
Modular Forms Project: Computing Expansions

at Cusps

Henri Cohen,
Université de Bordeaux, Institut de Mathématiques de Bordeaux,
351 Cours de la Libération, 33405 TALENCE Cedex, FRANCE

July 8, 2018

1 Answers and Programs

Exercise 1.

(1). Let as usual T = (1 1
0 1). If γ = (A B

C D) ∈ Γ, we compute that

γTmγ−1 =

(
1−mAC mA2

−mC2 1 +mAC

)
.

This belongs to Γ0(N) if and only if N | mC2, hence if and only if w0 | m with
w0 = N/ gcd(C2, N). Since F ∈ Mk(Γ0(N), χ), we thus have F |kγTw0nγ−1 =
χ(1 +ACw0n)F , or

(F |kγ)(τ + w0n) = χ(1 +ACw0n)(F |kγ)(τ) .

If we choose n = H = w1/w0, we note that

1 +ACw0n = 1 +ACw1 = 1 +A(C/ gcd(C,N))N ≡ 1 (mod N) ,

so χ(1 +ACw0n) = 1 and (F |kγ)(τ + w1) = (F |kγ)(τ).

(2). It follows from the trivial equality (γTw0γ−1)n = (γTw0nγ−1) that for
all n we have χ(1+ACw0n) = χ(1+ACw0)n. Applying this to n = H = w1/w0

shows that χ(1 + ACw0) is an Hth root of unity, hence uniquely of the form
e2πiα/H for some integer α such that 0 ≤ α < H. It is clear that if H = 1 we
have α = 0, but also if χ is a trivial character.

(3). If we change τ into τ +w0 in the expansion of F |kγ we have on the one
hand

(F |kγ)(τ + w0) =
∑
n≥0

aγ(n)e2πin/Hqn/w1 ,

and on the other hand

(F |kγ)(τ + w0) = e2πiα/HF |kγ(τ) .

Identifying coefficients of qn/w1 gives

aγ(n)(e2πin/H − e2πiα/H) = 0 ,

1

which is equivalent to aγ(n) = 0 when n 6≡ α (mod H). It follows that we can
write

(F |γ)(τ) = qα/w1

∑
n≥0

b(n)qn/w0

with b(n) = aγ(nH + α).

Exercise 2.
(1). Multiplying by a common denominator M of A, B, C, and D, we

can assume that γ ∈ M+
2 (Z) (we will simply divide the triangular matrix by

M at the end). We want to find δ = (U V
W X) ∈ Γ and a, b, and d such that

γ = δ
(
a b
0 d

)
. This implies first that Ua = A and Wa = C, and since U and

W must be coprime, up to sign this has the only solution a = g := gcd(A,C),
U = A/g, W = C/g.

Thus U and W are indeed coprime, hence by Euclid there exist (nonunique)
V and X such that UX − VW = 1. The other condition to be verified is
δ(b, d)t = (B,D)t, and since δ ∈ Γ this gives(

b
d

)
=

(
X −V
−W U

)(
B
D

)
,

in other words b = BX −DV , d = DU −BW = (AD −BC)/g.
This last equality shows that d does not depend on the choice of V and X

(which is trivial since the determinant of the triangular matrix must be equal
to AD−BC), so only b does. If (V,X) is changed into (V +λU,X +λW) then
b is changed into b+ λ(BW −DU) = b− λd, hence

(
a b
0 d

)
into T−λ (a b

0 d

)
and δ

into δTλ.
As mentioned above, we finish by dividing a, b, and d by M .

(2) The matrix
(
a b
0 d

)
corresponds to the Möbius transformation (aτ+b)/d =

(a/d)τ + (b/d). Thus, if G := F |kδ =
∑
n≥0 aδ(n)qn/w1 we have

G(τ + b/d) =
∑
n≥0

aδ(n)e2πi(b/d)n/w1qn/w1 ,

hence
G((a/d)τ + b/d) =

∑
n≥0

aδ(n)e2πi(b/d)n/w1qan/(dw1) .

Exercise 3.
(1). Note that Pari/GP already has a built-in command mfslashexpansion

to compute F |kγ. Of course we want to implement Collins’s algorithm, so we
do not want to use Pari/GP’s command. However, handling general Dirich-
let characters, although not difficult is slightly tedious, so we will simply use
mfslashexpansion to compute the integer α such that 0 ≤ α < H which is
needed in the expansions, which is not really cheating. We could of course
also restrict the algorithm to the known cases where α = 0, i.e., χ trivial or
H = gcd(C2, N)/ gcd(C,N) = 1.

