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Abstract. Using geodesic length functions, we define a natural family of real

codimension 1 subvarieties of Teichmüller space, namely the subsets where
the lengths of two distinct simple closed geodesics are of equal length. We
investigate the point set topology of the union of all such hypersurfaces using

elementary methods. Finally, this analysis is applied to investigate the nature
of the Markoff conjecture.

1. Introduction

We define the simple length spectrum of a Riemann surface of genus g with n
totally geodesic boundary components to be the set of lengths of simple closed
geodesics counted with multiplicities. As the metric varies, the length spectrum
changes. We are interested in three questions.

Is there a surface for which all the multiplicities are 1?

How big is the set of such surfaces?

Is it possible to deform a surface such that the multiplicity stays 1 for all simple
geodesics?

The answer to the first question is of course positive, although to answer it we
shall show that the set of surfaces where the spectrum does not have this property
is Baire meagre. The answer to the third question is clearly yes if we allow defor-
mations in the space of all Riemannian metrics, but we show that the answer is no
if we restrict ourselves to metrics of fixed constant curvature.

The hypersurfaces we study are the non-empty subsets E(α, β) of Teichmüller
space where a pair of distinct simple closed geodesics α, β have the same length.
When the intersection number int(α, β) is small, the surfaces E(α, β) play an im-
portant part in the theory of fundamental domains for the mapping class group in
low genus, see for instance [15] and [19].

Our main theorem is the following:

Theorem 1.1. The set of surfaces with simple simple length spectrum is dense and

its complement is Baire meagre.

If A is a path in Teichmüller space T then there is a surface on A which has at

least two distinct simple closed geodesics of the same length.
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Let E denote the set of all surfaces with at least one pair of simple closed geodesics
of equal length; E is the union of a countable family of nowhere dense subsets,
namely the sets E(α, β) where α, β vary over all distinct simple closed geodesics.
The theorem asserts that E is dense and moreover that the complement contains
no arcs and is thus totally disconnected. Our next point of interest is the topology
of the sets E(α, β) and E .

Theorem 1.2. The sets E(α, β) are connected sub-manifolds of Teichmüller space.

The set E is connected.

In the case of the Teichmüller space T ε
1,1 of a one-holed torus with fixed boundary

length, a careful study of the asymptotic behaviour of the sets E(α, β) will allow us
to prove the following.

Theorem 1.3. Let α and β be a pair of distinct simple closed geodesics on a one-

holed torus. The set E(α, β) is a simple path joining the points in the Thurston

boundary of T ε
1,1 determined by the two unique simple closed geodesics with equal

number of intersection points with both α and β.

We strongly suspect that the set of one-holed tori which contain three simple
closed geodesics of equal length is nowhere dense.

Though the Euclidean torus is not negatively curved, it is useful to bear it in
mind as a prototype. The reader is invited to check that our theorems above hold
for Euclidean tori. Let T be the Teichmüller space of Euclidean tori, which one
identifies with the upper half plane, or the τ plane, in the usual way. The rational
p/q ∈ R corresponds to a simple curve of slope p/q on the square torus which we
shall use as a reference surface. The length of the curve on the surface corresponding
to the parameter τ is |pτ + q| and geometry of the set E is readily understood in
terms of elementary number theory. By computation, one sees that the set E(α, β)
is always a Poincaré geodesic, joining either pairs of rationals or pairs of quadratic
irrationals on the real line. The map z 7→ −z preserves the rationals and fixes
[0,∞] = {ℜz = 0}. For any rational m/n the curves of slope m/n and −m/n
have the same length at τ ∈ [0,∞]. One maps [0,∞] onto any geodesic [a/b, a′/b′]
using PSL(2, R), which is transitive on pairs of rationals and thus finds a pair of
curves which are of equal length on [a/b, a′/b′]. The first sentence of Theorem 1.1
follows since quadratic irrationals are countable and the second because every pair
of distinct points in the plane is separated by a Poincaré geodesic with rational
endpoints. Unfortunately, in the more general situation we consider below, no such
characterization of the sets E(α, β) exists, although we obtain an analogous result
for one holed hyperbolic tori with fixed boundary length in Theorem 1.3.

It is also interesting to note that the simple length spectrum of the square flat
torus has unbounded multiplicity. The squares of the lengths are sums of squares
of integers. By elementary number theory, for any sequence of integers kn, each a
product of n distinct primes congruent to 1 mod 4, the number of ways of writing kn

as a sum as squares of coprime integers goes to infinity with n. It is well known that
a prime p 6= 2 can be written as a sum of squares x2 +y2, x, y ∈ N if and only if p is
congruent to 1 modulo 4. It is also well known that there are infinitely many primes
congruent to 1 modulo 4. Such a prime p admits a factorization p = (x+ iy)(x− iy)
and x + iy, x − iy are irreducible elements of the ring of Gaussian integers Z[i].
Choose n distinct primes pk ∈ N, 1 ≤ k ≤ n, let ak ∈ Z[i] such that pk = akāk and
let N denote their product. It is immediate from the above that N factorizes over
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Z[i]

N = (a1ā1)(a2ā2) . . . (anān).

Consider the set RN of Gaussian integers of the form c1c2 . . . cn where ck ∈ {ak, āk}.
Note that the modulus squared of each element of Rn is N . It is easy to check,
using the fact that the Gaussian integers is a unique factorization domain, that RN

contains exactly 2n−1 distinct elements. Note further that if c1c2 . . . cn ∈ RN and
c1c2 . . . cn = x + iy then x, y are coprime integers, for otherwise there is a prime p
that divides x, y hence x + iy but this is impossible as the ci are irreducible and no
two ci are complex conjugate.

Similarly, for the spectrum of lengths of all closed geodesics of hyperbolic sur-
faces, the multiplicities are unbounded. More precisely, Randol [22] shows (using
results of Horowitz) that for any surface of constant curvature and any n > 0 there
is a set of n distinct primitive geodesics of the same length. By the above, these
curves necessarily have double points.

Finally, by the work of Schmutz-Schaller [27] and others on the systole one has
a lower bound on the multiplicity of the simple length spectrum as the surface
varies over Teichmüller space. The existence (or not) of an upper bound for the
multiplicity of the simple length spectrum for surfaces of a given signature is an
open question. In particular, Schmutz-Schaller conjectured the following in [27] for
once-punctured tori.

Conjecture 1. The multiplicity of the simple length spectrum is bounded above by

6 for a once-punctured torus.

In fact, this conjecture is a geometric generalization of an equivalent version to
the following well known conjecture, as will be explained below.

Conjecture 2. (Markoff conjecture) The Markoff conjecture [12] is a conjecture

in classical number theory. In its original form, it concerns solutions in the positive

integers to the cubic

x2 + y2 + z2 − xyz = 0.

It states simply that if there are solutions x ≥ y ≥ z and x ≥ y′ ≥ z′ over the

positive integers then y = y′ and z = z′.

At the time of writing, conjecture 2 is known to be correct for x a prime power,
see [26], [7], and more recently [18]. Other results related to this conjecture include
[2] and [8].

Over the past few decades, several authors (i.e. [28], [16], [25], [10], [11], [24])
have had much success in translating problems in number theory into the language
of surfaces and geodesics. Their efforts have in some cases provided a greater
clarity to the understanding of some classical theorems, particularly in Diophantine
approximation.

Let us outline the well-known correspondence between Markoff triples (x, y, z)
(solutions to the above problem) and triples of simple closed geodesics (α, β, γ) on
a certain once-punctured torus (a torus with a single cusp as boundary).

There is, up to isometry, exactly one hyperbolic once-punctured torus, M, with
isometry group of order 12. This surface, commonly called the modular torus,
is obtained as the quotient of the hyperbolic plane by a certain subgroup, G of
index 6 of the modular group PSL(2, Z) acting by linear fractional transforma-
tions. In fact G is a normal subgroup of the modular group and the quotient group
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SL(2, Z)/G ≃ C2 × S3 is isomorphic to the group of orientation preserving isome-
tries of the quotient surface. By Riemann-Hurwitz, 6 is the maximum number
of orientation preserving isometries of a once-punctured torus and, by a similar
argument, 12 is the maximum number of isometries of a once-punctured torus.

