
Modular Forms Project: L-Functions of

Quadratic Characters at Negative Integers

Henri Cohen,
Université de Bordeaux, Institut de Mathématiques de Bordeaux,
351 Cours de la Libération, 33405 TALENCE Cedex, FRANCE

July 8, 2018

1 Answers and Programs

Exercise 1.

(1). As mentioned in the example, since M4(Γ) is one-dimensional, F2,D is
proportional to E4, the constant of proportionality being −L(χD,−1)/48, so for
n ≥ 1 the nth Fourier coefficient of F2,D is equal to −5L(χD,−1)σ3(n), giving
the required equality.

(2). For any integer m we can write uniquely m = df21 with d squarefree. If
d ≡ 1 (mod 4) we take (D, f) = (d, f1). If d ≡ 2, 3 (mod 4) then if m ≡ 0, 1
(mod 4) we cannot have f1 odd since otherwise f21 ≡ 1 (mod 4), so f1 is even
and we take (D, f) = (4d, f1/2).

We recall the Möbius inversion formula: if f and g are two arithmetic func-
tion and h(n) =

∑
d|n f(d)g(n/d), in terms of Dirichlet series this can be written

with evident notation L(h, s) = L(f, s)L(g, s), so L(g, s) = L(h, s)(L(f, s))−1.
In our case f(d) = d

(
D
d

)
is totally multiplicative, so L(f, s) =

∏
p 1/(1− f(p)),

hence L(f, s)−1 =
∏

p(1− f(p)) =
∑

n≥1 µ(n)f(n), so we deduce that

g(n) =
∑
d|n

µ(d)f(d)h(n/d) .

Applying to our specific case f(n) = n
(
D
n

)
, g(n) = S2(n2D), and h(n) =

−5L(χD,−1)σ3(n) we obtain finally, with m = Df2:

S2(m) = −5L(χD,−1)
∑
d|f

µ(d)d

(
D

d

)
σ3

(
f

d

)
.

(3). A small computation (better done on a computer) shows for instance
that F (n)/σ1(n) is equal to [23/12, 29/12, 35/12, 41/12, 47/12] for n = 4, 5, 6,
7, 8, so we can reasonably conjecture that F (n) = (n/2 − 1/12)σ1(n), giving
the formula ∑

d|n

dS2((n/d)2) = (5/12)σ3(n)− (n/2− 1/12)σ1(n) .

1

(4). As before, we deduce that

S2(f2) = (5/12)
∑
d|f

µ(d)dσ3(f/d)−
∑
d|f

µ(d)(f/2− d/12)σ1(f/d) .

Both terms can in fact be simplified. We do not want to simplify the first so
as to leave it in a form similar to the case of general m. For the second, we set
T (f) =

∑
d|f µ(d)(f/2− d/12)σ1(f/d).∑

n≥1

µ(n)(f/2− n/12)/ns = (f/2)ζ(s)−1 − (1/12)ζ(s− 1)−1 ,

while
∑

n≥1 σ1(n)/ns = ζ(s)ζ(s− 1). It follows that T (f) = (f/2)f − (1/12) =

f2/2 − 1/12. Thus the general formula for m = Df2 with D fundamental
including D = 1 is

S2(m) = −5L(χD,−1)
∑
d|f

µ(d)d

(
D

d

)
σ3

(
f

d

)
− δ(
√
m)

(
m

2
− 1

12

)
.

Exercise 2.

(1). (a). k = 4: M8(Γ) is one-dimensional generated by E8 = E2
4 = 1 +

480q +O(q2). On the other hand,

F4,D(τ) = L(χD,−3)/480 + c4,D(1)q +O(q2) .

It follows that

L(χD,−3) = c4,D(1) =
∑
s∈Z

σ3

(
D − s2

4

)
.

(1). (b). k = 6, 8, and 10: in these case M2k(Γ) is two-dimensional generated
by (F,G) = (E2

6 ,∆), (E2
8 ,∆E4), and (E2

10,∆E8) respectively, while

Fk,D(τ) = −(Bk/(4k))L(χD, 1− k) + ck,D(1)q + ck,D(2)q2 +O(q3) .

Since the three forms (F,G, Fk,D) belong to a vector space of dimension 2,
the 3 × 3 matrix M of their first three coefficients vanish, i.e., if we set F =
1 + aq + bq2 +O(q3) and G = q + eq2 +O(q3) we have

M =

−(Bk/(4k))L(χD, 1− k) ck,D(1) ck,D(2)
1 a b
0 1 e

and det(M) = 0, so expanding along the first row gives

−(Bk/4k)L(χD, 1− k)(ae− b)− eck,D(1) + ck,D(2) = 0 ,

in other words

L(χD, 1− k) = −((4k/Bk)/(ae− b))(eck,D(1)− ck,D(2)) .

