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1 Answers and Programs

Exercise 1.
(1) and (2). Since the set of invariant meromorphic functions on H is C(j),

if F ∈ V we can write F = P (j)/Q(j) for some coprime polynomials P and Q.
If Q is nonconstant, it has a root z ∈ C, and since j induces an isomorphism
between H and C there exists τ ∈ H with j(τ) = z. Since P and Q are coprime, z
cannot be a root of P , hence τ is a pole of F , contradicting the assumption that
F is holomorphic. It follows that Q is constant, in other words that F ∈ C[j],
and of course conversely such an F does not have any pole in H since j does
not, so F ∈ V , hence V = C[j] as claimed. In particular, if N is the degree of P
then F grows at most like q−N as τ →∞ since j(τ) = 1/q+O(1). Furthermore,
since the Fourier coefficients of j are in Q, so are the coefficients of the inverse
function of 1/j = q + O(q2), hence so are those of R such that F = jNR(1/j),
hence those of P , the reciprocal polynomial of R, such that F = P (j).

Exercise 2.
(1). We have log(∆) = log(q) + 24

∑
n≥1 log(1− qn), hence

d∆/∆ = dq/q(1− 24
∑
n≥1

nqn/(1− qn)) = E2dq/q .

Furthermore we know that

(1/2πi)dE4/dτ − E2E4/3 = qdE4/dq − E2E4/3

is a modular form of weight 6, hence proportional to E6, hence by looking at
the constant term equal to −E6/3, we have dE4/E4 = ((E2 − E6/E4)/3)dq/q.
Furthermore log(j) = 3 log(E4)− log(∆), so

dj/j = 3dE4/E4 − d∆/∆ = (E2 − E6/E4)dq/q − E2dq/q = −(E6/E4)dq/q .

(2). Set H = FG ∈ V . If φ is any function on H having a Fourier expansion
of the type φ(τ) = q+

∑
n≥2 a(n)qn (such as ∆, 1/j, or q itself), by the residue

theorem the constant term of H as a Laurent series in φ is given by

1

2πi

∫
Cr

H(τ)
dφ

φ
(τ)
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where Cr is any closed circle of radius r < 1 around q = 0, so the equivalence
of the first three conditions follows from (1) which implies that

d∆

∆
= E2

dq

q
=
E2E4

E6

d(j−1)

j−1
.

For the equivalence with the fourth, we choose the third formula which tells
us (since dq/q = 2πidτ) that

< F,G >=

∫
Cr

F (τ)G(τ)E2(τ)dτ .

Now τ ∈ Cr is equivalent to |q| = r, i.e., to =(τ) = T for some T = − log(r)/(2πi),
so

< F,G >=

∫ 1/2

−1/2
(FGE2)(x+ iT ) dx .

Let us choose T > 1. Since F , G and E2 are holomorphic, the integral of FGE2

around the truncated fundamental domain |τ | ≥ 1, |x| ≤ 1/2, y ≤ T is equal
to 0, and since the three functions are periodic of period 1, the integrals on the
vertical sides are equal, which shows that < F,G >=

∫
B

(FGE2)(τ)dτ , where
B is the bottom side of the fundamental domain, i.e., the arc |τ | = 1, |x| ≤ 1/2.
If we set ρ = e2πi/3, we thus have

< F,G >=

∫ i

ρ

(FGE2)(τ)dτ +

∫ −1/ρ
i

(FGE2)(τ)dτ .

In the first integral we set τ ′ = −1/τ . Since F and G are invariant by Γ and
E2(−1/τ) = τ2E2(τ) + (12/(2πi))τ , we deduce that∫ i

ρ

(FGE2)(τ)dτ = −
∫ −1/ρ
i

(FG)(τ)(E2(τ) + (12/2πi)/τ)dτ ,

hence

< F,G >= −(12/2πi)

∫ −1/ρ
i

FG(τ)dτ/τ ,

so setting τ = eiθ we obtain

< F,G >= −(6/π)

∫ π/3

π/2

(FG)(eiθ)dθ ,

proving (d), and it is clear that the reasoning can be inverted to show that (d)
implies (c).

(3). (a). Write

j(τ) =
∑
n≥−1

c(n)qn =
∑
n≥−1

c(n)e2πinτ .

Since the Fourier coefficients c(n) are real, we have

j(τ) =
∑
n≥−1

c(n)e−2πinτ = j(−τ) .
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In particular, if |τ | = 1 (and τ ∈ H) we have τ = 1/τ , so we deduce that
j(τ) = j(−1/τ) = j(τ), so j(τ) is indeed real when τ = eiθ, 0 < θ < π.