If (α, β, γ) is a triple of simple geodesics on M which pairwise intersect in exactly
one point (i.e. the three sets α ∩ β, β ∩ γ, γ ∩ α each consist of a single point) then

(

2 cosh
ℓ(α)

2
, 2 cosh

ℓ(β)

2
, 2 cosh

ℓ(γ)

2

)

is a solution to the cubic above. This is because one can find matrices A,B,C = AB

such that any pair generate G and so that trA = 2 cosh ℓ(α)
2 , tr B = 2 cosh ℓ(β)

2 , tr C =

2 cosh ℓ(γ)
2 ; the commutator of A,B is parabolic, i.e., has trace −2, and, using the

familiar trace identity in SL(2, C) for the commutator [3], one sees that these three
numbers satisfy the cubic.

There is an equivalent conjecture to the Markoff conjecture which concerns sim-
ple closed geodesics on M.

Conjecture 3. The modular torus M has the following property: if α, β are a pair

of simple closed geodesics of the same length, then there is an isometry of M taking

one to the other. We shall refer to this as the Markoff isometry property.

The equivalence of these conjectures can be shown as follows. We begin by noting
that given 3 real numbers x, y, z satisfying the cubic above there exist 3 matrices
A,B,AB = C ∈ SL(2, R) such that

tr A = x, tr B = y, tr C = z,

and so that the commutator of A,B is parabolic. Further, these matrices are unique

up to conjugation in SL(2, R) [14].
Now let α, α′ be a pair of simple geodesics on M which have the same length.

Since α (resp. α′) is simple there exist A,B,C = AB ∈ G (resp. A′, B′, C ′ =
A′B′ ∈ G) such that A (resp. A′) covers α (resp. α′), any two of A,B,C (resp.
A′, B′, C ′) generate G and so that the trace of the commutator of A,B (resp. A′, B′)
is −2. From the trace identity for this commutator, one sees that the quantities
trA, tr B, tr C and trA′, tr B′, tr C ′ satisfy the cubic. Since α and α′ have the same
length trA = trA′ so assuming the Markoff conjecture in its original form we must
also have

tr B = trB′, tr C = tr C ′.

By the uniqueness of A,B,C in SL(2, R) there exists a matrix T ∈ SL(2, R)
so that TAT−1 = A′, TBT−1 = B′, TAT−1 = C ′. Thus conjugation by T leaves
G invariant and so this induces an isometry of H\G; since T conjugates A (which
covers α) to A′ (which covers α′) this isometry takes α to α′ as required.

Now M is the the only once-punctured torus which has isometry group C2 ×S3,
but not the only one-holed torus. (When the boundary of torus is a cusp or the
boundary of the Nielsen core is a simple closed geodesic, we shall call it a one-holed
torus.) Choose a real number t ≥ 3; there are matrices, unique up to conjugacy
in SL(2, R), At, Bt, AtBt = Ct ∈ SL(2, R), each with trace t and such that the
trace of the commutator of At, Bt is 3t2 − t3 − 2. The group generated by At, Bt is
free, discrete and, when we think of it as acting on the upper half space by linear
fractional transformations, the quotient surface, Mt, is homeomorphic to a torus
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with a point removed. When t = 3 the trace of the commutator is −2 and the
surface is the once-punctured torus M. When t > 3 the commutator is hyperbolic,
the Nielsen core of the quotient is a proper subset and is bounded by a simple
closed geodesic which is covered by the commutator. For any given t ≥ 3, from the
uniqueness of the matrices, At, Bt, Ct, it follows that the quotient surface has the
isometry group specified.

In view of this observation, one is led to consider the following plausible gener-
alization of the Markoff isometry property conjecture:

Conjecture 4. Let T s
1,1 denote the set of hyperbolic one-holed tori which have

isometry group isomorphic to C2 × S3. If M is such a surface, then it enjoys the

Markoff isometry property; that is if α, β are a pair of simple closed geodesics of

the same length on M then there is an isometry of this surface taking one to the

other.

Notice that this conjecture is implied by a generalization to one-holed tori of
Schmutz-Schaller’s conjecture mentioned above. By applying the analysis used to
prove Theorem 1.1, we shall see that this conjecture is in fact false, and thus a gen-
eralized version of Schmutz-Schaller’s conjecture is also false. More precisely, we
show in Theorem 7.1 that the subset of surfaces M which fail to have the Markoff
isometry property is dense in T s

1,1. This means that the original Markoff conjecture
is (probably) a conjecture in pure number theory and not tractable by hyperbolic
geometry arguments.

Organization.

We begin by reviewing some basic facts concerning curves and geodesics from the
theory of surfaces. Two preliminary results we readily use, Theorems 2.1 and 2.2,
do not seem to be known in the form we require, and because the proofs are differ-
ent in nature from the rest of the article, we defer them to Appendix. There then
follows a discussion of the Dehn twist homeomorphism in relation to curves (lemma
3.2). Using Dehn twists, we generate special sequences of geodesics and using these
establish proposition 3.3, which is fundamental to our argument. This result, to-
gether with Theorem 2.2, implies Theorem 1.1. We then discuss why we believe
that a careful modification of this argument provides evidence that the Markoff
conjecture cannot be proved using techniques from Teichmüller theory. In the final
section, we begin by showing that the hypersurfaces we study are connected sub-
manifolds and that their union is also connected. Finally, a characterization of the
hypersurfaces is given in the particular case of one-holed tori (with fixed boundary
length), which is quite similar to the case of flat tori mentioned above.
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2. Preliminaries

We review some elementary definitions and facts from the theory of surfaces;
much of this is available in a more detailed treatment in either [1], [3] or [6].
Throughout M will denote a surface with constant curvature −1 and we shall
insist that M is complete with respect to this metric (although we will only be con-
cerned by what happens inside the Nielsen core of the surface). This means that
M is locally modeled on the hyperbolic plane H

2 and there is a natural covering
map π : H → M . By T we mean the Teichmüller space of M , meaning the space
of marked complete hyperbolic structures on M . The signature of a surface M will
be denoted (g, n) where M is homeomorphic to a surface of genus g with n simple
closed boundary curves. If deemed necessary, we will denote Tg,n the Teichmüller
space of surfaces of signature (g, n). It is often useful to think of the Fenchel-Nielsen
coordinates of Teichmüller space, namely the lengths of a pants decomposition of
M and a set of twist parameters which set how the interior simple closed geodesics
(defined below) are pasted together. We insist on the fact the lengths of the bound-
ary curves (in fact the boundary curves of the Nielsen core) are allowed to vary.

Next one recalls some facts concerning curves on surfaces (see [6] or [9] for
details). Firstly, a simple curve is a curve which has no self intersections. A
curve is essential if it bounds neither a disc nor a punctured disc (annulus). For
each free homotopy class which contains an essential simple loop, there is a unique
geodesic representative. Further if such a free homotopy class contains a simple
curve then this geodesic representative is also simple. Simple closed geodesics are
called separating if they separate the surface into two connected components and
non-separating otherwise. Furthermore, a simple closed geodesic is called interior

if it is entirely contained in the Nielsen core of the surface.
There is a natural function, ℓ : T × essential homotopy classes → R

+, which
takes the pair M, [α] to the length ℓM (α) of the geodesic in the homotopy class
[α] (measured in the Riemannian metric on M). It is an abuse, though common
in the literature, to refer merely to the length of the geodesic α (rather than, more
properly, the length of the geodesic in the appropriate homotopy class).

The set of simple closed geodesics on the surface M is more than just an in-
teresting curiosity. It was discovered by early investigators (Fricke et al) that the
lengths of a carefully chosen finite subset of such curves could be used as a local
coordinate system for the space of surfaces; these are often referred to as the moduli

of the space. One way of seeing this is through the following theorem, which we
shall not use explicitly although one could say that it contains the intuitive idea of
how we shall proceed.

