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Monday:
e Random environments and random graphs
e Homogenization results for a random walk
Thursday:
e The symmetric simple exclusion process
e Hydrodynamic limit

e Examples
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Transport in disordered media

Target: Large scale limits to study transport in disordered media.

random jump rates of the interacting particles

Disorder: ] )
random microscopic geometry
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Environment w

e w: environment, modeling the disordered medium and describing
all sources of microscopic randomness

e weQ (02, F,P) probability space

e Particles will lie on the vertexes of a random weighted graph
G(w). Much studied cases:
° Zd;
e supercritical percolation cluster in Z<;

with random weights (conductances).
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The random weighted graph G(w)
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Simple point process w

We fix a simple point process, i.e.

Q3w & € { locally finite subsets of R?}

Alessandra Faggionato



Simple point process: examples
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Conductance field

We fix a conductance field

c: QX RIX RS (w,2,y) = cpy(w) € [0, +00)

° > Cry(w) = cya(w)
e Relevant values are for x # y in @

® ¢;y(w) is called conductance of the pair {z,y}
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Weighted edges of G(w)

e { vertexes of G(w) } :==w

o {edges of G(w) } :=={{z,y} : x#yinw, cyy(w) >0}
e weight of the edge {z,y} := conductance ¢, ,(w)




Statistical homogeneity and ergodicity of the

medium

e We deal with media which are

disordered at microscopic level,

homogeneous at macroscopic level.

e To formalize that, we need another MAIN INGREDIENT:
Group G=R?, Z? acting on
e the Euclidean space R?
e the probability space (2, F,P)
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Action of G on the Euclidean space R?

° (Tg)geG y Tg ! R?% — R? translation
e Just for simplicity, here: 7,0 = x + g

e In general, 7yo = x + Vg with V invertible d x d matrix

General case with G = Z%: relevant for graphs built on crystal lattices

\ V7S

In this case V = [vi|vo] and 7pz =2 + Vg =z + g1v1 + g2V
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Action of G on the probability space (2, F,P)

e Action of G on the probability space: (HQ)QGG,
0, : 2= Q, 6g=1, 0,00, =0,,, forall g,¢ €G

e Paradigm: 0,w describes the updated environment when we
perform a translation 7_g4 on the medium.

e When we make a translation on the Euclidean space, we
assume to move accordingly also all sources of
microscopic randomness (slot machines, coins, dice,
roulette wheels,...) attached to the Euclidean space.
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Example: Mott variable range hopping

o w={(z,E)}, 0= {z}
Cow(w) = exp { — [z = y| = BUE] + By + |E, — By)}.

G(w): complete graph on w with weights ¢, ,(w).

Warning: figure is with |&| < 400 but in the modelization
0| = +oo.
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Example: Mott variable range hopping

w={(z,Ey)}, ©={x}.
G =R¢, TgT := T + g.

Recall: Oyw describes the updated environment when we perform
a translation 7_g4 on the medium.

Ogw = {(T—g, E;)}
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Action of G on the probability space (2, F,P)

e Paradigm: ¢,w describes the updated environment when we
perform a translation 7_, on the medium.

e This is formalized by assuming some simple covariant
relations between the two G—actions:

Forallwe Q, g € G and z,y € @, it holds
9/9-(’\‘} = T*Q(L:)) )
Cr_yzrgy(Bgw) = o y(w).

Equivalently: For all w € Q, g € G

G(Ogw) = 174G (w) as weighted graphs .
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Stationarity and ergodicity

e P is called G-stationarity if P(0,A) = P(A) for all A € F,
g eG.

e Ac Fis called G-invariant if ;4 = A Vg € G.
e P is called G-ergodic if P(A) € {0,1} for all G-invariant A € F.
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Assumptions (Al),..,(A4)

(A1) P is G-stationary G-and ergodic;
(A2) mean density m of @ is finite and positive;
(A3) covariant relations for the two G—actions;

(A4) for P-a.a. w the weighted graph G(w) is connected [it can be
relaxed].

e G-stationarity in (A1) formalizes that the medium is
macroscopically homogeneous (from a statistical viewpoint)

e m =limy_, % P—-a.s.

e It must be P(|w| = +o0) = 1.
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Examples
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Palm distribution

To simplify our formulas:

(i) Tgr=2x+y,
(ii) if G = Z%, then & C Z4

e Py: Palm distribution associated to P and the simple point
process

Po:=P(0cw)|
e When G = R?, P(0 € &) = 0 and one deals with regular
conditional probabilities as in [DV].

[DV] D.J. Daley, D. Vere-Jones; An Introduction to the Theory of Point
Processes.
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Palm distribution and ergodicity

Po is related to ergodicity:
: 1
g > [(0) = / dPo(w)f(w)  P-as.

zeLN[—L,0)¢
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From now we suppose that Assumptions (A1), (A2), (A3), (A4) are
satisfied without further mention
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Random walk of a single particle

e Convention: ¢, ,(w) =0

¢ Random conductance model on G(w): continuous-time
random walk (X[”);>0 on @ with jump rates ¢, ,(w).

e It waits at x an exponential random time of parameter
cz(W) == > cp Coy(w), afterwards it jumps to y € & with
probability 70217?50“;)

e It is well defined if ¢, (w) < +oo for all x € & and a.s. it has no
explosion.
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Stochastic homogenization

e Py=Palm distribution associated to P. Roughly, Py = P(-|0 € @)
o N\p(w) =2, co0(w)|z|? for w with 0 €

Fact: \g € L'(Py) = the rw (X{);>0 is well defined for P-a.a. w.

Theorem (A.F. arXiv:2009.08258, to appear on AIHP)

If Mo, A2 € LY(Py), then P-a.s. we have homogenization for the
massive Poisson equation yu. — L u. = f. towards
yu—V - DVu = f, where L, is the generator of (eX*,,)i>0-

e massive =y > 0
e D = effective homogenized matrix

e The above result implies several weak forms of CLT
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Stochastic homogenization

o = 1Y, b

e lim. g pg, = mdx P-a.s.

e Given f. € L?(p5,), M. € L2(1g) s.b. yue — Liu. = f-

e Given f € L?(mdx), 3w € L*(mdz) s.t. yu — V- DVu = f

Homogenization:

fe=>f = u:—u
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Effective homogenized matrix

Definition

We define the effective homogenized matrix D as the d x d
nonnegative symmetric matrix such that, for all a € R¢,

a-Da= feLigof(Po) % /dpo(w) Z co,z(w) (a-z—Vf(w, ff))2 )

TEW

where V f(w, x) := f(O,w) — f(w).

e D is well defined since Ao € L'(P)

e D can be degenerate and non zero.
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Weak forms of CLT

For P-a.a. w

hmadZ| — P f(x )‘

TEEW

ISR 3 w
e P;,: Markov semigroup of eX? ,,

e P,;: Markov semigroup of limiting process, i.e. BM with diffusion
matrix 2D

For P-a.a. w,

hme D RS, f(z) = Raf(z)] =

TEEW

e RY by R)\ resolvents,
o R\ foo e’)‘tPE Jdt, Ryf = fooo e NP, fdt