(3). (b). It follows that if F ∈ V (R) is a polynomial in j with real coefficients
we also have that F (eiθ) is real for 0 < θ < π, hence F 2(eiθ) ≥ 0, and if F is not
identically zero the integral from π/3 to π/2 of F 2(eiθ) will be strictly positive,
so defines a positive definite scalar product.

Exercise 3.
(1). We must have P0 = 1. Assume that the Pk exist (and are unique)

for k < n. Since they are monic of degree k they form a basis of the space
of polynomials of degree < n. It follows that there exist constants µn,k such
that Pn = Xn +

∑
0≤k≤n−1 µn,kPk, and since Pn must be orthogonal to all

the Pk and the Pk are pairwise orthogonal, we deduce that 0 =< Pn, Pk >=<
Xn, Pk > +µn,k < Pk, Pk >, so µn,k = − < Xn, Pk > / < Pk, Pk > exists and
is unique.

(2). By (1) we indeed have P1 = X− < X, 1 > / < 1, 1 >. As already
mentioned, the Pk for k < n form a basis of the space of polynomials of degree
< n, so Pn is indeed orthogonal to all such polynomials.

Now consider the polynomial Pn+1(X)−XPn(X). Since the Pk are monic,
this is a polynomial of degree at most n, so we can write Pn+1(X)−XPn(X) =∑

0≤k≤n λkPk, and since Pn+1 is orthogonal to all the Pk for k ≤ n, we have
λk = − < XPn, Pk > / < Pk, Pk >. However, since the scalar product is of the
form < F,G >= φ(FG), we have < XPn, Pk >=< Pn, XPk >, and since XPk
has degree k + 1 it follows that λk = 0 when k ≤ n− 2, and

λn−1 = − < Pn, XPn−1 > / < Pn−1, Pn−1 >= − < Pn, Pn > / < Pn−1, Pn−1 >

since Pn − XPn−1 has degree strictly less than n so is orthogonal to Pn, and
λn = − < XPn, Pn > / < Pn, Pn >, giving the desired recurrence.

Exercise 4.
(1). Since the coefficient of X−1 in F (X)G(X)Φ(X) is bilinear in F and G,

it is sufficient to prove this for F (X) = Xm and G(X) = Xn, but in that case
< Xm, Xn >= φ(Xm+n) while the coefficient of X−1 in Xm+nΦ(X) is also
wm+n = φ(Xm+n).

(2). Since Φ(X) = w0/X+O(X−2), it is clear that Pn(X)Φ(X) = Qn(X) +
O(X−1), where Qn(X) is the polynomial part of the product, thus of degree
exactly equal to one less than Pn, i.e., n− 1.

Write
Pn(X)Φ(X) = Qn(X) +

∑
m≥0

a(m)X−m−1 .

For any m < n we know that Pn is orthogonal to Xm, so by (1) the coefficient
of X−1 in XmPn(X)Φ(X) vanishes. Since this coefficient is a(m), we thus have
a(m) = 0 for m < n, hence Pn(X)Φ(X) = Qn(X) +O(X−n−1) as claimed.

(3). Multiplying the recursion for Pn by Φ(X), we deduce that Qn+1(X) =
(X−an)Qn(X)− bnQn−1(X)+O(X−n), and since the Qk(X) are polynomials,
this implies that the O(X−n) is in fact equal to 0, so the Qn satisfy the same
recursion. In addition, since P0 = 1 we have Q0 = 0, and since P1 = X − a for
some constant a and Φ(X) = w0/X +O(1/X2) we have Q1 = w0.
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(4). Dividing Pn(X)Φ(X) = Qn(X) + O(X−n−1) proved above by Pn(X)
and using the fact that Pn has degree exactly n we deduce that

Pn(X)/Qn(X) = Φ(X)+O(X−2n−1) = w0/X+· · ·+w2n−1/X
2n+O(X−2n−1) .

Exercise 5.
(1). Assume by induction that for k < n we have P ∗k (−X) = (−1)kP ∗k (X).

Since P ∗n has degree n the polynomial (−1)nP ∗n(−X) is monic. In addition by
our induction hypothesis, if k < n we have

< (−1)nP ∗n(−X), P ∗k (X) >=< (−1)n+k < P ∗n(−X), P ∗k (−X) >= (−1)n+kφ∗(F (−X)) ,

where F (X) = P ∗n(X)P ∗k (X). By definition φ∗(G) = φ(G∗), but since F (−X)+
F (X) = F (X)+F (−X) we deduce that φ∗(F (−X)) = φ∗(F (X)), so (−1)nP ∗n(−X)
is orthogonal to all the P ∗k (X) for k < n and is monic, so by uniqueness must
be equal to P ∗n(X).

