Hydrodynamic limit of symmetric simple exclusion processes with random conductances on point processes - I

Alessandra Faggionato

University La Sapienza - Rome

Plan

Monday:

- Random environments and random graphs
- Homogenization results for a random walk

Thursday:

- The symmetric simple exclusion process
- Hydrodynamic limit
- Examples

Transport in disordered media

Target: Large scale limits to study transport in disordered media.Disorder: { random jump rates of the interacting particles random microscopic geometry

< □ > < @ > < ⊇ > < ⊇ > < ⊇

Environment ω

- ω : environment, modeling the disordered medium and describing all sources of microscopic randomness
- $\omega \in \Omega$, $(\Omega, \mathcal{F}, \mathcal{P})$ probability space
- Particles will lie on the vertexes of a random weighted graph $\mathcal{G}(\omega)$. Much studied cases:

(□) (@) (E) (E) E

- \mathbb{Z}^d ;
- supercritical percolation cluster in \mathbb{Z}^d ;

with random weights (conductances).

The random weighted graph $\mathcal{G}(\omega)$

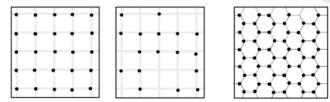
Simple point process $\hat{\omega}$

We fix a simple point process, i.e.

 $\Omega \ni \omega \mapsto \hat{\omega} \in \{ \text{ locally finite subsets of } \mathbb{R}^d \}$

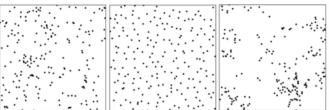
Alessandra Faggionato

Simple point process: examples



sites of Z²

site percolation



POISSON POINT PROCESS PERMANENTAL POINT PROCESS DETERMINANTAL POINT PROCESS

Conductance field

We fix a **conductance field**

 $c: \Omega \times \mathbb{R}^d \times \mathbb{R}^d \ni (\omega, x, y) \mapsto c_{x,y}(\omega) \in [0, +\infty)$

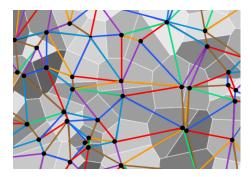
A D > A B > A B > A B > B A

•
$$\triangleright c_{x,y}(\omega) = c_{y,x}(\omega)$$

- Relevant values are for $x \neq y$ in $\hat{\omega}$
- $c_{x,y}(\omega)$ is called **conductance** of the pair $\{x, y\}$

Weighted edges of $\mathcal{G}(\omega)$

- { vertexes of $\mathcal{G}(\omega)$ } := $\hat{\omega}$
- {edges of $\mathcal{G}(\omega)$ } := { {x, y : $x \neq y$ in $\hat{\omega}, c_{x,y}(\omega) > 0$ }
- weight of the edge $\{x, y\} :=$ conductance $c_{x,y}(\omega)$



Statistical homogeneity and ergodicity of the medium

• We deal with media which are

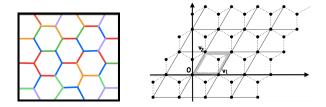
disordered at microscopic level, homogeneous at macroscopic level.

- To formalize that, we need another MAIN INGREDIENT: Group G= ℝ^d, Z^d acting on
 - the Euclidean space \mathbb{R}^d
 - the probability space $(\Omega, \mathcal{F}, \mathcal{P})$

Action of \mathbb{G} on the Euclidean space \mathbb{R}^d

- $(\tau_g)_{g \in \mathbb{G}}$, $\tau_g : \mathbb{R}^d \to \mathbb{R}^d$ translation
- Just for simplicity, <u>here</u>: $\tau_g x = x + g$
- In general, $\tau_g x = x + Vg$ with V invertible $d \times d$ matrix

General case with $\mathbb{G} = \mathbb{Z}^d$: relevant for graphs built on crystal lattices



In this case $V = [\mathbf{v}_1 | \mathbf{v}_2]$ and $\tau_g x = x + Vg = x + g_1 \mathbf{v}_1 + g_2 \mathbf{v}_2$

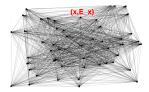
Action of \mathbb{G} on the probability space $(\Omega, \mathcal{F}, \mathcal{P})$

• Action of \mathbb{G} on the probability space: $(\theta_g)_{g \in \mathbb{G}}$,

 $\theta_g:\Omega\to\Omega\,,\ \ \theta_0=\mathbbm{1}\,,\ \ \theta_g\circ\theta_{g'}=\theta_{g+g'}\ \text{for all}\ g,g'\in\mathbb{G}$

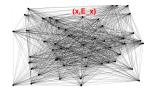
- **Paradigm**: $\theta_g \omega$ describes the updated environment when we perform a translation τ_{-q} on the medium.
- When we make a translation on the Euclidean space, we assume to move accordingly also all sources of microscopic randomness (slot machines, coins, dice, roulette wheels,...) attached to the Euclidean space.