Theorem 2.1. Let T be the Teichmüller space of given signature. There is a

fixed finite set of simple closed geodesics γ1, . . . , γn such that the map ϕ : M 7→
(ℓM (γ1), . . . , ℓM (γn)) is projectively injective on T .

(A map f : X → V , V a real vector space is projectively injective if and only if
f(x) = tf(y), for some t ∈ R, implies x = y.)

It’s important to note that in the case where T is the Teichmüller space of a
surface with boundary, the geodesics are allowed to be boundary geodesics. The
nature of our investigation requires us to study interior simple closed geodesics, so
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we need a generalization of Theorem 2.1 where the set of simple closed geodesics
γ1, . . . , γn are all interior. While concocting a theorem suitable for our needs, we
discovered that the generalization to surfaces with boundary, under the assumption
that the geodesics are all interior, is false. What is true however is the following
theorem.

Theorem 2.2. Let T be the Teichmüller space of given signature.

Then, there is a set Γ := {γ1, . . . , γn} of interior simple closed curves such

that for any given point in M ∈ T , there are a finite many M ′ ∈ T such that

λ(ℓM (γ1), ..., ℓM (γn)) = (ℓM ′(γ1), ..., ℓM ′(γn)) for some λ ∈ R.

We give proofs of both Theorem 2.1 and Theorem 2.2, but because these are
different in nature to the rest of the article, their proofs are deferred to Appendix.
In the Appendix, examples are given to highlight the differences between Theorem
2.1 and Theorem 2.2. Note that Theorem 2.1 is probably known to specialists, and
for closed surfaces is implicit in [29].

Of particular use to us, is the following corollary of Theorem 2.2.

Corollary 2.3. Let T be the Teichmüller space of given signature, and Γ be the set

of curves of Theorem 2.2. For any M ∈ T , there are finitely many M ′ ∈ T such

that
ℓM′ (α)
ℓM′ (β) = ℓM (α)

ℓM (β) for all α, β ∈ Γ.

If we consider only closed surfaces then the following argument proves a slightly
stronger result than is stated in our corollary . Let A,B be points in a Teichmüller
space of a closed hyperbolic surface; we now give a sketch of the existence of simple
closed curves α, β such that

ℓA(α)

ℓA(β)
6= ℓB(α)

ℓB(β)
.

We shall suppose that there exists a simple closed curve γ such that A,B lie are
in the same orbit for Fenchel-Nielsen twist along γ; by replacing γ by a measured
lamination and using Thurston’s earthquake theorem one obtains the general case.
Suppose further that γ is non separating then there is a simple closed geodesic γ′

that meets γ in exactly one point. In fact, if Dn
γ (γ′) denotes the simple geodesic

freely homotopic to the image of γ′ by the (right) Dehn twist along γ iterated n-
times, then Dn

γ (γ′) meets γ in exactly one point too. Let θn denote the signed angle
at Dn

γ (γ′) ∩ γ, then it is not hard to show, using hyperbolic trigonometry, that θn

is monotone in n, and furthermore that for any ǫ > 0 there exists N such that

cos(θ−N ) < −1 + ǫ, cos(θN ) > 1 − ǫ.

Take α = DN
γ (γ′) and β = DN

γ (γ′). Following Kerkhoff [17], we see that as we move
from A to B along the Fenchel-Nielsen twist orbit, ℓ(α) is monotone decreasing
whilst ℓβ is monotone increasing and

ℓA(α)

ℓA(β)
<

ℓB(α)

ℓB(β)
.

Finally, with respect to the differential structure of Teichmüller space, we have
the following:

Proposition 2.4. For each closed geodesic α, the function M 7→ ℓM (α) is an

analytic function.
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Probably the best way to prove this proposition is by means of Fricke trace

calculus. Briefly, one thinks of the surface as being the quotient of H
2 by a discrete

group of isometries Γ. To each closed geodesic one associates a conjugacy class of

elements in Γ which cover it. If A ∈ Γ covers α then trA = 2 cosh ℓ(α)
2 . Since Γ

is a subgroup of SL(2, R) one can use the trace relations for this group to generate
relations between the lengths of geodesics on the surface. The analytic nature of
these relations is the key to showing the proposition above (see for example [1]).

3. Dehn Twists and length ratios

The proof of our main theorem 1.1 is based on a trick involving the topological
manipulation of curves. In particular, we shall generate a sequence of simple closed
curves with a certain prescribed property which is outlined below (basically their
lengths should satisfy part 2 of lemma 3.2).

A simple topological argument, pasting together curves, establishes the next
proposition (left to the reader as an exercise.)

Lemma 3.1. Let M be a surface and α a simple closed geodesic on M . If α is

not a boundary geodesic then there is a simple closed geodesic α′ which meets α in

exactly 2 points.

Remark 3.1. We work with pairs of curves which meet in two points because a sim-
ple closed geodesic which divides the surface into 2 components meets any other
geodesic loop in at least 2 points. A surface for which every non peripheral sim-
ple closed geodesic is separating is called a planar surface. Topologically, planar
surfaces are n-holed spheres. The one-holed torus is not a planar surface, and in
fact it is the only topological type of surface where every simple closed geodesic is
non separating. By choosing a pair of curves as in the lemma above, we are able to
treat the case of planar surfaces without much extra work.

A Dehn twist Tα : M 7→ M around a simple closed curve α is a homeomorphism
(defined up to isotopy) of the surface M to itself which is the identity on the
complement of a regular neighborhood of α. The Dehn twist takes a geodesic γ
meeting α to a (possibly non-geodesic) curve. However, since this curve is also
essential, we can straighten it, i.e., take the unique closed geodesic in the homotopy
class of Tα(γ). Since the twist is a homeomorphism, the resulting geodesic is simple
if and only if the original geodesic γ was. By convention, we say that a Dehn twist
takes simple closed geodesics to simple closed geodesics.

This latter property of the Dehn twist round α allows us to construct a sequence
of geodesics with an interesting sequence of lengths. We construct the sequence
inductively as follows: let α0 be any geodesic which meets α in exactly two points
as in lemma 3.1. Then let αn be the right Dehn twist of αn−1 round α. This gives
us a well defined sequence of curves {αn}∞n=0, each of which is closed and simple.

Lemma 3.2. With α, {αk}∞k=0 as above:

(1) For each k = 1, . . .∞ the curve αk meets α in 2 points and each αk is

simple.

(2) For all k ∈ N

2kℓ(α) − ℓ(α0) < ℓ(αk) ≤ 2kℓ(α) + ℓ(α0).
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The first claim is immediate since homeomorphism takes simple curves to simple
curves; the second is essentially a consequence of the triangle inequality. We note
that, by using Riemannian comparison theorems, this result is true even when M
does not have constant curvature but merely pinched negative curvature.

Fix a surface M and let α, β be distinct simple closed geodesics. Our aim is
to calculate the ratio ℓ(α)/ℓ(β) from the asymptotic formula in lemma 3.2. For
α, resp. β, choose α0, resp. β0, as in lemma 3.1. Define αj := Tj

α(α0), resp.

βj := Tj
β(β0)). Set Bi := {βk : ℓ(βk) ≤ ℓ(αi)}.

Proposition 3.3. With the notation above:

♯Bi

i
−→ ℓ(α)

ℓ(β)
.

Proof. By lemma 3.2 we have

♯Bi ≤ ♯{k : 2kℓ(β) − ℓ(β0) ≤ 2iℓ(α) + ℓ(α0)},
and

♯Bi ≥ ♯{k : 2kℓ(β) + ℓ(β0) ≤ 2iℓ(α) − ℓ(α0)}.
It follows that

i
ℓ(α)

ℓ(β)
− ℓ(β0)

2ℓ(β)
− ℓ(α0)

2ℓ(β)
≤ ♯Bi ≤ i

ℓ(α)

ℓ(β)
+

ℓ(α0)

2ℓ(β)
+

ℓ(β0)

2ℓ(β)
.