2

For k = 6, 8, 10, we have (4k/Bk, a, b, e) = (1008,−1008, 220752,−24), (−960, 960, 354240, 216),
(528,−528,−201168, 456), giving the following formulas:

L(χD,−5) = − 1

195
(24c6,D(1) + c6,D(2))

L(χD,−7) = − 1

153
(216c8,D(1)− c8,D(2))

L(χD,−9) =
1

75
(456c10,D(1)− c10,D(2)) ,

where

ck,D(1) =
∑
s∈Z

σk−1

(
D − s2

4

)
ck,D(2) =

∑
s∈Z

σk−1(D − s2) +

(
D

2

)
2k−1

∑
s∈Z

σk−1

(
D − s2

4

)
,

or, using the notation Sk(m,N), and combining with the previous formulas:

L(χD,−1) = −1

5
S2(D, 4)

L(χD,−3) = S4(D, 4)

L(χD,−5) = − 1

195

((
24 + 25

(
D

2

))
S6(D, 4) + S6(D, 1)

)
L(χD,−7) = − 1

153

((
216− 27

(
D

2

))
S8(D, 4)− S8(D, 1)

)
L(χD,−9) =

1

75

((
456− 29

(
D

2

))
S10(D, 4)− S10(D, 1)

)
.

(2). Since for k ≥ 4 even Ek is an eigenfunction of the Hecke operators
T (n) with eigenvalues σk−1(n), these eigenvalues satisfy the same relations as
the Hecke operators themselves, and in particular

σk−1(4)σk−1(n) =
∑
d|4

dk−1σk−1(4n/d2) ,

in other words

(4k−1 + 2k−1 + 1)σk−1(n) = σk−1(4n) + 2k−1σk−1(n) + 4k−1σk−1(n/4) ,

giving the required relation.

(3). We prove more generally that σz(n) satisfies the usual Hecke relations
for any complex z. We write

σz(m)σz(n) =
∑

d|m, e|n

(de)z =
∑
D|mn

Dz
∑

e|gcd(D,n), (D/e)|m

1 .

Now (D/e) | m is equivalent to D | em hence to D/ gcd(D,m) | e. Thus the
number of e | gcd(D,n) such that D/ gcd(D,m) | e is equal to the number of f
dividing gcd(D,m) gcd(D,n)/D = gcd(D,m, n,mn/D). Thus,

σz(m)σz(n) =
∑
D|mn

Dz
∑

d|gcd(D,m,n,mn/D)

1 ,

3

so writing D = fd we have d | mn/(fd), in other words f | mn/d2, so

σz(m)σz(n) =
∑

d|gcd(m,n)

dz
∑

f |mn/d2

fz =
∑

d|gcd(m,n)

dzσz(mn/d2) ,

which is the desired relation.

(4). We have

Sk(D, 1) =
∑

s6≡D (mod 2)

σk−1(D − s2) + T

with

T =
∑

s≡D (mod 2)

σk−1(4(D − s2)/4) = (4k−1 + 1)Sk(D, 4)− 4k−1Sk(D, 16)

by (2) and (3), as claimed.

Exercise 3.
(1). We first write the following small Pari/GP programs:

mysigma(n,k=1)=if(denominator(n)>1 || n<=0,0,sigma(n,k));

S(k,m,N)=sum(s=-sqrtint(m),sqrtint(m),mysigma((m-s^2)/N,k-1));

LF(k,D)=bestappr(lfun(D,1-k));

Of course these programs can be trivially improved, but since we are going
to perform very small experiments, this is not necessary. Note that L(χD, 1−k)
always has a very small denominator, so we use the bestappr function to express
the result as a rational number.

We can already test the example given in the exercise by writing

for(D=5,50,if(isfundamental(D)&&(D%3)==0,print(D,": ",LF(2,D)/S(2,D,12))))

which answers only −2, and similarly with (D%3)==1 which answers only −1.

We are now going to explore systematically possible formulas for a given N
and t. For this, we can proceed as follows (of course this is not the only way).

/* List of $p\mid N$ or $p\le t$. */

allprimes(N,t)=

{

V=factor(N)[,1];

forprime(p=2,t,if(N%p,V=concat(V,p)));

return (vecsort(V));

}

/* given L a list of -1,0,1 for each p in V, test if D is OK */

isdok(V,L,D)=

{

for(i=1,#V,if(kronecker(D,V[i])!=L[i],return(0)));

return(1);

}

/* make a list of $24+t$ suitable D */

makedlist(V,L,t)=

4

{

my(res=vector(24+t),ct=0);

forstep(D=5,oo,[3,1],

if(isfundamental(D) && isdok(V,L,D),ct++;res[ct]=D);

if(ct==24+t,break())

);

return(res);

}

After executing all these programs, we have a list of t + 24 fundamental
discriminants satisfying the required Legendre symbol conditions.