A possible program is as follows:

/* Collins’s algorithm for cusp expansions. */

collins(mf,F,ga,K0,G0=1)=

2

{

my(N,k,A,B,C,D,E,K,G,L,w0,w1,H,al,T,im);

my(Y,S,Q,R,M,MS,X);

[N,k]=mfparams(mf); [A,C]=ga[,1]; [B,D]=ga[,2];

E=bitprecision(1.)*0.69315;

if (K0*G0<E,G=G0;K=ceil(E/G),K=K0;G=E/K);

L=2*K; w0=N/gcd(C*C,N); w1=N/gcd(C,N); H=w1/w0;

mfslashexpansion(mf,F,ga,0,0,¶ms); al=params[1]*w1;

/* only used to compute alpha. */

T=vector(L); /* vector of random tau’s. */

im=G*w0*I/(2*Pi); /* desired imaginary part */

for (i=1,L,T[i]=(random(1.)-1/2)*w0+im-D/C);

/* random real parts in the interval [-D/C-w0/2,-D/C+w0/2]. */

Y=vectorv(L,i,(C*T[i]+D)^(-k)*mfeval(mf,F,(A*T[i]+B)/(C*T[i]+D)));

S=vector(L,i,exp(2*Pi*I*T[i]/w1));

Q=vector(L,i,S[i]^H); R=vector(L,i,S[i]^al);

M=matrix(L,K,i,j,R[i]*Q[i]^(j-1));

MS=conj(M~); X=matsolve(MS*M,MS*Y);

X[1..K0];

}

In the above program there is an additional cheat: we use the Pari/GP

function mfeval instead of computing sufficiently many terms of the Fourier
expansion of F at infinity and summing the corresponding series.

(2). For E4 we can simply write

E4=mfEk(4); mf=mfinit(E4);

C=collins(mf,E4,[0,-1;1,0],20)

CI=bestappr(C,10^4)

CI~==mfcoefs(E4,19)

norml2(C-CI)

We first obtain some complex numbers which are clearly close to rational
numbers (in fact to integers here). We then compute the best rational approx-
imations to these complex numbers with denominator less than 104, and we
recognize the coefficients of E4, which we can check without reading all coeffi-
cients by the command CI~==mfcoefs(E4,19) (note that CI is a column vector,
so that it must be transposed, and that mfcoefs(F,L) gives coefficients a(0) up
to a(L), so to obtain 20 coefficients we must choose L = 19).

Finally, to check how close the least squares approximation was, we compute
the square of the L2 norm of the difference of C and CI (note that contrary
to what its name could imply, the norml2 command gives the square of the
L2 norm). We obtain 1.076 · · ·E − 45, so the values of the coefficients have
approximately 22 correct decimal digits, the computation being done with the
default accuracy of 38.

A similar program (replacing the first line by D=mfDelta(); mf=mfinit(D,1);

) also gives correct results, but since the weight is much larger, we only obtain
20 correct decimal digits.

(3). (a). To initialize the computation, as required we first write:

3

mf=mfinit([6,4],0); F=mfeigenbasis(mf)[1];

ga=[1,-1;3,-2]; CF=mfcoefs(F,19)

C=collins(mf,F,ga,20);

CI=bestappr(C,10^4)

CI~==CF/4

norml2(C-CI)

which first outputs
[0, 1, -2, -3, 4, 6, 6, -16, -8, 9, -12, 12, -12, 38, 32, -18, 16, -126, -18, 20]
as the first 20 Fourier coefficients of F , then the complex numbers computed

by the program are approximated by
[0, 1/4, -1/2, -3/4, 1, 3/2, 3/2, -4, -2, 9/4, -3, 3, -3, 19/2, 8, -9/2, 4, -63/2,

-9/2, 5]
The next command checks that this is indeed 1/4 times the coefficients of F ,

and the last command (which outputs 7.088E − 58) shows that the algorithm
gives values which are correct to 29 decimal digits.