The statement of the propostion is immediate. �

For the sequel, we shall denote N(M)i := ♯Bi for a given choice of M .

4. Surfaces with a pair of geodesics of equal length

For completeness we give a brief account of the nature of the sets E(α, β) in
terms of elementary pointset topology. The results presented in this section seem
to be well known but do not appear in the literature.

It should be possible to develop a very precise theory of these sets in terms of
algebraic functions, via Fricke trace calculus, however, we will not consider that
approach further here.

The next result exploits the fact, by proposition 2.4, that the function M 7→
ℓM (α) − ℓM (β) is analytic.

Lemma 4.1. Let α, β be a pair of simple closed geodesics. Then

(1) E(α, β) is non empty,

(2) E(α, β) is a closed subset with no interior, i.e., its complement is open

dense in T ,

(3) Let E = ∪E(α, β) where the union is taken over all pairs of simple closed

geodesics and set N eq = T \E, then N eq is dense.

Proof. It is easy to show that, for each pair of simple closed geodesics α 6= β,
E(α, β) is closed. This follows when one notes that E(α, β) is the zero set for the
continuous function M 7→ fα,β(M) := ℓM (α) − ℓM (β).

Next one establishes that E(α, β) has no interior, i.e., contains no open sets.
Recall that if a real analytic function is constant on an open set in its domain then
in fact it is constant on the entire component which contains this set. We shall
apply this to our function fα,β to establish the claim. Suppose that α and β are
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simple geodesics and they have the same length on some open subset of T (so that
the function above is zero on this open set). Since T is connected, the function
is zero over the whole space, i.e., the corresponding geodesics must have the same
length over the whole space. If α and β are distinct then it is easy to find a sequence
of deformations of the surface such that the length of α remains bounded while the
length of β tends to infinity (for example, if α meets β the right Dehn twist round
α provides such a sequence). Thus α = β.

We show that E(α, β) is non empty by applying the intermediate value theorem
to our function fα,β on Teichmüller space, which is connected. The claim is true if
there are surfaces X and Y such that on X α is very short and β is very long, and
on Y β is very short and α is very long. There are two cases to consider depending
on whether α and β intersect or not. Suppose that α and β do not meet; then there
is a pants decomposition of M so that both α and β are curves in the decomposition.
This enables one to find the surfaces X,Y quite easily, since one can specify the
lengths of the curves in a pants decomposition independently. On the other hand,
if α, β meet, then by the collar theorem [6], for any M ∈ T , their lengths satisfy
the inequalities

ℓM (α) ≥ 2arcsinh

(

1

sinh ℓM (β)
2

)

,

ℓM (β) ≥ 2arcsinh

(

1

sinh ℓM (α)
2

)

.

Now by choosing a surface X, resp. Y , where the length of α is indeed very
small, resp. where the length of β is very small, we are guaranteed that the length
of β, resp. α, is very long.

One notes that the final part is just the result of the Baire category theorem
applied to the sets T \E(α, β). This completes the proof. �

In some sense the complement of E , N eq, is a big set (Baire). Another convenient
way of thinking of this is that for the generic surface in Teichmüller space, the
length map from the set of simple geodesics to the positive reals is injective. It is
also interesting to contrast the above lemma with the following observation due to
Randol [22]: there are pairs of closed geodesics α 6= β which have the same length
over the whole of Teichmüller space. By the above, these geodesics necessarily have
self intersections.

Lemma 4.1 proves the first part of Theorem 1.1, and the remaining part is the
goal of the next section.

5. Total disconnectedness

In this section we establish that N eq, the complement of E in Teichmüller space
T is totally disconnected i.e it contains no non-trivial arc. An arc is the continuous
image of the closed unit interval, an arc is trivial if it is a constant map on the
interval; obviously an arc is non-trivial if and only if it contains a subarc with
distinct endpoints. Our proof consists of applying the intermediate value theorem

to a certain continuous function which we concoct using proposition 3.3.
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Let A be an arc in Teichmüller space with distinct endpoints X,Y . By corollary
2.3, there is a pair of simple closed geodesics α, β such that

ℓX(α)/ℓX(β) 6= ℓY (α)/ℓY (β).

Now by proposition 3.3, we see that there is an integer i such that the numbers
N(X)i, N(Y )i, defined in section 3, are different. In particular, there are simple
closed geodesics αi and βn such that

ℓX(βn) > ℓX(αi)

and

ℓY (βn) < ℓY (αi).

Now M 7→ ℓM (αi) − ℓM (βn) is a continuous function, so applying the interme-
diate value theorem to A, between the points X and Y , yields the existence of a
surface Z ∈ A so that ℓZ(αi) = ℓZ(βn).

6. The order in lengths of simple closed geodesics determines a

point in Teichmüller space

The purpose of this section is to observe that our analysis has produced a curious
fact: for closed surfaces and one-holed tori, the orders between lengths of simple
closed geodesics determine a point in Teichmüller space. To see this recall that
one of the main ingredients in our proof of Theorem ?? is that, in many cases,
including the case of surfaces with fixed boundary lengths and in particular closed
surfaces or surfaces with cusp boundary (Theorem 2.1) and one-holed tori (lemma
A.4 in the Appendix), the map from Teichmüller space to the marked interior simple
length spectrum is projectively injective. When this is the case, we’ve shown that
between any two distinct points of Teichmüller space there is a pair of simple closed
geodesics α and β such that their order in length is reversed. From this observation,
one obtains the following result.

Theorem 6.1. Let T be the Teichmüller space of a surface with given boundary

length or of a one-holed torus with variable boundary length. Then the map that

sends a point in T to the relative orders in length between simple closed geodesics

is injective.

The example of two non-isometric four-holed spheres with identical interior
marked simple length spectrum at the end of Appendix 10 shows that one must
be very careful when trying to generalize the above theorem to arbitrary signature
with variable boundary lengths.

7. Application to the Markoff conjecture

Recall that T s
1,1 is the set of all one-holed tori with maximal isometry group. The

mapping class group of acts transitively on connected components of T s
1,1 each of

which is a smooth 1-dimensional submanifold of the Teichmüller space of one-holed
tori T1,1. We now apply our analysis of multiplicities to this subset.

Theorem 7.1. The subset of T s
1,1 which does not have the Markoff isometry prop-

erty is dense.
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Remark 7.1. For the same reason as was given for the set E ⊂ T in lemma 4.1, the
subset consisting of those surfaces Mt not having the Markoff isometry property
is a meager set in the sense of Baire. To do this one needs to see that E(α, β)
meets a connected component of T s

1,1 in a finite number of points. This can be

done presenting E(α, β) and the connected component of T s
1,1 as algebraic subsets

of R
3 using the Fricke trace calculus.

Proof. Consider X and Y , two distinct points in some connected component of
T s

1,1. Since T s
1,1 is a submanifold of T1,1, it follows that there is an arc A ⊂ T

between X and Y . By the results of section 5, there is a pair of geodesics (α, β)
such that ℓX(α) < ℓX(β) and ℓY (β) < ℓY (α), and thus a surface Z ∈ A such that
ℓZ(α) = ℓZ(β). Since the connected component of T s

1,1 is an embedded line no
two surfaces X,Y in the connected component are related by an element of the
mapping class group (i.e. a change of marking). This means that if there is a
surface X in the connected component such that ℓX(α) 6= ℓX(β) then then there
is no surface X ′ (in the connected component) such that an isometry of X ′ takes
α to β. In particular the surface Z constructed above does not have the Markoff
isometry property. This establishes the claim of the theorem. �

Remark 7.2. The surface Z in the proof of the theorem is a one-holed torus with 12
distinct simple closed geodesics of equal length. As mentioned in the introduction,
an upper bound on the number of simple closed geodesics of equal length on a
one-holed torus would have to be at least 12.

8. Topology of E(α, β)

In this section we prove Theorem 1.2 which tells us that our hypersurfaces are
connected sub-manifolds and that their reunion is also connected. Let us begin by
showing that they are sub-manifolds.