We now come to the heart of the computation. To find the cn we must
simply solve the linear system

∑
1≤n≤t cnSk(n2D,N) = L(χD, 1− k). To have

good confidence, we will want a largely overdetermined system, and this is why
we chose t+ 24 discriminants. We thus write the following:

/* V: primes, L: Kronecker symbols */

findformula0(k,V,L,N,t)=

{

my(dlist,ld,M,B,res);

dlist=makedlist(V,L,t); ld=#dlist; /* t+24 in fact. */

M=matrix(ld,t);

for(n=1,t,

M[,n]=vectorv(ld,i,S(k,n^2*dlist[i],N))

);

B=vectorv(ld,i,LF(k,dlist[i]));

res=matinverseimage(M,B);

return(res);

}

One comment: one cannot use matsolve since the matrix M may have a
nontrivial kernel. In that case, if the result res is nonempty this means that
there are several solutions to our system, but the program only returns one.

The main program to exploit this is the following:

findformula1(k,N,t)=

{

my(V,nb,res);

V=allprimes(N,t); nb=#V;

forvec(L=vector(nb,j,[-1,1]),

res=findformula0(k,V,L,N,t);

if(#res,print([V,L],": ",res))

);

}

We now test this program for small N (and initially only t = 1): Writing
findformula1(2,4,1) outputs:

[[2]~, [-1]]: [-1/5]~

[[2]~, [0]]: [-1/5]~

[[2]~, [1]]: [-1/5]~

5

which simply means that the result is independent of
(
D
2

)
and recovers our

formula L(χD,−1) = (−1/5)S2(D, 4).
Writing findformula1(2,8,1) outputs:

[[2]~, [0]]: [-1]~

[[2]~, [1]]: [-1/2]~

This says that if
(
D
2

)
= 0 we have L(χD,−1) = −S2(D, 8) and if

(
D
2

)
= 1 we

have L(χD,−1) = (−1/2)S2(D, 8).
If we write findformula1(2,12,1) the output is:

[[2, 3]~, [-1, 0]]: [-2]~

[[2, 3]~, [-1, 1]]: [-1]~

[[2, 3]~, [0, 0]]: [-2]~

[[2, 3]~, [0, 1]]: [-1]~

[[2, 3]~, [1, 0]]: [-2]~

[[2, 3]~, [1, 1]]: [-1]~

This shows that the coefficients do not depend on
(
D
2

)
, and we recover what we

found above: if
(
D
3

)
= 0 we have L(χD,−1) = −2S2(D, 12), and if

(
D
3

)
= 1 we

have L(χD, 0) = −S2(D, 12).
If we write findformula1(2,16,1) the output is:

[[2]~, [1]]: [-2]~

So if
(
D
2

)
= 1 we have L(χD,−1) = −2S2(D, 12).

Trying N = 20, 24, etc... with t = 1 does not give any formula, so we must
now try t = 2. Writing findformula1(2,20,2) outputs

[[2, 5]~, [-1, 0]]: [-4/5, -2/5]~

[[2, 5]~, [-1, 1]]: [-2/5, -1/5]~

[[2, 5]~, [0, 0]]: [-8/5, -2/5]~

[[2, 5]~, [0, 1]]: [-4/5, -1/5]~

[[2, 5]~, [1, 0]]: [-12/5, -2/5]~

[[2, 5]~, [1, 1]]: [-6/5, -1/5]~

It is easy to put this into a single formula: for
(
D
5

)
= 0 or 1 we have

L(χD,−1) = −(1/5)(2−
(
D
5

)
)(S2(4D, 20) + 2(2 +

(
D
2

)
)S2(D, 20))

and so on. We can thus accumulate a large number of (experimental) formulas.
Note, however, that some of them are duplicates. For instance if you write
findformula1(2,32,2) you will obtain

[[2]~, [0]]: [0, -1]~

[[2]~, [1]]: [0, -1/2]~

but because of the 0 coefficient of S2(D, 32) and the fact that S2(4D, 32) =
S2(D, 8), these formulas are identical to those that we obtained for N = 8. Thus
we can add a little additional condition: if 16 | N and cn = 0 for all n odd, the
formula is equivalent to one for N/4, so we do not keep it. This corresponds to
adding at the end of findformula1, just before the final return, the following:

6

if (#res && N%16==0,

forstep(n=1,t,2,if(res[n],return(res)));

return([]~)

);

(the same can be done if some f2 | N/4 and cn = 0 unless f | n).