The recursion of Exercise 3 is of the form P ∗n+1(X) = (X − dn)P ∗n(X) −
cnP

∗
n−1(X). In this recursion, we change X into −X and multiply by (−1)n+1.

Using what we have just proved shows that P ∗n+1(X) = (X + dn)P ∗n(X) −
cnP

∗
n−1(X), so that dn = 0 as claimed, and as in Exercise 3 we have cn =<

P ∗n , P
∗
n > / < P ∗n−1, P

∗
n−1 >.

(2). (a). Once again, assume by induction that for k < n we have P ∗2k(X) =
Pk(X2). By definition of φ∗ any polynomial in X2 is orthogonal to any odd
power of X. On the other hand, let X2k be any even power of X with k < n.
By parity proved in (1), it is a linear combination of the P ∗2j(X) for j ≤ k (the

P ∗2j+1(X) cannot occur), so to prove that Pn(X2) is orthogonal to all the X2k

it is sufficient to prove that it is orthogonal to all the P ∗2j(X). However, by

our induction hypothesis we have P ∗2j(X) = Pj(X
2), and φ∗(Pn(X2)Pj(X

2)) =
φ(Pn(X)Pj(X)) = 0 by assumption.

(2). (b). We have P ∗2n+1(X) = XP ∗2n(X) − c2nP ∗2n−1(X) and P ∗2n+2(X) =
XP ∗2n+1(X)− c2n+1P

∗
2n(X), so

P ∗2n+2(X) = (X2 − c2n+1)P ∗2n(X)− c2nXP ∗2n−1(X) ,

and P ∗2n(X) = XP ∗2n−1(X)− c2n−1P ∗2n−2(X), so

P ∗2n+2(X) = (X2 − c2n+1)P ∗2n(X)− c2n(P ∗2n(X) + c2n−1P
∗
2n−2(X))

= (X2 − (c2n + c2n+1))P ∗2n(X)− c2n−1c2nP ∗2n−2(X) .

Using P ∗2n(X) = Pn(X2) and identifying with the recursion for Pn gives an =
c2n + c2n+1 and bn = c2n−1c2n.

(3). If we denote by un/vn the nth convergent of the continued fraction
w0/(X − c1/(X − c2/(X − · · · − cn/X))) we have u0 = 0, v0 = 1, u1 = w0,
v1 = X, and the recursion un+1 = Xun − cnun−1 and similarly for v. These
are exactly the recursions satisfied by Since P ∗n and Q∗n with the same initial
conditions since P ∗1 (X) = X−φ∗(X)/φ∗(1) = X, so that un = Q∗n and v∗n, giving
the first continued fraction, and the second is trivially obtained by dividing by
X each fraction.
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(4). With evident notation, by definition we have w∗2n = wn, w∗2n+1 = 0,
hence

Φ∗(T ) =
∑
n≥0

w∗nT
−n−1 =

∑
n≥0

wnT
−2n−1 = TΦ(T 2) .

Since by definition P ∗2n(X)Φ∗(X) = Q∗2n(X) + O(X−1), and we proved that
P ∗2n(X) = Pn(X2), we have Pn(X2)XΦ(X2) = Q∗2n(X) + O(X−1), but on the
other hand Pn(X2)Φ(X2) = Qn(X2) + O(X−2) so we deduce that Q∗2n(X) =
XQn(X2).

Replacing n by 2n − 1 in the second continued fraction obtained above we
thus obtain

XQn(X2)/Pn(X2) = w0X
−1/(1− c1X−2/(1− c2X−2/(1− · · · cnX−2))) ,

so multiplying by X−1 and replacing X2 by T−1 gives

Qn(T−1)/Pn(T−1) = w0T/(1− c1T/(1− c2T/(1− · · · cnT ))) ,

and since by the previous exercise we know that Qn(T−1)/Pn(T−1) = Φ(T−1)+
O(T 2n−1), we obtain the required identity

w0T + w1T
2 + w2T

3 + · · · = w0T/(1− c1T/(1− c2T/(1− c3T/(1− · · · )))) .

Note: One can of course directly compute the ci by successively inverting
a power series and subtracting 1, so knowing the moments wk it is immediate
to compute the cj , hence by (2) the an and bn. However, there is a very simple,
useful and faster algorithm called the quotient-difference algorithm which con-
verts a power series into a continued fraction of the above type. Independently
of the Atkin scalar product setting, this is usually by far the fastest and simplest
way to obtain the recursions for general orthogonal polynomials.