Lemma 8.1. E(α, β) is a smooth codimension 1 submanifold.

Proof. This follows from the implicit function theorem, a surface M ∈ E is a regular
point for the function M 7→ ℓM (α) − dℓM (β) if

dℓM (α) − dℓM (β) 6= 0.

It suffices to find a single (smooth) deformation φt, φ0 = M such that

dℓM (α).φ̇t 6= dℓM (β).φ̇t,

where φ̇t = dφt

dt
|t=0. In fact since ℓM (α) = dℓM (β) it suffices to find a deformation

φt such that
dℓM (α)

ℓM (α)
.φ̇t 6=

dℓM (β)

ℓM (β)
.φ̇t.

We explain why Thurston’s stretch maps provide φt satisfying this latter condi-
tion. Stretch maps were introduced by Thurston in [29] as maps minimising the
bi-lipschitz constant between pairs of hyperbolic structures on the same closed sur-
face. A stretch map φt is constructed from a maximal geodesic lamination λ; recall
that a geodesic lamination is maximal if and only every complementary region is ei-
ther an ideal triangle or a punctured monogon. One constructs a (partial) foliation
of complementary regions by horocyclic segments. The hyperbolic metric induces a
transverse Holder distribution on this foliation. Roughly speaking, the stretch map
consists of multiplying this transverse distribution by et. This yields a hyperbolic
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structure such that the length of the maximal measured sublamination of λ is also
multiplied by et. �

To show connectedness, we will need the following lemma which concerns spaces
homeomorphic to R

n (such as Teichmüller space).

Lemma 8.2. Let U, V be open connected sets of R
n such that U ∩ V = ∂U = ∂V

and U ∪ V = R
n. Then ∂U = ∂V is connected.

Proof. Essentially this lemma follows from the fact that R
n has the Phragmen-

Brouwer Property [4] which is outlined below. A topological space is said to have
the Phragmen-Brouwer property if, for two given disjoint closed sets D and E
and two points a and b, neither D nor E separates a and b, then D ∪ E does
not separate a and b. (A set separates two points if the two points lie on distinct
connected components of the complement of the set.)

Denote F = ∂U = ∂V and suppose F is not connected, i.e., F = F1 ∪ F2 where
F1 and F2 are disjoint non-empty closed sets. Now clearly, because R

n has the
Phragmen-Brouwer property, either the complement of F1 or F2 is disconnected.
Suppose then that F c

1 = A∪B where A and B are disjoint and open. Now U ⊂ A∪B
is connected thus we can suppose that U ⊂ A. Also, F2 ⊂ A ∪ B is closed and a
subset of ∂A, so F2 ⊂ A. The set V ⊂ A∪B is also connected and ∂V ∩A ⊃ F2 6= ∅
so V ⊂ A. Now A = R

n and B = ∅, a contradiction. �

Using this lemma and stretch maps we can show the following:

Lemma 8.3. The hypersurfaces E(α, β) are connected.

Proof. If α and β are disjoint, then they can be decomposed into a pants decompo-
sition and because Fenchel-Nielsen parameters determine both the points and the
topology of Teichmüller space, the result is obvious.

Now for intersecting α and β, denote by E+, resp. E−, the open subsets of
T where ℓ(α) > ℓ(β), resp. where ℓ(α) < ℓ(β). We begin by showing that these
subsets of T are connected. Let M1,M2 ∈ E+. Using a stretch map, it is possible to
continuously deform a surface such that a given simple curve’s length is decreased
and more so than any other simple curve. Furthermore, its length will go to 0.
Applying a stretch map to β on both M1 and M2, we can find two finite paths
in Teichmüller space c1, c2 such that c1(0) = M1, c2(0) = M2 and c1(1) = M ′

1,
c2(1) = M ′

2 where ℓM ′

1
(β), ℓM ′

2
(β) < 2arcsinh1. Because of the property of stretch

maps, these paths remain entirely in E+. By looking at Fenchel-Nielsen coordinates
which include the length of β, it is easy to see that the subset of T such that
ℓ(β) < 2arcsinh1 is connected. Note that by the collar theorem and the fact that
α and β intersect, any surface with ℓ(β) < 2arcsinh1 also has ℓ(α) > 2arcsinh1,
and thus is contained in E+. This shows that E+ is connected. Using the same
argument, one shows that E− is connected.

Applying lemma to U := E+ and V := E− (and of course E(α, β) = ∂E+ = ∂E−),
we obtain the result. �

We now need to show that the reunion of the hypersurfaces is connected which
follows from the fact that N eq is totally disconnected and the following lemma.

Lemma 8.4. Let N be a totally disconnected set of R
n with n > 2. Then R

n \ N
is connected.
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Proof. R
n is a Cantor manifold (a result due to Urysohn for n = 3 and to Alek-

sandrov for n > 3), meaning that a closed subset that separates has topological
dimension at least n − 1. Of course, a totally disconnected subset N is not (nec-
essarily) closed. However, if N separates then it contains a closed subset that
separates as follows. Let M be the complement of N that is not connected, thus
is equal to (A ∩ M) ∪ (B ∩ M) where A and B are open non-empty sets which are
disjoint on M . Thus A∩B ⊂ N . But as N is totally disconnected, A∩B = ∅. Now
the complement of A ∪ B, say F , is closed, separates R

n, and is contained in N .
But its topological dimension cannot be greater than 0 because N has topological
dimension 0, and thus cannot separate, a contradiction. �

9. Asymptotic behaviour of E(α, β)

The goal of this section is to prove Theorem 9.4 which gives, in the particular
case of a one-holed torus with fixed boundary length, a “coarse” description of
E(α, β). We show that E(α, β) has two ends and that these determine a pair of
points in the Thurston boundary of Teichmüller space. In fact these points are the
same pair of geodesics as in the case of flat tori outlined in the introduction. Our
point of departure is the observation that, by the collar lemma, one expects that if
M ∈ E(α, β) contains a (very) short essential simple closed geodesic γ then

int(γ, α) = int(γ, β)(9.1)

We begin by studying this equation.

9.1. Curves and Homology. Let T ε
1,1 denote the Teichmüller space of one-holed

tori with some fixed boundary length ε. Let γ be an oriented primitive essential
simple closed geodesic and let (t, ℓ) be Fenchel-Nielsen parameters for this choice of
simple closed curve. Associated to γ is a foliation of T ε

1,1 by level sets of ℓM (γ) = ℓ
for M ∈ T ε

1,1. We make the convention that if a curve is a k iterate of a primitive
curve, then each intersection point (geometric or algebraic) is counted k times.

Let us briefly recall some facts about homology classes and oriented simple closed
curves. Write [γ] ∈ H1(M, Z) for the integer homology class determined by a simple
closed curve γ and inta(·, ·) for the algebraic intersection number (relative to a fixed
orientation of the surface). There is an essential simple closed curve γ′ which meets
γ just once and, after possibly changing the orientation, we may suppose that
inta(γ, γ′) = 1. We say that the pair ([γ], [γ′]) form a canonical basis for homology.
The intersection numbers inta(γ, α) and inta(δ, α) define a unique oriented simple
closed curve up to isotopy. To each pair (k, l) ∈ Z × Z, we associate the unique
oriented (not necessarily primitive) simple closed geodesic [α] = k[γ] + l[γ′] where
k = inta(α, γ′) and l = −inta(α, γ). Recall that, in the particular case of the
one-holed torus, two curves are homologous if and only if they are isotopic. The
following equation relating algebraic and geometric intersection numbers will of use
in studying equation (9.1):

|inta(α, β)| = int(α, β).(9.2)

Geometrically this means that a pair of oriented simple closed geodesics α, β on a
torus always intersect “in the same way”, i.e., there are no arcs of α that leave β
and come back to β on the same side of β. Essentially, equation (9.2) holds because
on a one-holed torus no pair of arcs of simple closed geodesics form a bi-gon nor
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even a bi-gon surrounding the boundary curve of the torus [5],[16].