Example: Mott variable range hopping



- $\omega = \{(x, E_x)\}, \hat{\omega} = \{x\}.$
- $c_{x,y}(\omega) := \exp\left\{-|x-y| \beta(|E_x|+|E_y|+|E_x-E_y|)\right\}.$
- $\mathcal{G}(\omega)$: complete graph on $\hat{\omega}$ with weights $c_{x,y}(\omega)$.
- Warning: figure is with $|\hat{\omega}| < +\infty$ but in the modelization $|\hat{\omega}| = +\infty$.

Example: Mott variable range hopping



- $\omega = \{(x, E_x)\}, \hat{\omega} = \{x\}.$
- $\mathbb{G} = \mathbb{R}^d, \, \tau_g x := x + g.$
- Recall: $\theta_g \omega$ describes the updated environment when we perform a translation τ_{-q} on the medium.

• $\theta_g \omega := \{(\tau_{-g} x, E_x)\}$

Action of \mathbb{G} on the probability space $(\Omega, \mathcal{F}, \mathcal{P})$

- **Paradigm**: $\theta_g \omega$ describes the updated environment when we perform a translation τ_{-q} on the medium.
- This is formalized by assuming some simple covariant relations between the two **G**-actions:

For all $\omega \in \Omega$, $g \in \mathbb{G}$ and $x, y \in \widehat{\omega}$, it holds

$$\begin{split} \widehat{\theta_g \omega} &= \tau_{-g}(\hat{\omega}) \,, \\ c_{\tau_{-g} x, \tau_{-g} y}(\theta_g \omega) &= c_{x,y}(\omega) \,. \end{split}$$

Equivalently: For all $\omega \in \Omega$, $g \in \mathbb{G}$

 $\mathcal{G}(\theta_g \omega) = \tau_{-g} \mathcal{G}(\omega)$ as weighted graphs.

Stationarity and ergodicity

- \mathcal{P} is called \mathbb{G} -stationarity if $\mathcal{P}(\theta_g A) = \mathcal{P}(A)$ for all $A \in \mathcal{F}$, $g \in \mathbb{G}$.
- $A \in \mathcal{F}$ is called \mathbb{G} -invariant if $\theta_g A = A \ \forall g \in \mathbb{G}$.
- \mathcal{P} is called \mathbb{G} -ergodic if $\mathcal{P}(A) \in \{0,1\}$ for all \mathbb{G} -invariant $A \in \mathcal{F}$.

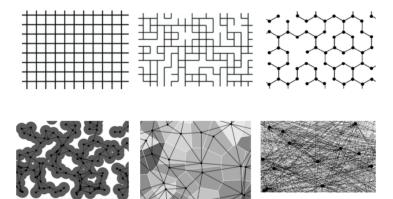
▲日 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▲

Assumptions (A1),...,(A4)

- (A1) \mathcal{P} is \mathbb{G} -stationary \mathbb{G} -and ergodic;
- (A2) mean density m of $\hat{\omega}$ is finite and positive;
- (A3) covariant relations for the two \mathbb{G} -actions;
- (A4) for \mathcal{P} -a.a. ω the weighted graph $\mathcal{G}(\omega)$ is connected [it can be relaxed].
 - G-stationarity in (A1) formalizes that the medium is macroscopically homogeneous (from a statistical viewpoint)

- $m = \lim_{\ell \to +\infty} \frac{\sharp(\hat{\omega} \cap [-\ell, \ell]^d)}{(2\ell)^d} \mathcal{P}$ -a.s.
- It must be $\mathcal{P}(|\hat{\omega}| = +\infty) = 1$.

Examples



Palm distribution

To simplify our formulas:

$$\begin{cases} \text{(i)} \ \tau_g x = x + g, \\ \text{(ii) if } \mathbb{G} = \mathbb{Z}^d, \text{ then } \hat{\omega} \subset \mathbb{Z}^d \end{cases}$$

- \mathcal{P}_0 : **Palm distribution** associated to \mathcal{P} and the simple point process
- $\mathcal{P}_0 := \mathcal{P}(\cdot | 0 \in \hat{\omega})$
- When $\mathbb{G} = \mathbb{R}^d$, $\mathcal{P}(0 \in \hat{\omega}) = 0$ and one deals with regular conditional probabilities as in [DV].

[DV] D.J. Daley, D. Vere-Jones; An Introduction to the Theory of Point Processes.

Palm distribution and ergodicity

 \mathcal{P}_0 is related to ergodicity:

$$\lim_{\ell\uparrow\infty}\frac{1}{m(2\ell)^d}\sum_{x\in\hat\omega\cap[-\ell,\ell]^d}f(\theta_x\omega)=\int d\mathcal{P}_0(\omega)f(\omega)\qquad\mathcal{P}\text{-a.s.}$$

From now we suppose that Assumptions (A1), (A2), (A3), (A4) are satisfied without further mention

Random walk of a single particle

- Convention: $c_{x,x}(\omega) = 0$
- Random conductance model on $\mathcal{G}(\omega)$: continuous-time random walk $(X_t^{\omega})_{t\geq 0}$ on $\hat{\omega}$ with jump rates $c_{x,y}(\omega)$.
- It waits at x an exponential random time of parameter $c_x(\omega) := \sum_{y \in \hat{\omega}} c_{x,y}(\omega)$, afterwards it jumps to $y \in \hat{\omega}$ with probability $\frac{c_{x,y}(\omega)}{c_x(\omega)}$.
- It is well defined if $c_x(\omega) < +\infty$ for all $x \in \hat{\omega}$ and a.s. it has no explosion.

