* Very lacunary, so useful. */

E5=E3*E2;

V=findzeros(E5,L); Vb=apply(x—>24xx+5,V);

The first entries of V5 are

[37445, 43253, 44117, 55637, 64565, 76181, 89813, 94205, 104357, 113045,

To check whether they are really Shimura zeros, and in fact isolate the initial
values, we write the following:

L5=24xL+5; W=V5;
for(i=1,#W,n=W[i];
if(n,
forstep(m=5,sqrtint (L5\n), [2,4],
r=vecsearch(V5,n*m"2) ;

if('r,print1([i,m]," ");error("not a Shimura zero?"));W[r]=0
)
)
);
V58=vecsort (Vec(Set (W))); V5S=V5S[2..#V53];
#V5S

Don’t worry about the one-to-last line. First, since the program does not output
an error, we indeed have only Shimura zeros (up to our limit), and the one-to-
last line simply removes the zeros that we have added.

If you chose L = 10°, you will find 347 zeros, corresponding to 235 Shimura
ZEros.

I went up to L = 5-107 and found 2926 zeros, corresponding to 1080 Shimura
ZETOS.

(2).

E7=E5xE2; V=findzeros(E7,L); V7=apply(x->24*x+7,V);

For L = 10° we find two zeros V7=[672415, 16810375], and the second
component is indeed 25 times the first, so it looks like a Shimura zero, so to
be sure we have to go further, and indeed this is confirmed, as is the fact that
672415 is the only Shimura zero I found up to L = 5 - 107 (corresponding to
24L + 7 > 10%).

(3).

E156=E3"5; /* or anything else. */
V=findzeros(E15,L); V15=apply(x->8*x+5,V);

This gives 68 zeros, the first being 429, but all the other zeros (including up
to 5-107) are of the form 429k2, so once again only a single Shimura zero found.

(4). As mentioned, no other Shimura zeros found up to L = 5107 and r
odd with r < 43.

Although not needed or asked for, we comment on the use of the explicit
formula for n°. For z + iy € Z[i] coprime to 3 and to 1 + 4, define ¥ (z + iy) =

M (zz%‘lyz) where m is the unique integer modulo 4 such that (z+1iy)(1—9)™ =
a+ ib with 3 | b.

Lemma 1.1 This makes sense, ¥ is multiplicative, and depends only on the
ideal (x + iy)Z[i]. In other words v is a Hecke character of finite order.

Proof. We have
(@122—y192)" — (219> +y122)* = (2T —y7) (23 —y3) 421225192 = (21 -y7)(23-y3) (mod 4) ,
SO (12_7—4;;2) is multiplicative. Furthermore
(1 —)™ = £1,+(1 — i), &4, (1 + i) (mod 3)Z[i]
when m =0,1,2,3 (mod 4), so
(z+iy)(1—0)™ = £(x+1y), £(z+y+i(y—=x)), 2(—y+iz), £ (z—y+i(z+y)) (mod 3Z[i]) ,

and since z or y is not divisible by 3, exactly one of y, y — x, x, or y + x is
divisible by 3, proving existence and uniqueness of m modulo 4, and clearly m
is additive, so ¢+ is multiplicative. Finally, multiplying x + ¢y by ¢ amounts to
changing (z,y) into (—y,z), so (ﬁ changes sign, and it is immediate to

see that m is changed into m + 2 modulo 4, so ¥(—y + ix) = ¥ (z + iy). O

It follows from the last part of this lemma that if a is an ideal of Z[i] coprime
to 3 we can set ¢ (a) = ¢(z + iy) for any generator x + iy of a.

Corollary 1.2 If 22 + y? = 1 (mod 3) we have ¥(x + iy) = (I%fw), and if
2?2 +y? =2 (mod 3) we have ¥(x + iy) = iz(ﬁ) for a suitable sign +.
Proof. Immediate from the lemma by inspection. ad

Corollary 1.3 For ged(n,6) = 1, let ¢(n) = 3\ q)=, ¥(a). Then c(n) is
multiplicative, and for n = p* we have the following:

(1) If p=3 (mod 4) we have c(p*) =0 if a is odd and c(p*) =1 if a is even.
(2) If p=5 (mod 12) we have c(p®) = 0 if a is odd and c(p®) = (=1)¥/? if a

s even.

(3) If p =1 (mod 12) we have c¢(p®) = s*(a + 1), where s = 1 if p is of the
form x% 4 36y2 and s = —1 otherwise.