(2). (a). Since Legendre symbols are independent, the probability is easily
computed: it is the product over all primes p of the corresponding quantity.
Assume first that p > 2. Fundamental discriminants D are distributed equally
among the p2−1 nonzero residues modulo p2. For p−1 of these residues we have(

D
p

)
= 0 (i.e., p | D), and the others are equally distributed between residues

and nonresidues. Thus the respective probabilities for
(

D
p

)
= (−1, 0, 1) are

(p/(2(p+ 1)), 1/(p+ 1), p/(2(p+ 1))).
Assume now that p = 2. We must now look modulo 16: fundamental discrim-

inants are congruent to 1, 5, 8, 9, 12, and 13 modulo 16 with equal probability,
so
(
D
2

)
= (−1, 0, 1) with respective probabilities (1/3, 1/3, 1/3), which happens

to be exactly the same formula as for p > 2.

(2). (b). We must estimate the cost of computing Sk(m,N) when 4 | N .
Since we can trivially group together s and −s, this is the number of s ≤ m1/2

such that s2 ≡ m (mod N). As for probabilities, this is multiplicative, so we
may assume that N = pa for some prime p. We write m = pbm′ with p - m′. If
b ≥ a the condition is s2 ≡ 0 (mod pa), so s ≡ 0 (mod pda/2ea/2), and there are
pba/2c such values of s modulo N .

If b < a we must have vp(s) = b/2, so if b is odd the congruence is impossible.

On the other hand, if b is even we write s = pb/2s′ and the congruence is s′
2 ≡ m′

(mod pa−b).

If p > 2 we must have
(

m′

p

)
= 1, and in that case there exist exactly

2 solutions modulo p, hence modulo pa−b by Hensel’s lemma, hence always

1 +
(

m′

p

)
values of s′ modulo pa−b, hence pb(1 +

(
m′

p

)
) values of s modulo pa.

If p = 2 and a − b ≥ 3 the same argument applies: we must have m′ ≡ 1
(mod 8), in which case there are 4 solutions modulo 8, hence by Hensel’s lemma

also modulo pa−b, hence pb+1(1 +
(

m′

2

)
) values of s modulo pa.

If p = 2 and a − b = 2 we have no solutions if m′ ≡ 3 (mod 4), and 2 if
m′ ≡ 1 (mod 4), so pb(1 +

(−4
m′

)
) solutions modulo pa.

Finally, if p = 2 and a− b = 1 we have one solution, so pb solutions modulo
pa.

This analysis leads to the following program:

/* Individual cost function: given m, N, approx number of s<m^(1/2)

such that s^2=m mod N, expressed as m^{1/2}/M for some rational M,

or 0 if none exist. */

cost1(m,N)=

{

my(fa=factor(N),lipr=fa[,1],liex=fa[,2],M=1);

for(i=1,#lipr,

my(p=lipr[i],a=liex[i],b=valuation(m,p),mp=m\p^b);

if(b>=a,M*=p^(ceil(a/2));next());

7

if(b%2,return(0));

if(p>2,

if(kronecker(mp,p)==-1,return(0));

M*=p^(a-b/2)/2; next()

);

/* Here p=2 */

if(a-b>=3,M*=2^(a-b/2-2);next());

if(a-b==2,M*=2^(a-b/2-1);next());

if(a-b==1,M*=2^(a-b/2);next())

);

return (M);

}

We will apply this program to m = n2D, and since we want to express the cost
as a multiple of D1/2, we will need to divide by n the output M of this program
for the result to be of the form D1/2/M .

Now a formula for a given N and t is represented by two vectors: first the

vector P of pairs (p,
(

D
p

)
) which are requested. Note that, as the examples

above show, this vector can be shorter than the pair used by the program when
the coefficients do not depend on some of the Legendre symbols. And second,
the vector of coefficients C = (c1, . . . , ct). The only property that we need on
these coefficients is whether they are zero or nonzero, since if they vanish we of
course do not need to compute the corresponding sum.

We can thus write the following programs:

/* Given D, N, and a vector of coefficients C=(c_1,...,c_t),

determine the cost of the computation using the

corresponding formula, again in the form D^{1/2}/M.

Again return 0 if something goes wrong. */

cost2(D,N,C)=

{

my(t=#C,S=0,c);

for(n=1,t,

if(C[n],

c=cost1(n^2*D,N);

if(!c,return(0),S+=n/c)

)

);

return(1/S);

}

cost3(P,N,C)=

{

my(t=#C,ll=#P,V,L,dlist,CO,M);

V=vector(ll,i,P[i][1]); /* list of primes. */

L=vector(ll,i,P[i][2]); /* list of required Legendre symbols. */

dlist=makedlist(V,L,t);

CO=vector(#dlist,i,cost2(dlist[i],N,C));

M=vecmax(CO);

if(vecmin(CO)==M,return(M),return(0));

8

}

This program computes the cost for the t + 24 suitable discriminants. Three
things may theoretically happen. The first is that one of the cost functions
returns 0, which is an error, and shows simply that the formula is wrong. The
second is that some costs are different (and nonzero). In practice this does not
happen, but there is no reason why it shouldn’t. If this does happen, this means
that the cost depends on some extra Legendre symbols, so some additional code
must be written. The third is that all costs are equal, in which case we are
happy.