Exercise 6.
(1). By condition (b) of Exercise 2, wn =< Xn, 1 > is equal to the constant

term of jnE2E4/E6 as a Laurent series in j−1, in other words to the coefficient
of j−n−1 in E2E4/(jE6). Thus, with the notation of Exercise 4 we have

Φ(j) =
∑
n≥0

wnj
−n−1 =

E2E4

jE6
.

Now we can easily find the q-expansion of 1/j, and by reverting this expansion
we find the 1/j-expansion of q (in Pari/GP the command is

Q=serreverse(1/ellj(x+O(x^N)))

where N is the number of terms that we want), and we can then replace in the
known q-expansions of E2, E4, and E6.

(1) For instance, with N = 21 (which is what we will need below) we can
write:

Q=serreverse(1/ellj(x+O(x^22)))

E2=1-24*sum(n=1,16,n*x^n/(1-x^n),O(x^22));

E4=1+240*sum(n=1,16,n^3*x^n/(1-x^n),O(x^22));

E6=1-504*sum(n=1,16,n^5*x^n/(1-x^n),O(x^22));

Phi=x*subst(E2*E4/E6,x,Q)
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This outputs a power series in x = 1/j starting with

x + 720*x^2 + 911520*x^3 + 1301011200*x^4 + 1958042030400*x^5 +...

and wn is the coefficient of xn+1.
It is clear that A0(X) = 1 and A1(X) = X − w1/w0 = X − 720. If we

write A2(X) = X2 + aX + b, we have < A2, 1 >= w2 + aw1 + bw0 and <
A2, X >= w3 + aw2 + bw1, so using the above expansion of Φ and solving for
a and b gives A2(X) = X2 − 1640X + 269280, and similarly writing A3(X) =
X3 + cX2 + dX + e and solving in the same manner for c, d, and e gives
A3(X) = X3 − (12576/5)X2 + 1526958X − 107765856.

(3). Although we have mentioned above that there is a very efficient quotient-
difference algorithm to compute the cn, we will do it naively since we only need
20 values. We can write the following program, where the input is the power
series Phi in the variable x computed above:

C=vector(20); S=x/Phi; /* S=1-c_1x/(1-c_2x/(1-...)) */

for(n=1,20,C[n]=-polcoeff(S,1); S=C[n]*x/(1-S)); C

This little program outputs

[720, 546, 374, 475, 2001/5, 2294/5, 410, 903/2, 2491/6, 1342/3, 4602/11,
4891/11, 5467/13, 40290/91, 14774/35, 8827/20, 28785/68, 22454/51, 24182/57,
8349/19]

The denominator of C[14] is 91 = 7 · 13, so maybe we can see better by
multiplying C[n] by n(n− 1): the vector of n(n− 1)C[n] is equal to

[0, 1092, 2244, 5700, 8004, 13764, 17220, 25284, 29892, 40260, 46020, 58692,
65604, 80580, 88644, 105924, 115140, 134724, 145092, 166980]

At least the denominators have disappeared. Following the advice of the
exercise we first consider the even terms:

[1092, 5700, 13764, 25284, 40260, 58692, 80580, 105924, 134724, 166980]

It is easy to spot that this is a quadratic polynomial (in Pari/GP simply use
polinterpolate), and we find that it is the polynomial 1728x2 − 576x− 60 =
12(144x2−48x−5) = 12(12x−5)(12x+1), and since x = n/2 we can conjecture
that for n even we have cn = 12(6n− 5)(6n+ 1)/(n(n− 1)).

Similarly, we now consider the odd terms and ignore the first:

[2244, 8004, 17220, 29892, 46020, 65604, 88644, 115140, 145092]

Once again, we see that it is 1728x2 + 576x − 60 = 12(12x + 5)(12x − 1),
and since x = (n − 1)/2 we can conjecture that for n odd, n ≥ 3 we have
cn = 12(6n − 1)(6n − 7)/(n(n − 1)), We can put both formulas together by
conjecturing that cn = 12(6n + (−1)n)(6n − 6 + (−1)n)/(n(n − 1)), in other
words

cn = 12

(
6 +

(−1)n

n

)(
6 +

(−1)n

n− 1

)
.

This formula is indeed proved in the paper of Kaneko–Zagier.

(4). To compute the constants an and bn for n ≤ 2 we come back to the
computation of A2 and A3 done above. By definition, we have A2(X) = (X −
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a1)A1(X)− b1A0(X), hence X2 − 1640X + 269280 = (X − a1)(X − 720)− b1.
Identifying the term in X gives −1640 = −a1−720, so a1 = 920, and identifying
constant terms gives 269280 = 720·920−b1, so b1 = 393120. We can do a similar
computation for a2 and b2, but being a mathematician I am lazy so I will first
do the next question, which will give me the answer to this one.

