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Plan

Monday:

• Random environments and random graphs

• Homogenization results for a random walk

Thursday:

• The symmetric simple exclusion process

• Hydrodynamic limit

• Examples
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Transport in disordered media

Target: Large scale limits to study transport in disordered media.

Disorder:

{
random jump rates of the interacting particles

random microscopic geometry
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Environment ω

• ω: environment, modeling the disordered medium and describing
all sources of microscopic randomness

• ω ∈ Ω, (Ω,F ,P) probability space

• Particles will lie on the vertexes of a random weighted graph
G(ω). Much studied cases:

• Zd;
• supercritical percolation cluster in Zd;

with random weights (conductances).
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The random weighted graph G(ω)
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Simple point process ω̂

We fix a simple point process, i.e.

Ω 3 ω 7→ ω̂ ∈ { locally finite subsets of Rd }
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Simple point process: examples
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Conductance field

We fix a conductance field

c : Ω× Rd × Rd 3 (ω, x, y) 7→ cx,y(ω) ∈ [0,+∞)

• B cx,y(ω) = cy,x(ω)

• Relevant values are for x 6= y in ω̂

• cx,y(ω) is called conductance of the pair {x, y}
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Weighted edges of G(ω)

• { vertexes of G(ω) } := ω̂

• {edges of G(ω) } := { {x, y} : x 6= y in ω̂ , cx,y(ω) > 0 }
• weight of the edge {x, y} := conductance cx,y(ω)
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Statistical homogeneity and ergodicity of the
medium

• We deal with media which are

disordered at microscopic level ,

homogeneous at macroscopic level .

• To formalize that, we need another MAIN INGREDIENT:
Group G= Rd, Zd acting on

• the Euclidean space Rd

• the probability space (Ω,F ,P)
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Action of G on the Euclidean space Rd

• (τg)g∈G , τg : Rd → Rd translation

• Just for simplicity, here: τgx = x+ g

• In general, τgx = x+ V g with V invertible d× d matrix

General case with G = Zd: relevant for graphs built on crystal lattices

In this case V = [v1|v2] and τgx = x+ V g = x+ g1v1 + g2v2
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Action of G on the probability space (Ω,F ,P)

• Action of G on the probability space: (θg)g∈G,

θg : Ω→ Ω , θ0 = 1 , θg ◦ θg′ = θg+g′ for all g, g′ ∈ G

• Paradigm: θgω describes the updated environment when we
perform a translation τ−g on the medium.

• When we make a translation on the Euclidean space, we
assume to move accordingly also all sources of
microscopic randomness (slot machines, coins, dice,
roulette wheels,...) attached to the Euclidean space.
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Example: Mott variable range hopping

• ω = {(x,Ex)}, ω̂ = {x}.

• cx,y(ω) := exp
{
− |x− y| − β(|Ex|+ |Ey|+ |Ex − Ey|)

}
.

• G(ω): complete graph on ω̂ with weights cx,y(ω).

• Warning: figure is with |ω̂| < +∞ but in the modelization
|ω̂| = +∞.
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Example: Mott variable range hopping

• ω = {(x,Ex)}, ω̂ = {x}.

• G = Rd, τgx := x+ g.

• Recall: θgω describes the updated environment when we perform
a translation τ−g on the medium.

• θgω := {(τ−gx,Ex)}
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Action of G on the probability space (Ω,F ,P)

• Paradigm: θgω describes the updated environment when we
perform a translation τ−g on the medium.

• This is formalized by assuming some simple covariant
relations between the two G–actions:

For all ω ∈ Ω, g ∈ G and x, y ∈ ω̂, it holds

θ̂gω = τ−g(ω̂) ,

cτ−gx,τ−gy(θgω) = cx,y(ω) .

Equivalently: For all ω ∈ Ω, g ∈ G

G(θgω) = τ−gG(ω) as weighted graphs .
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Stationarity and ergodicity

• P is called G–stationarity if P(θgA) = P(A) for all A ∈ F ,
g ∈ G.

• A ∈ F is called G–invariant if θgA = A ∀g ∈ G.

• P is called G–ergodic if P(A) ∈ {0, 1} for all G–invariant A ∈ F .
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Assumptions (A1),..,(A4)

(A1) P is G-stationary G-and ergodic;

(A2) mean density m of ω̂ is finite and positive;

(A3) covariant relations for the two G–actions;

(A4) for P–a.a. ω the weighted graph G(ω) is connected [it can be
relaxed].