Proof. Multiplicativity follows from the lemma. Thus, assume n = p® with
p > 3.

If p = 3 (mod 4), we have ¢(p*) = 0 if a is odd, and otherwise since p is
inert we have a = p®/2Z[i], and since p® = 1 (mod 4) by the corollary we have

P(a) = (;—f) =1, s0 c¢(n) =1.

If p=1 (mod 4) with 3t p (i.e., p = 1,5 (mod 12)), let p be above p and
2 +1iy be any generator of p. The ideals of norm p® are p"p*~ " for 0 < r < a, so

cn) = >) YFE) .

0<r<a

Again by the corollary, since p?> = 1 (mod 3) we have 1(p) = (%) =1, hence
¥(p) = ¢(p).

Assume first that p = 5 (mod 12), so that if 22 + y? = p we have 3 { zy. It
is then clear that m is odd, so ¥ (p) = ie for some € = £1, hence ¢¥(p) = ¢(p) =

—ie. Thus
c(n) =" Z e"(—e)* " = (—ie)® Z (-1)".

0<r<a 0<r<a

If a is odd, we thus have again c¢(n) = 0, while if a is even we have c¢(n) =
(—1)%/2, as claimed.
Assume finally that p = 1 (mod 12). By the corollary we have s := ¢(p) =

Y(p) = (1217—2112)’ hence ¢(n) = s*(a + 1). Since 12 > 0 we may exchange z and
y if necessary so that 2 | y, hence 2 { x. If 3 | y, in other words if p is of the
form 2% + 36y2, we have x coprime to 6 so 2> — y?> = 1 (mod 12) hence s = 1.
On the other hand, if 3 { y we have y> = 0 (mod 4) and 1 (mod 3), hence 4
(mod 12), and we must have 3 | z hence 22 = 1 (mod 4) and 0 (mod 3), hence

9 (mod 12), so 22 —y> =7 (mod 12) so s = —1. O

Set n°(1) = >, 5 (mod 24) €5 (n)g™/?*. By Proposition 1.8, we have

sw=0 Y (2)(F)mam X cnen ¥ (2),

X
x24y243z2=n 1<2<(n/3)"/? w2yton—3z2 N
2tz

where n — 322 = 2 (mod 24). The inner sum vanishes unless x and y are both
odd, so settting X = (x+y)/2 and Y = (z — y)/2 we have

es(n)=(1/4) Y (=1)EVzf((n-32%)/2),
1§z§§?z/3)‘/2

where for n = 1 (mod 12) we have

fny= > (X21—2Y2> > X +iY)=4) w(a) =4c(n)

X24Y2=n X24Y2=n N(a)=n
by Corollary 1.2.

We can thus write the following programs to compute f(n), hence also e(n)
and e5(n):

global (Q=Qfb(1,0,36));
/* Given $n\equivli\pmod{12}$ (not checked), compute c(n).
Q is the fixed quadratic form x"2+36y~2 given by Qfb(1,0,36). */
funO(n)=
{
my(fa,lipr,liex,R=1,p,a);
if (n==1,return(1));
fa=factor(n); lipr=fal,1]; liex=fal,2];
for(i=1,#lipr,
p=lipr[i]; a=liex[il;
if (ph4==3,if (a%2,return(0)) ;next());
if (p%l12==5,if (a}2,return(0),if (a%4==2,R=-R));next());
Rx=(a+1);
if (a%2 && !qfbsolve(Q,p),R=-R);
);
R;
}
/* Assume $n\equiv5\pmod{24}$. */
e5(n)=
{
my (limz=sqrtint (n\3),S=0,T);
forstep(z=1,limz,?2,
T=z*fun0((n-3*z"2)/2) ;
if (z%4==3,5-=T,S+=T)
);
S5
}
Note that this program is very efficient to compute a single Fourier coeffi-

cient, but if one wants all the Fourier coefficients up to a given bound it is still
preferable to use power series.

Implementation exercise 1.

(1).

On my laptop, the commands
for(j=4,7,gettime () ;eta(x+0(x~(107j))) ;printl(gettime()," "));

outputs 4 24 600 28581 (which are milliseconds), so already more than 28
seconds for 107 terms. We can write the following trivial script:

/* Computes the first L coefficients of eta(m\tau), m=1 by default.