(3). (b). To check the eta product without too much using Pari/GP’s func-
tionalities, the simplest is to do as follows:

G=mffrometaquo([1,2;2,2;3,2;6,2]); par=mfparams(G)[1..2]

st=mfsturm(par)

mfcoefs(F,st)==mfcoefs(G,st)

The first line outputs [6, 4], which tells us that G ∈M4(Γ0(6)), the second
line gives the sturm bound, here 5, and the last command checks that the first
st+1 (counting the constant term) coefficients of F and G are equal, thus proving
that F = G. The shorter Pari/GP command mfisequal(F,G) does exactly that.

(3). (c). The builtin mfslashexpansion(mf,F,ga,19,1) command outputs
[0, 1/4, -1/2, -3/4, 1, 3/2, 3/2, -4, -2, 9/4, -3, 3, -3, 19/2, 8, -9/2, 4, -63/2,

-9/2, 5]
equal to what we found above.

(4). We write the following simple programs:

tstg(G0)=my(C=collins(mf,F,ga,20,G0)); norml2(C-bestappr(C,10^4));

LG=[1/2,1,2,3,4];

for(i=1,5,\

gettime(); er=tstg(LG[i]); r=gettime();\

print(LG[i],": ",er," (time = ",r,")"));

This outputs:

1/2: 4.732342396833962897 E-64 (time = 6757)

1: 2.763570679490571905 E-57 (time = 945)

2: 2.1521231746487435604 E-44 (time = 232)

3: 2.1359265017258375511475323561759823231 E-28 (time = 132)

4: 1.2676095444665378389804436912111348768 E-12 (time = 64)

This output shows the (logical) fact that as G0 increases the time becomes
considerably shorter, but the accuracy considerably worse (only 6 correct deci-
mal digits for G0 = 4).

(5). (a). As required, we write

4

mf=mfinit([27,4],0); F=mfeigenbasis(mf)[2];

ga=[1,-1;3,-2]; CF=mfcoefs(F,19)

C=collins(mf,F,ga,20);

The Fourier coefficients of F are thus
[0, 1, -3, 0, 1, -15, 0, -25, 21, 0, 45, 15, 0, 20, 75, 0, -71, -72, 0, 2]
We do not print the output of the collins command since they are compli-

cated complex numbers. Instead, as suggested we write the following programs
which generalises the bestappr function to cyclotomic fields by using lindep

instead:

/* Find z in $\Q(e^{2\pi i/N})$. */

cycloapprox(z,N)=

{

my(pn=eulerphi(N)-1,P=powers(exp(2*I*Pi/N),pn),T);

T=powers(t,pn);

L=lindep(concat(-z,P));

return (T*(L[2..#L]/L[1]));

}

cyclovecapprox(V,N)=apply(z->cycloapprox(z,N),V);

If we execute cyclovecapprox(C,9), we obtain

[0, -1/9*t^4, -1/3*t^5 - 1/3*t^2, 0, 1/9*t^4 + 1/9*t, 5/3*t^2,\

0, 25/9*t, -7/3*t^5, 0, -5*t^4, 5/3*t^5 + 5/3*t^2, 0,\

20/9*t^4 + 20/9*t, -25/3*t^2, 0, 71/9*t, 8*t^5, 0, -2/9*t^4]

(output edited for clarity), where in the above t is to be interpreted as e2πi/9.
In fact, since t3 + 1 = −t6, it is easy to see that all the coefficients are rational
multiples of 9th roots of unity.

(5). (b). Here we must write a generalization of the program given in the
previous question. For this, we simply replace the tstg program by:

tstg(G0)=

{

my(C=collins(mf,F,ga,20,G0));

CI=cyclovecapprox(C,9);

norml2(C-subst(CI,t,exp(2*Pi*I/9)));

}

and the rest is the same. The output will now be

1/2: 8.111206046459227532 E-64 (time = 10292)

1: 1.7354873000414302779 E-57 (time = 2689)

2: 3.3933846210407921667 E-46 (time = 828)

3: 1.6704210168908523895065512908299597748 E-46 (time = 585)

4: 1.4631342795842769204704557109803552715 E-45 (time = 617)

Here there is much less loss of accuracy when G0 increases.

(5). (c). Typing CJ=mfslashexpansion(mf,F,ga,19,1) of course gives the
same expansion, except that the coefficients are expressed as POLMODS in the
field defined by t6 + t3 + 1 = 0, i.e., the ninth cyclotomic field, so to obtain
exactly the same output one simply writes lift(CJ).

5