• G-stationarity in (A1) formalizes that the medium is
macroscopically homogeneous (from a statistical viewpoint)

• m = lim`→+∞
](ω̂∩[−`,`]d)

(2`)d
P–a.s.

• It must be P(|ω̂| = +∞) = 1.
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Examples
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Palm distribution

To simplify our formulas:{
(i) τgx = x+ g,

(ii) if G = Zd, then ω̂ ⊂ Zd

• P0: Palm distribution associated to P and the simple point
process

• P0 := P(·|0 ∈ ω̂)

• When G = Rd, P(0 ∈ ω̂) = 0 and one deals with regular
conditional probabilities as in [DV].

[DV] D.J. Daley, D. Vere-Jones; An Introduction to the Theory of Point
Processes.
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Palm distribution and ergodicity

P0 is related to ergodicity:

lim
`↑∞

1

m(2`)d

∑
x∈ω̂∩[−`,`]d

f(θxω) =

∫
dP0(ω)f(ω) P–a.s.
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Warning

From now we suppose that Assumptions (A1), (A2), (A3), (A4) are
satisfied without further mention
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Random walk of a single particle

• Convention: cx,x(ω) = 0

• Random conductance model on G(ω): continuous-time
random walk (Xω

t )t≥0 on ω̂ with jump rates cx,y(ω).

• It waits at x an exponential random time of parameter
cx(ω) :=

∑
y∈ω̂ cx,y(ω), afterwards it jumps to y ∈ ω̂ with

probability
cx,y(ω)
cx(ω)

.

• It is well defined if cx(ω) < +∞ for all x ∈ ω̂ and a.s. it has no
explosion.
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Stochastic homogenization

• P0=Palm distribution associated to P. Roughly, P0 = P(·|0 ∈ ω̂)

• λk(ω) :=
∑

x∈ω̂ c0,x(ω)|x|k for ω with 0 ∈ ω̂

Fact: λ0 ∈ L1(P0) =⇒ the rw (Xω
t )t≥0 is well defined for P–a.a. ω.

Theorem (A.F. arXiv:2009.08258, to appear on AIHP)

If λ0, λ2 ∈ L1(P0), then P–a.s. we have homogenization for the
massive Poisson equation γuε − Lεωuε = fε towards
γu−∇ ·D∇u = f , where Lεω is the generator of (εXω

ε−2t)t≥0.

• massive = γ > 0

• D = effective homogenized matrix

• The above result implies several weak forms of CLT

Alessandra Faggionato Hydrodynamic limit of symmetric simple exclusion processes with random conductances on point processes - I



Stochastic homogenization

• µεω := εd
∑

x∈ω̂ δεx

• limε↓0 µ
ε
ω = mdx P-a.s.

• Given fε ∈ L2(µεω), ∃!uε ∈ L2(µεω) s.t. γuε − Lεωuε = fε

• Given f ∈ L2(mdx), ∃!u ∈ L2(mdx) s.t. γu−∇ ·D∇u = f

Homogenization:

fε → f =⇒ uε → u
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Effective homogenized matrix

Definition

We define the effective homogenized matrix D as the d× d
nonnegative symmetric matrix such that, for all a ∈ Rd,

a ·Da = inf
f∈L∞(P0)

1

2

∫
dP0(ω)

∑
x∈ω̂

c0,x(ω) (a · x−∇f(ω, x))2 ,

where ∇f(ω, x) := f(θxω)− f(ω).

• D is well defined since λ2 ∈ L1(P0)
• D can be degenerate and non zero.
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Weak forms of CLT

For P–a.a. ω

lim
ε↓0

εd
∑
x∈εω̂

∣∣P εω,tf(x)− Ptf(x)
∣∣ = 0 .

• P εω,t: Markov semigroup of εXω
ε−2t

• Pt: Markov semigroup of limiting process, i.e. BM with diffusion
matrix 2D

For P–a.a. ω,

lim
ε↓0

εd
∑
x∈εω̂

∣∣Rεω,λf(x)−Rλf(x)
∣∣ = 0 .

• Rεω,λ, Rλ resolvents,

• Rεω,λf =
∫∞
0 e−λtP εω,tfdt, Rλf =

∫∞
0 e−λtPtfdt
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