Finally, we must write a program which computes the probabilities. This is
much simpler since it depends only on the vector P of pairs (p, (D/p)):

/* Compute the probability of P among fundamental discriminants. */

prob(P)=

{

my(S=1,p);

for(i=1,#P,

p=P[i][1];

S/=2*(p+1); if(P[i][2],S*=p,S*=2)

);

return(S);

}

We now have written the necessary programs, and to present them in a
suitable manner we will simply modify the output of the basic findformula1

program as follows:

findformula2(k,N,t)=

{

my(V,nb,res);

V=allprimes(N,t); nb=#V;

forvec(L=vector(nb,j,[-1,1]),

res=findformula0(k,V,L,N,t);

if (#res,

P=vector(nb,j,[V[j],L[j]]);

print(P,": ",res,", ",[cost3(P,N,res),prob(P)])

)

);

}

We can now apply this program for successive values of N (and the smallest
t giving formulas) and make a table of results. There is of course some hand-
tayloring which must be done, first to remove useless formulas, but also to
group together similar formulas as we have done above. For instance, let us
write findformula2(2,28,2). The output is

[[2, -1], [7, 0]]: [1, -1]~, [14/3, 1/24]

[[2, -1], [7, 1]]: [1/2, -1/2]~, [7/3, 7/48]

[[2, 0], [7, 0]]: [-1, -1]~, [14/3, 1/24]

[[2, 0], [7, 1]]: [-1/2, -1/2]~, [7/3, 7/48]

9

[[2, 1], [7, 0]]: [-3, -1]~, [14/3, 1/24]

[[2, 1], [7, 1]]: [-3/2, -1/2]~, [7/3, 7/48]

When
(
D
7

)
= 0, the coefficients (cn) are clearly (−1−2

(
D
2

)
,−1) for the same

cost 14/3, and a similar simplification can be done when
(
D
7

)
= 1, so grouping

them together would read

[[7, 0]]: [-1 -2(D/2), -1]~, [14/3, 1/8]

[[7, 1]]: [-1/2 -(D/2), -1/2]~, [7/3, 7/16]

As a second example, consider the output of findformula2(2,40,2):

[[2, 0], [5, 0]]: [0, -2]~, [10, 1/18]

[[2, 0], [5, 1]]: [0, -1]~, [5, 5/36]

[[2, 1], [5, 0]]: [-2, -2]~, [5, 1/18]

[[2, 1], [5, 1]]: [-1, -1]~, [5/2, 5/36]

Consider for instance the case [[2, 1], [5, 0]]: this has cost D1/2/5 (and probability
1/18). However findformula2(2,80,2) outputs:

[[2, 1], [5, 0]]: [4/3, -16/3]~, [20/3, 1/18]

[[2, 1], [5, 1]]: [2/3, -8/3]~, [10/3, 5/36]

Here [[2, 1], [5, 0]] has cost D1/2/(20/3) (and of course the same probability),
which is smaller, so we can remove the formula obtained for N = 40. In particu-
lar, since our initial formula has cost D1/2/2 and no Legendre symbol condition,
we can remove all the formulas having larger or equal cost. For instance, in the
N = 28 example above, [[2, 0], [7, 1]] with M = 7/3 is superseded by [[2, 0]] for
N = 8 with M = 4, and [[2, 1], [7, 1]] with M = 7/3 is superseded by [[2, 1]] for
N = 16 with M = 4, so we only keep [[2,−1], [7, 1]].

In view of these remarks, and using simply the formulas obtained for N ≤ 16,
we can write the following improvement to findformula2:

/* Only for k=2. */

findformula32(N,t)=

{

my(V,nb,res);

V=allprimes(N,t); nb=#V;

forvec(L=vector(nb,j,[-1,1]),

res=findformula0(2,V,L,N,t);

if (#res,

P=vector(nb,j,[V[j],L[j]]);

c=cost3(P,N,res);

if(N>16,

if(c<=2,next());

if(L[1]>=0 && c<=4,next()); /* case (D/2)=0 or 1. */

if(V[2]==3 && L[2]==0 && c<=6,next()); /* case (D/3)=0. */

if(V[2]==3 && L[2]==1 && c<=3,next()); /* case (D/3)=1. */

);

print(P,": ",res,", ",[c,prob(P)]),

)

);

}

10

Using these programs and hand simplifications, we now construct the desired
table:

N P L(χD,−1) M prob.