Lemma 9.1. If γ1 is an essential simple closed geodesic such that int(α, γ1) =
int(β, γ1), then ±[γ1] = [α] ± [β].

Proof. Let [γ], [γ′] be a basis of the integer homology, then there exists a, b, c, d ∈ Z

such that [α] = a[γ] + b[γ′] and [β] = c[γ] + d[γ′] with ad − bc 6= 0. Suppose
[γ1] = x[γ] + y[γ′] with x, y ∈ Z

2 \ {0, 0} then it satisfies

int(γ1, α) = |ay − xb| = |cy − dx| = int(γ1, β),

since geometric intersection number is just the absolute value of the algebraic in-
tersection number. Dropping absolute values

ay − bx = ±(cy − dx)

that is (x, y) is a solution of one of the following

(a + c)y − (b + d)x = 0,

(a − c)y − (b − d)x = 0.

The first equation gives ±[γ1] = [α] + [β] and the second ±[γ1] = [α] − [β]. �

9.2. Existence. Given a pair of primitive simple closed geodesics α and β, the
preceding lemma yields a pair of primitive essential simple closed geodesics such
that the geometric intersection number with both α and β is the same. We will now
show that the ends of E(α, β) meet the Thurston boundary in these points Let γ, γ′

be a pair of simple closed geodesic such that ([γ], [γ′]) is a canonical homology basis.
Thus [α] = a[γ′] ± n[γ] and [β] = b[γ′] ± n[γ]. After possibly changing orientations
of the curves α and β, we may suppose that [α] = a[γ]−n[γ′] and [β] = b[γ]−n[γ′].

For any given torus, in [20] it is shown that [γ] 7→ ℓ(γ) extends to a norm, equal
in fact to the stable norm, on the first homology group of the torus H1(T, R). The
unit ball of a norm is a convex set and for γ any simple closed geodesic [γ]/ℓ(γ) is
a boundary point of the unit ball of the stable norm. Denote Lℓ the leaf of T ε

1,1 for
which ℓ(γ) = ℓ.

Lemma 9.2. Let α, β be a pair of distinct geodesics that meet a simple geodesic γ
in the same number of points. Then for any ℓ > 0, there exists a torus T ∈ Lℓ such

that ℓT (α) = ℓT (β).

Proof. The level sets of the function fαβ (defined in lemma 9.3) are just the Fenchel-
Nielsen twist orbits for γ and thus are connected. We think of Z as being a zero of
the function

M 7→ ℓM (α) − ℓM (β)

where M varies in Lℓ.

To prove the existence of a solution Z we shall apply the intermediate value
theorem on Lℓ to our function fαβ . Let Dγ be a positive Dehn twist along γ. The

Dehn twist acts on both the homotopy class of simple curves and on Teichml̈ler
space, sending a surface M to Dγ .M . For our function this means that

fαβ(DγM) = ℓM (D−1
γ (α)) − ℓM (D−1

γ (β)).
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We show that our function changes sign as M varies over a twist orbit by con-
sidering the corresponding problem for lengths of curves on a fixed surface M ; that
is, we show that, as k varies over Z, there is a change of sign of

ℓM (D−k
γ (α)) − ℓM (D−k

γ (β)).

It is convenient to suppose that M is “rectangular”, that is it admits two non-
commuting reflections. As before, we choose γ′ so that ([γ], [γ′]) is a canonical basis
of integer homology H1(T, Z) and identify H1(T, R) with R

2 with coordinates (x, y)
in the obvious way, i.e., by sending [γ], [γ′] to the usual orthonormal basis. The
two reflections of M induce automorphisms of R

2, reflections in respectively the x
and y axes, and B̄1, the closed unit ball of the stable norm is invariant under these.
Using this invariance one sees that, as we vary over B̄1, the maximum y value is
attained at 1

ℓγ′

[γ′]. Moreover

Observation: If [δ], [δ′] on the boundary of B̄1 are in the positive quadrant of R
2

then the slope of the line joining these points is negative.

Suppose that α, β each meet γ in exactly n > 0 points. Then there exist integers
a, b such that

[α] = a[γ] + n[γ′]

[β] = b[γ] + n[γ′].

After swapping α, β we may suppose that b > a.
The Dehn twist along γ induces an automorphism of H1(T, Z), which extends

to H1(T, R), namely

Dγ∗
: x[γ] + y[γ′] 7→ (x + y)[γ] + y[γ′].

To simplify notation for k ∈ N we set

αk := Dγ
k
∗
([α]), βk := Dβ

k
∗
([β]).

The corresponding normalized points

[αk]

ℓ(αk)
,

[βk]

ℓ(βk)

are in the boundary of the unit ball of stable norm [20]. There exists K ∈ Z such
that for all k > K, both [αk], [βk] are in the positive quadrant of R

2. The slope of
the line segment joining αk/ℓαk

to βk/ℓβk
is

ℓ(αk) × b − ℓ(βk) × a

ℓ(αk) − ℓ(βk)
,

which is positive if ℓ(βk) ≤ ℓ(αk) and b > a. This contradicts our observation above
and so finishes the proof of the lemma. �

9.3. Uniqueness.

Lemma 9.3. Consider a leaf Lℓ of T ε
1,1 for some fixed ℓ. Denote by Mt the surface

of Lℓ where the twist parameter along γ takes the value t. If a > b then the function

fαβ(t) = ℓMt
(α) − ℓMt

(β) is a strictly increasing function.

Remark 9.1. Although α and β are oriented curves, this plays no role in the function
fαβ .
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Proof. To prove the lemma, we shall show that the derivative of this function is
strictly positive. Clearly, it suffices to show that this holds whenever a = b+1, the
general case follows by induction.

We have inta(α, γ) = inta(β, γ) = n and inta(α, γ′) − 1 = inta(β, γ′) = b. Recall
that a simple closed geodesics of a one-holed torus intersect passes through two
of the three Weierstrass points of the torus. It follows that any given any pair of
simple closed geodesics α and β there is a Weierstrass point p ∈ α∩β. Consider the
oriented path starting from p, following β until β intersects γ, then following γ until
the next intersection point with β and so forth. The path closes up after n such
steps, when, after having crossed γ n times. By construction this is a closed oriented
piecewise smooth curve, say α̃, with self intersections occuring only at the points
of α∩β. Since none of the self intersections of α̃ are transverse it is homotopic to a
simple closed (smooth) curve. We now calculate the algebraic intersection number
int(α̃, ·). By construction, α̃ is an Eulerian path for the directed graph with vertices
at α ∩ β and edges the set of all the oriented arcs of both γ and β joining these
points. Thus

inta(α̃, ·) = inta(γ, ·) + inta(β, ·).
It follows that inta(α̃, γ) = inta(γ, γ) + inta(β, γ) = 0 + n = n and inta(α̃, δ) =
inta(γ, γ′) + inta(β, γ′) = 1 + b = a. This proves that α̃ and α determine the same
homology class. On a hyperbolic punctured torus there is at most one closed simple
geodesic in each homology class so, since α̃ is homotopic to a simple closed curve,
α̃ and α are homotopic.

Lifting to the universal cover H, we obtain a configuration of curves depicted in
figure 1, where the γ(k), β(k) and p(k) correspond to the successive lifts of γ, β and
p. So, in the figure, the orientation of β is from top to bottom, and the orientation
of γ from left to right. We obtain a copy of α in H by joining the points p(1) to p(2)

by the unique oriented geodesic arc between them. Denote this oriented geodesic
arc by α′. Note that p may or may not be a point of γ. Figure 1 portrays the case
where p is not a point of γ. If p was a point of γ, the lift γ(n) would pass through
point p(2), and the arc denoted β1′

would not appear.
We now put orders on set of n oriented angles of intersection between β and γ,

and on the set of n oriented angles of intersection between α and γ respectively.
Denote by θi ∈]0, π[ the oriented angle between β(i) and γ(i), and by θ̃i ∈]0, π[ the
oriented angle between α(1) and γ(i). Now because α is homotopic to α̃ which is
obtained by adding positive arcs along γ to β we have θi > θ̃i for all i ∈ {1, . . . , n}.
Now by the Kerckhoff-Wolpert formula, the derivative along a positive twist of the
function fαβ is given by

∑n
k=1(cos θ̃k − cos θk) which is always strictly positive as

each summand cos θ̃k − cos θk is strictly positive. �

Putting the three previous lemmas together, we have now prove Theorem 1.3,
which rephrased in the notation introduced above is the following.