*/

myeta(L,m=1)=

{
my (V,s,n,Lm=L\m) ;
V=vector(L+1); V[1]=1; s=1;
for(i=1,00,
s=-s; n=1*(3%i-1)/2; if(n<=Lm,V[m*n+1]=s,break());
n+=i; if (n<=Lm,V[m*n+1]=s,break())
);
return (Ser(V));
}

and the commands
for(j=4,8,gettime() ;myeta(10~j) ;printl(gettime()," "));

where we even go up to 108 outputs 0 4 32 280 2857, so is orders of magnitude
faster. The only reason why I cannot go up to 10? is due to memory constraints,
not time.

The Pari library command eta_inflate_ZXn goes another order of magni-
tude faster, the times being 0 0 4 24 216.

(2)-

For 4 < j <51 obtain times of 92 and 6905 ms respectively.

(3). For L = 10%, I obtain a time of 4048 ms, orders of magnitude larger
than the 92 ms necessary to compute 1/FE directly.

(4). We first write:

install(ser_inv,G);
p=nextprime(10°9);
E=eta(x+0(x~(1075)));
Ep=Mod (E,p) ;

#

1/E;

ser_inv(E);
ser_inv(Ep) ;

The respective times are 6.9s (as before), 2.2s using ser_inv, already three
times faster, but only 0.3s (23 times faster) modulo p. We can also write

for(j=4,7,Ep=Mod(eta_inflate_ZXn(107j,1),p);gettime () ;ser_inv(Ep) ;printl(gettime(),’

which outputs 24 296 3609 48152, so even for L = 107, only 48s are necessary
to invert eta modulo p.

Implementation Exercise 2.
(1). The general program to compute Fy(r, s) to L terms could be as follows:

/* First part, to be done once and for all,
independently of r and s.x/
install(ser_inv,G);
global(p,L,Ep,Epinv,E2p,E2pinv) ;

precompute (LO,pO=nextprime(1079))=

Il))

L=L0; p=pO0;
Ep=Mod(eta_inflate_ZXn(L+1,1),p);
Epinv=ser_inv(Ep) ;
E2p=Mod(eta_inflate_ZXn(L+1,2),p);
E2pinv=ser_inv(E2p);

}

The syntax of this function means that the second argument pO is optional, and
if not given will be set to nextprime(10°9).

Note that it would seem more logical to obtain E2p and E2pinv simply by
substituting 2 for x, but the substitution function is very slow, except if written
carefully for this specific case.

(2).

Once these precomputations done, the rest is as follows:

/* Function F_2(r,s), length L, modulo p, both implicit. */
F2(r,s)=

{
my (E1,E2) ;
E1=if (r<0,Epinv~(-1) ,Ep°r);
E2=if (s<0,E2pinv~(-s) ,E2p~s);
return(E1*E2) ;

}

3)-

/* Find list of zeros in correct format. L and p are implicit. */
findzeros2(r,s)=
{
my (F,Z,ord,den,num) ;
F=F2(r,s); Z=findzeros(F,L);
ord=(r+2xs)/24;
den=denominator (ord); num=numerator (ord) ;
return(apply(x->den*x+num,Z)) ;

}

To test our program without going further, we can first write precompute (10°4),
then findzeros2(5,0) which outputs the first Shimura zeros of n°: [37445,
43253,...].

Experiment 3.

Now that these preliminary programs are written, the rest will be the in-
teresting part, i.e., observation. We first write precompute (10°6) ; which only
requires 7.4s.

(1). We simply write V=findzeros2(-8,24), which requires 10.8s. To look
at the first terms we write V[1..10] which outputs [14, 26,38, - --]. Indeed, we
check that V[i] = 127 4 2:

for(i=1,#V,if (V[i]!=12%i+2,print (i) ;error("really?")))

Since the valuation at infinity is 40/24 = 5/3, the density of zeros is exactly
1/4. Tt should be easy to prove (at least that these coefficients are zero, perhaps
not that there are no others).

(2). Similarly, writing V=findzeros2(-5,13) requires 11s, and the first
entries of the output are [31,279,527,...]. All these values are divisible by 31.
More precisely, the valuation at infinity is 21/24 = 7/8, so the elements of £(d)
are congruent to 7 modulo 8, hence the values can only be of the form 31h with
h =1 (mod 8), and indeed writing V[1..20]1/31 outputs [1,9,17,---]. Thus a
hasty conjecture would be that all numbers of the form 31h with A = 1 (mod 8)
are Fourier zeros. However, if you read the exercise carefully, you will notice
that I mention odd powers of 31. And indeed, we have 217 = 1 (mod 8) (and
divisible by 31), but 31-217 does not occur as a Fourier zero. On the other hand
313 does occur. Thus, a more plausible conjecture is that all numbers n € £(d)
such that vz1(n) is odd occur as Fourier zeros.