4 – (−1/5) 2 1
8 (2, 0) (−1) 4 1/3

12 (3, 0) (−2) 6 1/4
12 (3, 1) (−1) 3 3/8
16 (2, 1) (−2) 4 1/3
20 (2,−1), (5, 0) (−4/5,−2/5) 10/3 1/18
28 (7, 0) (−1− 2(D/2),−1) 14/3 1/8
28 (2,−1), (7, 1) (1/2,−1/2) 7/3 7/48
36 (2, 0), (3, 1) (0,−1) 9/2 1/8
40 (2, 0), (5, 0) (0,−2) 10 1/18
40 (2, 0), (5, 1) (0,−1) 5 5/36
44 (2,−1), (11, 0) (22− 6(D/3),−8,−2)/5 11/3 1/36
52 (13, 0) (8− 12(D/2)− 6(D/3),−2,−2/3) 13/3 1/14
68 (2,−1), (17, 0) (13/2− 3(D/3),−5/4,−1,−1/4) 17/5 1/54
72 (2,−1), (3, 1) (0, 0, 0,−1/3) 9/2 1/8
76 (2,−1), (19, 0) (32− 18(D/3),−4,−6,−2)/5 19/5 1/60
80 (2,−1), (5, 0) (4/3,−16/3) 20/3 1/18
84 (3, 0), (7, 0) (10− 8(D/2),−4,−2) 7 1/32
84 (3, 1), (7, 0) (2− 4(D/2),−2,−2) 14/3 3/64
88 (2, 0), (11, 0) (16− 12(D/2),−4,−4,−2)/3 22/5 1/36
92 (2,−1), (23, 0) (5(10− 6(D/3)− (D/5)),−2,−10,−4,−1)/7 46/15 1/72

100 (2,−1), (3,−1), (5, 1) (6, 1/2,−1,−1/2) 5/2 5/96
104 (2, 0), (13, 0) (8− 6(D/3),−1,−2,−1) 26/5 1/42
120 (2,−1), (3, 1), (5, 0) (0, 0, 0,−1/3, 0,−1/3) 30/7 1/48

(3). In view of this table, a reasonable algorithm is the following:

(1) If D ≡ 0 (mod 3), L(χD,−1) = −2S2(D, 12), cost D1/2/6, happens with
probability 1/4.

(2) Otherwise, if D ≡ 4 (mod 12), L(χD,−1) = −S2(D, 9), cost D1/2/(9/2),
happens with remaining probability 1/8.

(3) Otherwise, ifD ≡ 13 (mod 24), L(χD,−1) = −S2(2D, 9)/3, costD1/2/(9/2),
happens with remaining probability 1/8.

(4) Otherwise, if D ≡ 0 (mod 4), L(χD,−1) = −S2(D, 8), cost D1/2/4, hap-
pens with remaining probability 1/8.

(5) Otherwise, if D ≡ 1 (mod 8), L(χD,−1) = −2S2(D, 16), cost D1/2/4,
happens with remaining probability 1/4.

(6) Otherwise L(χD,−1) = (−1/5)S2(D, 4), cost D1/2/2, happens with re-
maining probability 1/8.

Note that after Step 5, the next best formula is L(χD,−1) = −S2(D, 12)
when D ≡ 1 (mod 3), but the reader can check that the case D ≡ 1 (mod 3) is
already entirely covered by the preceding ones.

11

The average cost of this algorithm is

D1/2(1/24 + 1/36 + 1/36 + 1/32 + 1/16 + 1/16) = (73/288)D1/2 ≈ D1/2/3.945 ,

so it is in average approximately twice as fast as the use of the single formula
L(χD,−1) = (−1/5)S2(D, 4).

Exercise 4.
(1). As mentioned, the only formula that I have found is L(χD,−3) =

S4(D, 4) with cost D1/2/2 and probability 1.

(2). For k = 6, we can make a table analogous (but much smaller) to that
for k = 2:

N P L(χD,−5) M prob.

4 – (−24− 32(D/2),−1)/195 2/3 1
8 (2, 0) (40,−1)/3 4/3 1/3

12 (2,−1), (3, 0) (1077,−12,−1)/26 1 1/12
16 (2, 1) (128,−117)/111 4/3 1/3
20 (2,−1), (5, 0) (352− 5832(D/3), 152,−24,−2)/75 1 1/18
28 (2,−1), (7, 0) (−(19294 + 9477(D/3) + 3125(D/5)), 884,−39,−12,−1)/84 14/15 1/24
60 (2,−1), (3, 0), (5, 0) (−(65230 + 16807(D/7)), 2354, 447,−12,−19,−6,−1)/42 15/14 1/72

(we have omitted a few formulas whose gain would have been negligible).
In view of this table, a reasonable algorithm is as follows:

(1) IfD ≡ 0 (mod 4), L(χD,−5) = (40S6(D, 8)−S6(D, 2))/3, costD1/2/(4/3),
happens with probability 1/3.

(2) If D ≡ 1 (mod 8), L(χD,−5) = (128S6(D, 16) − 117S6(D, 4))/111, cost
D1/2/(4/3), happens with probability 1/3.

(3) Otherwise, ifD ≡ 21 (mod 24), L(χD,−5) = (1077S6(D, 12)−12S6(D, 3)−
S6(3D, 4))/26, cost D1/2, happens with remaining probability 1/9.