Theorem 9.4. Let α and β be a pair of distinct simple closed geodesics on a one-

holed torus. The set E(α, β) is a simple path joining the points in the Thurston

boundary of T ε
1,1 determined by the simple closed geodesics [α] ± [β].

Proof. Denote by Lℓ the leaf of T ε
1,1 where ℓ(γ) = ℓ and by L′

ℓ the leaf of T ε
1,1

where ℓ(γ′) = ℓ. By the previous lemmas, on each leaf Lℓ and L′

ℓ, there is a unique
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γ(1)

γ(2)

γ(n−1)

γ(n)

β(1)

β(2)

β(n)

β(1′)

p(1)

p(2)

Figure 1

one-holed torus T where ℓT (α) = ℓT (β). As both sets {Lℓ}ℓ∈]0,∞[ foliate T ε
1,1, it

follows that E(α, β) is a simple path between the boundary points of T ε
1,1 γ, resp.

γ′, i.e. the point where ℓ(γ) = 0, respectively the point where ℓ(γ′) = 0. �

10. Concluding remarks, problems

In conclusion we remark that the above situation, for reasons which should be
apparent from our treatment, bears a striking similarity to the case of the tran-
scendental numbers. It is relatively easy to establish the existence of aggregate of
all transcendentals as a non-empty set, and even to show that in fact most numbers
are transcendental. However, to say whether a particular number is transcendental
is a very difficult proposition.

Let us end with a list of related problems.

Problems:

(1) It is easy to show that there exists a Euclidean torus, with no symme-
tries other than the hyperelliptic involution, but which has infinitely many
distinct pairs of simple geodesics of the same length; that is it lies on in-
finitely many different hypersurfaces E(., .). (It is perhaps surprising that
a countable set of planes should have its set of intersections distributed so



HYPERSURFACES IN TEICHMÜLLER SPACE 19

that they clump together in such a fashion.) Is there a hyperbolic once-
punctured torus with this property?

(2) On the other hand is there a number K > 1 such that if M has K pairs
of equal length then M , a hyperbolic torus, must have an isometry (other
than the hyperelliptic involution)?

(3) We have constructed a dense set of counterexamples to the naive geometric
generalization of the Markoff conjecture. That is, for a dense set a of t ≥ 3,
there are matrices, in SL(2, R), At, Bt, AtBt = Ct ∈ SL(2, R), each with
trace t, such that the quotient of H by the Fuchsian group they generate is
a torus with a hole with maximal symmmetry group but the multiplicity
of the simple spectrum is at least 12. Is it possible to find such a t ∈ Z?

(4) As mentioned in the introduction, it is not known if simple multiplicity is
always bounded for a hyperbolic surface. This is probably a very difficult
problem. To illustrate the difficulty, let us make the following observation.
Recent results on both upper and lower polynomial bounds on the growth
of simple closed geodesics in function of length (see [21] and [23]) imply
that on any hyperbolic surface which is not a pair of pants, any ε > 0 and
any n, there exists n distinct simple closed geodesics γ1, . . . , γn such that
|ℓ(γk)−ℓ(γl)| < ε for all k, l ∈ {1, . . . , n}. To prove this, it suffices to notice
that if this weren’t true, then there would be a linear growth bound.
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Appendix A. Proofs of Theorems 2.1 and 2.2

In order to prove these two theorems, we shall need some lemmas from elementary
real function theory concerning sums of logarithmic and exponential functions. The
functions we shall study arise naturally as trace polynomials satisfied by traces of
simple closed geodesics. (Recall the trace of simple closed geodesic γ is the trace

of a matrix in PSL(2, R) which covers γ and is equal to 2 cosh ℓ(γ)
2 .)

Lemma A.1. Let F : R
n → R be the following function in n > 1 variables:

F (x) = log(
n
∑

k=1

xk − 1)(
n
∑

k=1

xk − 1) −
n
∑

k=1

xk log xk.

Then F (x) ≥ 0 for all x with mink=1,...,n(xk) ≥ 1.

Proof. We have F (1, . . . , 1) = 0 and ∂F (x)
∂xl

= log(
∑n

k=1 xk − 1)− log(xl) ≥ 0 for all

l ∈ {1, . . . , n} which proves the result. �

Lemma A.2. Let a1, a2, b1, . . . , bn be positive numbers verifying a1 > bk for all

k ∈ {1, . . . , n}, and let f be the following real function defined for t ∈ R
+:

f(t) = at
1 + at

2 −
n
∑

k=1

bt
k.

Then f has at most one strictly positive zero.

Proof. We can suppose that a2 = 1 as multiplying f by a−t
2 does not change the

sign of f , nor does it change the order of the positive numbers.

Let us suppose that f(t) ≥ 0 for some t > 0. We shall show that this implies
f ′(t) ≥ 0. By calculation

f ′(t) = at
1 log a1 −

∑

k=1

nbt
k log bk,

and thus

tf ′(t) = A1 log A1 −
n
∑

k=1

Bk log Bk,

with A1 = at
1 and Bk = bt

k. Because f(t) ≥ 0, we have A1 ≥∑n
k=1 Bk − 1, and

it follows that

tf ′(t) ≥ log(

n
∑

k=1

Bk − 1)(

n
∑

k=1

Bk − 1) −
n
∑

k=1

Bk log Bk.

If Bk ≥ 1 for k ∈ {1, . . . , n}, then by lemma A.1, tf ′(t) ≥ 0. If not, then notice
that

tf ′(t) ≥ log(
ñ
∑

k=1

Bk − 1)(
ñ
∑

k=1

Bk − 1) −
ñ
∑

k=1

Bk log Bk

with ñ < n and all Bk ≥ 1 for k ≤ ñ is positive if ñ ≥ 2. Now if ñ ≤ 1 then
a1 > b1 and a2 = 1 > b2 and the result is trivial. �
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Corollary A.3. Let a1, a2, b1, . . . , bn be positive numbers verifying a1 > bk for all

k ∈ {1, . . . , n}, and let f be the following real function defined for t ∈ R
+:

f(x) = cosh(a1x) + cosh(a2x) −
n
∑

k=1

cosh(bkx).

Then f has at most one strictly positive zero.

Proof. Let us suppose that a1 ≥ a2. Let us remark that limx→+∞ f(x) = +∞. By
calculation

f (2p)(x) = a2p
1 cosh(a1x) + a2p

2 cosh(a2x) −
n
∑

k=1

b2p
k cosh(bkx)

and

f (2p+1)(x) = a2p+1
1 sinh(a1x) + a2p+1

2 sinh(a2x) −
n
∑

k=1

b2p+1
k sinh(bkx).

Because a1 > bk for all k ∈ {1, . . . , n}, it follows that there exists a p such

that a2p
1 >

∑n
k=1 b2p

k and it follows that for this p, we have f (2p)(x) > 0 for all

x ≥ 0. We shall proceed backwards to f . Notice that for any q ∈ N, f (2q)(0) =

a2q
1 + a2q

2 −∑n
k=1 b2q

k and that f (2q+1)(0) = 0. It follows that f (2p−1)(x) > 0 for

all t > 0. For all k less than 2p − 1, f (k)(t) > 0 for all t > 0, until there is a p1

such that f (2p1)(0) < 0. (If such a p1 does not exist then f is a strictly increasing
function and the result is obvious.) Notice that the existence of p1 implies that the
function defined as g(t) := f(t) = at

1+at
2−
∑n

k=1 bt
k has a positive zero between 2p1

and 2p − 1. By lemma A.2, this is the unique strictly positive zero of the function
g. The unicity of this zero implies that for k = 1, . . . , p1 − 1 we have f (2k)(0) < 0.
Also, f (2k+1)(x) takes value 0 for x = 0, is strictly decreasing for a while, and then
is strictly increasing and tends to infinity. In particular, f ′(x) behaves this way. As
f(0) < 0, this completes the proof. �

These previous lemmas will be useful for proving our theorems for surfaces of
arbitrary signature, but are not required for proving the results we require for one-
holed tori. In the case of one-holed tori, the map from Teichmüller space to the set
of lengths of interior simple closed geodesics is projectively injective.