A D > A B > A B > A B > B A

Stochastic homogenization

- \mathcal{P}_0 =Palm distribution associated to \mathcal{P} . Roughly, $\mathcal{P}_0 = \mathcal{P}(\cdot | 0 \in \hat{\omega})$
- $\lambda_k(\omega) := \sum_{x \in \hat{\omega}} c_{0,x}(\omega) |x|^k$ for ω with $0 \in \hat{\omega}$

Fact: $\lambda_0 \in L^1(\mathcal{P}_0) \Longrightarrow$ the rw $(X_t^{\omega})_{t \geq 0}$ is well defined for \mathcal{P} -a.a. ω .

Theorem (A.F. arXiv:2009.08258, to appear on AIHP)

If $\lambda_0, \lambda_2 \in L^1(\mathcal{P}_0)$, then \mathcal{P} -a.s. we have homogenization for the massive Poisson equation $\gamma u_{\varepsilon} - \mathbb{L}_{\omega}^{\varepsilon} u_{\varepsilon} = f_{\varepsilon}$ towards $\gamma u - \nabla \cdot D\nabla u = f$, where $\mathbb{L}_{\omega}^{\varepsilon}$ is the generator of $(\varepsilon X_{\varepsilon^{-2}t}^{\omega})_{t>0}$.

- massive $= \gamma > 0$
- D = effective homogenized matrix
- The above result implies several weak forms of CLT

- 日本 - 4 四本 - 4 田本 - 日本 - 4 日

Stochastic homogenization

- $\mu_{\omega}^{\varepsilon} := \varepsilon^d \sum_{x \in \hat{\omega}} \delta_{\varepsilon x}$
- $\lim_{\varepsilon \downarrow 0} \mu_{\omega}^{\varepsilon} = mdx \mathcal{P}$ -a.s.
- Given $f_{\varepsilon} \in L^2(\mu_{\omega}^{\varepsilon}), \exists ! u_{\varepsilon} \in L^2(\mu_{\omega}^{\varepsilon}) \text{ s.t. } \gamma u_{\varepsilon} \mathbb{L}_{\omega}^{\varepsilon} u_{\varepsilon} = f_{\varepsilon}$
- Given $f \in L^2(mdx)$, $\exists ! u \in L^2(mdx)$ s.t. $\gamma u \nabla \cdot D\nabla u = f$

Homogenization:

$$f_{\varepsilon} \to f \implies u_{\varepsilon} \to u$$

▲日 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▶ ▲ 圖 ▲

Effective homogenized matrix

Definition

We define the **effective homogenized matrix** D as the $d \times d$ nonnegative symmetric matrix such that, for all $a \in \mathbb{R}^d$,

$$a \cdot Da = \inf_{f \in L^{\infty}(\mathcal{P}_0)} \frac{1}{2} \int d\mathcal{P}_0(\omega) \sum_{x \in \hat{\omega}} c_{0,x}(\omega) \left(a \cdot x - \nabla f(\omega, x)\right)^2,$$

where $\nabla f(\omega, x) := f(\theta_x \omega) - f(\omega)$.

- D is well defined since $\lambda_2 \in L^1(\mathcal{P}_0)$
- D can be degenerate and non zero.

Weak forms of CLT

For \mathcal{P} -a.a. ω

$$\lim_{\varepsilon \downarrow 0} \varepsilon^d \sum_{x \in \varepsilon \hat{\omega}} \left| P_{\omega,t}^{\varepsilon} f(x) - P_t f(x) \right| = 0.$$

- $P_{\omega,t}^{\varepsilon}$: Markov semigroup of $\varepsilon X_{\varepsilon^{-2}t}^{\omega}$
- P_t : Markov semigroup of limiting process, i.e. BM with diffusion matrix 2D

For \mathcal{P} -a.a. ω ,

$$\lim_{\varepsilon \downarrow 0} \varepsilon^d \sum_{x \in \varepsilon \hat{\omega}} \left| R^{\varepsilon}_{\omega,\lambda} f(x) - R_{\lambda} f(x) \right| = 0.$$

- $R_{\omega,\lambda}^{\varepsilon}, R_{\lambda}$ resolvents,
- $R_{\omega,\lambda}^{\varepsilon}f = \int_0^\infty e^{-\lambda t} P_{\omega,t}^{\varepsilon} f dt$, $R_\lambda f = \int_0^\infty e^{-\lambda t} P_t f dt$