If this conjecture is true, the density of such zeros is 1/31 —1/31% 4+1/313 —
.-+ =1/32, and I have not found any other.

Exactly the same phenomenon occurs for (1,7) (b = 3 (mod 8)), (7,1) (h =5
(mod 8)), and (13,—5) (h =7 (mod 8)).

In view of this regularity, I believe this conjecture should not be difficult to
prove.

(3). Similarly, we write V=findzeros2(-3,13), which requires 11s, and
the first entries of the output are [1223,30575,59927,...]. All these values are
divisible by 1223. The valuation at infinity is 23/24, so the elements of £(d) are
congruent to 23 modulo 24, hence the values can only be of the form 1223h with
h =1 (mod 24), and indeed writing V[1..20] /1223 outputs [1,25,49,97,...]. In
view of the previous example, we suspect that only the odd powers of 1223 will
occur. To check this, we need to compute the first Fourier coefficient divisible by
12232 and congruent to 23 modulo 24. This is for n = 23 - 12232, corresponding
to the mth Fourier coefficient that we have computed with m = (n — 23)/24 =
1433406. This is slightly above our default computation with L = 10°, so we
must start again with, for example, L = (3/2) - 105, and indeed, n does not
occur (instead of looking “by hand” you can use the GP function vecsearch).
To be really shure of our conjecture, we would need to check that n = 12233
does occur, but since m = (n—23)/24 = 76219856 this would require computing
almost 8 - 107 Fourier coefficients, which is just at the limit of what can be done
on a laptop (but of course could be tested on a computer with at least 32G of
main memory).

Once again, if this conjecture is true, the density of such zeros is 1/(1223 +
1) = 1/1224, and I have not found any other.

Exactly the same phenomenon occurs for (1,9) (h = 5 (mod 24)), (9,1)
(h =13 (mod 24)), and (13,—-3) (h =17 (mod 24)).

Once again, in view of this regularity, I believe this conjecture should not be
difficult to prove.

(4). As mentioned, I have not found any other nonlacunary Fy(r,s) with
congruence zeros in integral weight.

Exercise 1.
(1). We are going to use the full power of the modular forms package of
Pari/GP. First, as stated, we first write F=mffrometaquo([8,1;16,7]) ;mfparams(F);

which answers [128,4,8,y], which means that F' € M4(T'x(128), xs) (but we
know that all our eta quotients will be cusp forms), and the y means that the
coefficients will be in the field Q(ys), i.e., here simply rational numbers (in fact
integers). The last command mf=mfinit(F,0) initializes the space in whch F
belongs, the parameter 0 meaning the new space (we do not know in advance

that F is in the new space, but since the command does not give an error, it
does).

(2). The command is simply B=mfeigenbasis(mf) ;. The command mffields (mf)
gives

[y'2+2, y2+1, y72 +1, y72 + 1, y™4 + 4xy~2 + 9]

which means that the first two eigenforms are (conjugates) and defined over
Q(+/—2), the next six are pairwise conjugate and defined over Q(i), and the last
four are Galois conjugates over a quartic field.

We will solve the question in the two ways which are suggested.

(a). First, let us use linear algebra. We need to construct a matrix with suf-
ficiently many rows (since the dimension is 12 let us choose 20), whose columns
are the coefficients of the eigenforms, but expressed as complex numbers, and
then solve a linear system with complex coefficients. For this, we used the
Pari/GP function mfembed as follows:

mftoeigenbasis(mf,F)=
{
my(B,1lim,M,tmp) ;
B=mfeigenbasis(mf); lim=max(mfsturm(mf),2*mfdim(mf))+1;
M=Mat ([1);
for(i=1,#B,
tmp=mfembed (B[i] ,mfcoefs(B[i],lim));
for(j=1,#tmp,M=concat (M,Mat (tmp[j]1~)))
);
matsolve(M,mfcoefs(F,1lim)~);

}

After execution of this (general) program on our specific mf and F, and sup-
pression of the coefficients which are clearly zero (say less than 1073Y), we
find as coefficients C - [0,0,0,0,0,0,0,0,1,—1, —1,1], where C is the constant
C = —0.013975424859373685602557335429570476472 * I which the command
algdep(C,2) immediately recognizes as 1/4/—5120. It follows that in fact our
eta quotient F' is simply a linear combination of the four Galois conjugates of
the last eigenform with simple coefficients.