(5). By the previous exercises, we have an = c2n+ c2n+1 and bn = c2n−1c2n.
Thus, using the conjectural formula found above we deduce that for n ≥ 1 we
have

an = 12((6 + 1/(2n))(6 + 1/(2n− 1)) + (6− 1/(2n+ 1))(6− 1/(2n)))

= 24(144n2 − 29)/((2n− 1)(2n+ 1))

(which indeed gives a1 = 920), and for n ≥ 2 we have

bn = 144(6 + 1/(2n))(6 + 1/(2n− 1))(6− 1/(2n− 1))(6− 1/(2n− 2))

= 36(12n+ 1)(12n− 5)(12n− 7)(12n− 13)/(n(n− 1)(2n− 1)2) ,

while for n = 1, since c1 = 720 and c2 = 546, we have b1 = 720 · 546 = 393120,
which is what we found above.

To finish the previous question, using these conjectural formulas (which are
true up to n = 10 since we computed cn for n ≤ 20), we find that a2 = 4376/5
and b2 = 177650.

(6). Using the above (conjectural) values of an and bn, we find immediately
the following table:

A0(X) = 1

A1(X) = X − 720

A2(X) = X2 − 1640X + 269280

A3(X) = X3 − (12576/5)X2 + 1526958X − 107765856

A4(X) = X4 − 3384X3 + 3528552X2 − 1133263680X + 44184000960

A5(X) = X5 − (12752/3)X4 + 6276237X3 − 3725740832X2

+ 743683026790X − 18343724398560

A6(X) = X6 − (56280/11)X5 + (107473392/11)X4 − 8530590848X3

+ 3313730346654X2 − 451680528901680X + 7674347243833920 .

Exercise 7.
(1). Recall that we have shown that bn =< An, An > / < An−1, An−1 >.

Since < A0, A0 >= w0 = 1, we deduce that < A1, A1 >= b1 = 393120, and for
n ≥ 2:

< An, An > = 36n−1b1
∏

2≤j≤n

(12j + 1)(12j − 5)(12j − 7)(12j − 13)/(j(j − 1)(2j − 1)2)

= 36n−1b1/(13 · 7 · 5 · (−1))124n·

·
∏

1≤j≤n

(j + 1/12)(j − 5/12)(j − 7/12)(j − 13/12)/(n!(n− 1)!
∏

1≤j≤n

(2j − 1)2)

= −12 · 144n · 124n(13/12)n(7/12)n(5/12)n(−1/12)n/((2n)!(2n− 1)!)

= −126n+1(13/12)n(7/12)n(5/12)n(−1/12)n/((2n)!(2n− 1)!)
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since
∏

1≤j≤n(2j − 1) = (2n)/(2nn!).

(2). By Exercise 5 we know that An(0) = A∗2n(0), and the recursion for
A∗2n(0) is simplyA∗2n(0) = −c2n−1A∗2n−2(0), in other wordsAn(0) = −c2n−1An−1(0).
Since A0(0) = 1, we deduce from the formula c1 = 720 and c2n−1 = 6(12n −
7)(12n− 13)/((2n− 1)(n− 1)) that

An(0) = (−1)n720/(6 · 5 · (−1))6n122n·

·
∏

1≤j≤n

(j − 7/12)(j − 13/12)/((n− 1)!(2n)!/(2nn!))

= (−1)n+1 · 123n+1(5/12)n(−1/12)n/(2n− 1)! .

(3). Set un = An(1728) and dn = un/un−1. Using the computations done
above we compute that the values of dn for 1 ≤ n ≤ 6 are

[1008, 418, 2139/5, 430, 2585/6, 23718/55] .

As before the denominator 55 suggests that we multiply by (n−1)(2n−1), and
the values of (n− 1)(2n− 1)dn are now [0, 1254, 4278, 9030, 15510, 23718]. Once
again, ignoring the term for n = 1 we easily find that the other coefficients can
be interpolated by 6(12n − 5)(12n − 13), so it is reasonable to conjecture that
d1 = 1008 and dn = 6(12n− 5)(12n− 13)/((n− 1)(2n− 1)) for n ≥ 2. If this is
the case, since u0 = 1 we have as above

An(1728) = un = 6n−1(d1/(7 · (−1)))·

·
∏

1≤j≤n

(12j − 5)(12j − 13)/((n− 1)!(2n)!/(2nn!)

= −123n+1(7/12)n(−1/12)n/(2n− 1)! .
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