(4) Otherwise L(χD,−5) = −((24 + 32(D/2))S6(D, 4) + S6(D, 1))/195, cost
D1/2/(2/3), happens with remaining probability 2/9.

The average cost of this algorithm is

D1/2(1/4 + 1/4 + 1/9 + 1/3) = (17/18)D1/2 ≈ D1/2/1.059 · · · ,

almost 60% faster than the use of the first formula alone.

(3). For k = 8 and k = 10 we give directly the tables:

N P L(χD,−7) M prob.

4 – (−(216− 128(D/2)), 1)/153 2/3 1
12 (3, 0) (−(621 + 1536(D/2)),−12, 1)/10 1 1/4

N P L(χD,−9) M prob.

4 – (456− 512(D/2),−1)/75 2/3 1

Exercise 5.
(1). (a). We need to rewrite from scratch all the programs that we have

written for k even, but of course this will mostly be copy-paste so quite easy.

12

mysigma1(n,k=2)=

{

if(denominator(n)>1 || n<=0,return(0));

n>>=valuation(n,2); /* make n odd */

sumdiv(n,d,if(d%4==1,d^k,-d^k));

}

mysigma2(n,k=2)=

{

my(v);

if(denominator(n)>1 || n<=0,return(0));

v=valuation(n,2); n>>v; /* make n odd */

sumdiv(n,d,if(d%4==1,(n/d)^k,-(n/d)^k))<<(k*v);

}

S1(k,m,N)=sum(s=-sqrtint(m),sqrtint(m),mysigma1((m-s^2)/N,k-1));

S2(k,m,N)=sum(s=-sqrtint(m),sqrtint(m),mysigma2((m-s^2)/N,k-1));

We first check the example given in the exercise:

forstep(D=-3,-50,-1,if(isfundamental(D)&&(D%8==1),\

print1(LF(3,D)/S1(3,abs(D),2)," ")))

This indeed outputs only 1/7.

The main program to be modified is the program findformula0. Since we
restrict to the simple case where V = [2] and L = [−1], [0], or [1], the program
is a little simpler:

/* l=-1,0,or 1 */

makedlistneg(l,t)=

{

my(res=vector(24+t),ct=0);

forstep(D=-3,-oo,[-1,-3],

if(isfundamental(D) && kronecker(D,2)==l,ct++;res[ct]=D);

if(ct==24+t,break())

);

return(res);

}

findformulaneg0(k,l,N,t)=

{

my(dlist,dlist4,ld,M,B,res);

dlist=makedlistneg(l,t); ld=#dlist;

dlist4=if(l==0,dlist/4,dlist); dlist4=apply(abs,dlist4);

M=matrix(ld,2*t);

for(n=1,t,

M[,2*n-1]=vectorv(ld,i,S1(k,n^2*dlist4[i],N));

M[,2*n]=vectorv(ld,i,S2(k,n^2*dlist4[i],N));

);

B=vectorv(ld,i,LF(k,dlist[i]));

res=matinverseimage(M,B);

return(res);

}

13

When D ≡ 0 (mod 4) it is more efficient to look directly for formulas involv-
ing D/4, although these formulas would be found anyway but later, explaining
the use of the variable dlist4.

The cost function and driver program are immediate to write:

cost3neg(l,N,C)=

{

my(P=[[2,l]],lc=#C,Ceven,Codd,Meven,Modd,S);

Ceven=vector(lc\2,j,C[2*j]);

Codd=vector((lc+1)\2,j,C[2*j-1]);

Meven=if(Ceven,cost3(P,N,Ceven),0);

Modd=if(Codd,cost3(P,N,Codd),0);

S=0; if(Meven,S+=1/Meven); if(Modd,S+=1/Modd);

if(l==0,S/=2); /* since (D/4)^{1/2} instead of D^{1/2}. */

return (1/S);

}

findformulaneg2(k,N,t)=

{

my(res);

for(l=-1,1,

res=findformulaneg0(k,l,N,t);

if(#res,

print([[2,l]],": ",res,", ",cost3neg(l,N,res))

)

);

}

(1). (b). k = 3: writing findformulaneg2(3,1,1) gives three formulas with
M = 1, 2, and 1 for (D/2) = −1, 0, and 1 respectively, findformulaneg2(3,2,1)
again gives three formulas all with M = 2, and higher values of N do not give
anything useful. Thus we keep the formula with N = 1 for (D/2) = 0, and the
formulas for N = 2 for (D/2) = ±1. This gives the following:

L(χD,−2) =

S
(1)
3 (|D|, 2)

7
if D ≡ 1 (mod 8)

−S
(1)
3 (|D|, 2)

9
if D ≡ 5 (mod 8)

−S(1)
3 (|D|/4, 1) if D ≡ 0 (mod 4) .