(b). We now use a more expensive but amusing method: if F; are the
eigenforms, the coefficient of F' on F; is simply < F,F; > / < F;,F; >. To
compute these Petersson products, we must use the function mfsymbol. We
assume already computed mf and B as above.

FS=mfsymbol (mf,F) ;

BS=apply (x->mfsymbol (mf,x) ,B) ;

for(i=1,5,
num=mnfpetersson(FS,BS[i]);

matden=mfpetersson(BS[i] ,BS[i]);
for(j=1,#num,
print (num[j]/matden(j,j])
)
)

Some comments are in order: mfpetersson(FS,BS[i]) gives a wvector of results,
one for each embedding of BS[i] (since FS has only one embedding). However,
logically mfpetersson(BS[i],BS[i]) gives a matriz of results, the rows and
columns corresponding to each embedding of BS[i]. Of course, by orthogonality
of eigenforms, this matrix is (approximately) a diagonal matrix.

The output of this program is of course exactly the same as using linear
algebra.

(3). We simply use the mf coefs command on B[5]: more precisely, 1ift (mfcoefs(B[5],31))
outputs

[0,1,0,-2/3xy"3-14/3%y,0,8%y"2+16,0,...0,56%xy"2+112,0,0]

This shows that the coefficients a(n) with 2 | n are 0, which is equivalent
to T'(2) having zero eigenvalue, since the level is divisible by 2. But we see
that a(31) also vanishes, which means that these last four eigenforms have zero
eigenvalue for T'(31). However, 31 does not divide the level, hence T'(31)T'(31) =
T(31%)+xs(31)-313T(1), in other words a(312) = —312 (which we can check by
writing mf coef (B[5],31°2) with no “s”), and by induction of course a(31%) = 0
for k odd, and by multiplicativity a(m - 31¥) = 0 for k odd and 31 { m, proving
our conjecture. Of course this does not imply that there are no other zero
Fourier coeflicients.

Experiment 4.

We want to search on 7, s, so we do not want to spend too much time on
each one. Before focusing on particular pairs, it is preferable to precompute to
a smaller limit, for instance precompute (1075).

Proposition 1.2 tells us that we must have r > max(—2s, —s/2), in other
words when s > 0 we must have r > —s/2, and when s < 0 we must have
r > —2s (we do not need s = 0 since this corresponds to pure eta powers which
we have already studied). We want an estimate of the zero density: if it is close
to 1, the series is probably lacunary, if it is close to O the series has probably no
congruence zeros. The total number of Fourier coefficients found is equal to L
(10° here for instance), so the density is simply |V'|/L, where |V] is the number
of elements of the vector V' output by findzeros2.

However, here we are asked to do a search, and in fact we are going to com-
bine this search with the one asked for in the previous experiment. Computing
F5(r,s) independently for each r, s is wasteful since Fy(r + 1,s) = nFs(r,s).
Thus, we need to rewrite our findzeros2 program as follows:

/* Find zeros, given F_2(r-1,s), and output F_2(r,s). */
findzeros3(r,s,F2prev=0)=
{

my (F,Z,ord,den,num) ;

if (F2prev,F=Ep*F2prev,F=F2(r,s));

Z=findzeros(F,L); ord=(r+2*s)/24;

10

den=denominator (ord) ; num=numerator (ord) ;
return([apply (x->den*x+num,Z) ,F]) ;

}

The above syntax simply means that if F2prev is given (corresponding to
Fy(r — 1,8) we compute Fy(r,s) by simply multiplying it by eta, and other-
wise we compute it from scratch, and in both cases we return Fy(r, s) as second
component of the result.

We will do the search for instance for |s| < 35 and |r| < 50.

densinner(s,r0,1imr0=50)=
{
my (c,F,V,nb);
F=0;
for(r=r0,1imr0,
if ('r,next());
[V,F]l=findzeros3(r,s,F); nb=#V;
if (ab>1,print([r,s],": found ",nb,", ",V[1..min(10,nb)]1));
);
}

density(lims=35,1imr0=50)=
{
my (r0) ;
forstep(s=-1,-lims,-1,
r0=-2%*s;
densinner(s,r0,1imr0)
);
for(s=1,lims,
rO=ceil(-s/2);
densinner(s,r0,1imr0)
);
}

This program (after running several hours, less on multiple processors) out-
puts a large amount of data.

11