(1). (c). k = 5: writing findformulaneg2(5,1,1) gives three formulas with
M = 1/2, 1, and 1 for (D/2) = −1, 0, and 1 respectively, findformulaneg2(5,2,1)
gives one formula for (D/2) = 1 with M = 2, and higher values of N do not
give anything useful. Thus, keeping the best formulas gives the following:

L(χD,−4) =

−S

(1)
5 (|D|, 2)

5
if D ≡ 1 (mod 8)

16S
(2)
5 (|D|, 1)− S(1)

5 (|D|, 1)

2805
if D ≡ 5 (mod 8)

16S
(2)
5 (|D|/4, 1)− S(1)

5 (|D|/4, 1)

5
if D ≡ 0 (mod 4) .

14

(1). (d). k = 7: writing findformulaneg2(7,1,2) gives three formu-
las with M = 1/2, 2/3, and 1/2 for (D/2) = −1, 0, and 1 respectively,
findformulaneg2(7,2,2) gives two formulas for (D/2) = −1 and 1, both with
M = 2/3, and higher values of N do not give anything useful. Thus, keeping
the best formulas gives the following:

L(χD,−6) =

S
(1)
7 (4|D|, 2) + 64S

(1)
7 (|D|, 2)

183
if D ≡ 1 (mod 8)

S
(1)
7 (4|D|, 2)− 64S

(1)
7 (|D|, 2)

183
if D ≡ 5 (mod 8)

S
(1)
7 (|D|, 1)− 4096S

(2)
7 (|D|/4, 1)

183
if D ≡ 0 (mod 4) .

Using the relation S
(1)
k (4|D|, 2) = S

(1)
k (|D|, 2) + S

(3)
k (|D|) for D ≡ 1 (mod 4)

proved below gives the faster formulas:

L(χD,−6) =

S
(3)
7 (|D|) + 65S

(1)
7 (|D|, 2)

183
if D ≡ 1 (mod 8)

S
(3)
7 (|D|)− 63S

(1)
7 (|D|, 2)

183
if D ≡ 5 (mod 8)

S
(1)
7 (|D|, 1)− 4096S

(2)
7 (|D|/4, 1)

183
if D ≡ 0 (mod 4) .

(1). (e). k = 9: writing findformulaneg2(9,1,2) gives three formu-
las with M = 1/4, 1/2, and 1/2 for (D/2) = −1, 0, and 1 respectively,
findformulaneg2(9,2,2) gives one formula for (D/2) = 1 with M = 2/3,
and higher values of N do not give anything useful. Thus, keeping the best

formulas and including the improvement using S
(3)
k (|D|) and S

(4)
k (|D|/4) gives

the following:

L(χD,−8) =

−257S

(3)
9 (|D|) + 65809S

(1)
9 (|D|, 2)

29085
if D ≡ 1 (mod 8)

−257S
(1)
9 (4|D|, 1)− 16912384S

(2)
9 (|D|, 1) + 272S

(1)
9 (|D|, 1)

383455485
if D ≡ 5 (mod 8)

−257S
(4)
9 (|D|/4)− 16781312S

(2)
9 (|D|/4, 1) + 17S

(1)
9 (|D|/4, 1)

29085
if D ≡ 0 (mod 4) .

(2). Assume that m is odd. We have

S
(1)
k (4m, 2) =

∑
s∈Z

σ
(1)
k−1((4m− s2)/2) ,

so s is even, and since σ
(1)
k−1(m) only depends on the odd part of m we have

S
(1)
k (4m, 2) =

∑
s∈Z
s odd

σ
(1)
k−1(m− s2) +

∑
s∈Z

s even

σ
(1)
k−1(m− s2) .

The second sum is by definition equal to S
(3)
k (m). Since m is odd, when s is

odd we have σ
(1)
k−1(m− s2) = σ

(1)
k−1((m− s2)/2), so we obtain finally

S
(1)
k (4m, 2) = S

(1)
k (m, 2) + S

(3)
k (m) .

15

Let us look at the costs. Using the initial formula S
(1)
k (4|D|, 2) =

∑
s∈Z σ

(1)
k−1(|D|−

s2) requires |D|1/2 terms. Using the formula that we have just proved and the

fact that S
(1)
k (|D|, 2) has already been computed, the cost is that of S

(3)
k (|D|) =∑

s∈Z σ
(1)
k−1(|D| − 4s2), which requires |D|1/2/2 terms.

(3). We clearly have

S
(1)
k (4m, 1) = S

(4)
k (m) +

∑
s∈Z

σ
(1)
k−1(m− s2) = S

(4)
k (m) + S

(1)
k (m, 1) .

Applying this to m = |D|/4, the initial formula requires |D|1/2 terms, while

using this formula and the fact that S
(1)
k (|D|/4, 1) has already been computed

requires only |D|1/2/2 terms.

16