Lemma A.4. There are four interior simple closed curves α, β, γ, and δ of a one-

holed torus such that the map ϕ : M 7→ (ℓM (α), ℓM (β), ℓM (γ), ℓM (δ)) is projectively

injective.

Proof. Let M be a one-holed torus and let α, β, γ, and δ be the simple closed
curves as in figure 2.

The remarkable fact about the geodesic representatives of simple closed curves
on a one-holed torus is that they pass through exactly two of the three Weierstrass
points of the torus in diametrically opposite points. In the case of the curves α, β,
γ, and δ, their intersection points are all Weierstrass points. Therefore they can
be seen in the universal cover as in figure 2. It is well known that the lengths of
α, β, and γ determine a unique point in Teichmüller space (see for example [5]).
The lengths of these three curves up to a multiplicative constant do not determine
a unique point in Teichmüller space however. For this we need the curve δ. What
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α

β

γ δ

α

β
γ δ

α

Figure 2. The one-holed torus with four interior geodesics and
the four curves seen in the universal cover

we need to prove is that if we have two one-holed tori M1 and M2 in Teichmüller
space with

(ℓM1
(α), ℓM1

(β), ℓM1
(γ), ℓM1

(δ)) = λ(ℓM2
(α), ℓM2

(β), ℓM2
(γ), ℓM2

(δ))

for some λ ∈ R, then λ = 1 and then, by what precedes, M1 = M2. Figure 2
shows four hyperbolic triangles. Consider the two bottom ones. The side lengths

of the bottom left triangle are ℓ(α)
2 , ℓ(β)

2 , and ℓ(γ)
2 . The side lengths of the bottom

right triangle are ℓ(α)
2 , ℓ(β)

2 , and ℓ(δ)
2 . The bottom intersection point between α

and β forms two angles depending on the surface M , say θ1(M) and θ2(M) such
that θ1 + θ2 = π. Suppose without loss of generality that λ ≥ 1. Now if for M1 the
triangle lengths are equal to a, b, c and d, the triangle lengths for M2 are λa, λb, λc
and λd. This implies that θ1(M1) ≤ θ1(M2) as well as θ2(M1) ≤ θ2(M2), equality
occurring only if λ = 1. As θ1+θ2 is always equal to π, this concludes the proof. �

We are now set to prove Theorem 2.1. Let us recall its statement.

Theorem A.5. There is a fixed finite set of simple closed geodesics γ1, . . . , γn such

that the map ϕ : M 7→ (ℓM (γ1), . . . , ℓM (γn)) is projectively injective.

Proof. The first step is to show that the lengths of a finite set of simple closed
geodesics determine a point in Teichmüller space. Recall that a point in Teichmüller
space is determined by the lengths of the geodesics of a pants decomposition and
twist parameters along the interior geodesics of the pants decomposition. In turn,
the twist parameter around a geodesic is determined by the lengths of two simple
closed geodesics that intersect the pants geodesic minimally, that mutually intersect
minimally and do not intersect any other geodesic of the pants decomposition. (For
a proof of how these lengths determine the twist parameter, see for example [6]).
Thus the geodesics of a pants decomposition can be completed into a finite set of
simple closed geodesics, say {γ1, . . . , γm}, whose lengths determines a unique point
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in Teichmüller space.

We shall now show that we can add an extra geodesic to one of the finite sets de-
scribed above such that the map to the lengths of the extended set is projectively
injective. There will be two cases to consider: either the surface is of signature
(g, n) with g > 0, or not. In the first case, the surface has an embedded one-holed
torus, whose boundary curve we ensure is in the simple closed geodesics of our
pants decomposition used to create the above set. By lemma A.4, it suffices to add
an simple closed geodesic γm+1 which is interior of our torus, and the result follows.

Now if g = 0, for any pants decomposition, the surface contains an embedded
four holed sphere whose boundary geodesics are among the pants decomposition
geodesics of the surface. Denote by α, β, γ, δ these boundary geodesics, and by ζ,
ξ and υ the interior geodesics of the finite set determined above. Consider an aux-
iliary geodesic ξ̄ which is only simple closed geodesic with two intersection points
with both ζ and υ distinct from ξ. It necessarily has four intersection points with
ξ, and is portrayed in figure 3.

α

β

γ

δ

ζ

υ

ξ

α

β

γ

δ

ζ

υ
ξ̄

Figure 3. The geodesics ζ, υ, ξ and ξ̄ on the four holed sphere

In [13], it is shown that the geodesics described above verify a certain number
of trace equalities. As we require information on the lengths of the corresponding
geodesics, we have translated these equations accordingly. One of them, that is
used to describe a fundamental domain for action of the mapping class group of
the four-holed sphere, is the following:

cosh ℓ(ξ)
2 + cosh ℓ(ξ̄)

2 +2

(

cosh
ℓ(α)

2
cosh

ℓ(δ)

2
+ cosh

ℓ(β)

2
cosh

ℓ(γ)

2

)

= 2 cosh
ℓ(υ)

2
cosh

ℓ(ζ)

2
.

(A.1)

By hyperbolic trigonometry this becomes
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cosh ℓ(ξ)
2 + cosh ℓ(ξ̄)

2 + cosh ℓ(α)+ℓ(δ)
2 + cosh ℓ(α)−ℓ(δ)

2

+cosh ℓ(β)+ℓ(γ)
2 + cosh ℓ(β)−ℓ(γ)

2 = cosh ℓ(υ)+ℓ(ζ)
2 + cosh ℓ(υ)−ℓ(ζ)

2 .
(A.2)

Notice that for geometric reasons, cosh ℓ(υ)+ℓ(ζ)
2 is greater than all of the other

summands. Suppose now that the map on the lengths was not projectively injective.
That would imply that there exists at least two surfaces with their lengths verifying
the above equations. In other words, the above equations are satisfied by both
α, β, γ, δ, ζ, υ, ξ, ξ̄ and t0(α, β, γ, δ, ζ, υ, ξ, ξ̄) for some t0. Now consider the function

f(t) :=
∑2

k=1 cosh(akt) −∑6
k=1 cosh(bkt) with

a1 :=
ℓ(υ) + ℓ(ζ)

2
,

a2 :=
ℓ(υ) − ℓ(ζ)

2
,

b1 :=
ℓ(ξ)

2
,

b2 :=
ℓ(ξ̄)

2
,

b3 :=
ℓ(α) + ℓ(δ)

2
,

b4 :=
ℓ(α) − ℓ(δ)

2
,

b5 :=
ℓ(β) + ℓ(γ)

2
,

b6 :=
ℓ(β) − ℓ(γ)

2
.

Notice that the constants a1, a2, b1, . . . , b6 satisfy the conditions of corollary A.3.
The equation f(t) = 0 has a positive solution given by t = 1, and by corollary A.3,
this solution is unique, i.e., t0 = 1, which completes the proof. �

Consider a four-holed sphere. For a given choice of ζ, υ and ξ, the simple closed
geodesic ξ̄ is uniquely determined. Similarly, consider the auxiliary curves ῡ and ζ̄
as the unique simple closed geodesics (distinct from respectively υ and ζ) such that
ῡ intersects both ξ and ζ twice, respectively such that ζ̄ intersects both ξ and υ
twice. As before, notice that υ and ῡ intersect four times, respectively that ζ and
ζ̄ intersect four times. We now have a set of six interior simple closed geodesics
{ξ, ξ̄, υ, ῡ, ζ, ζ̄} whose lengths are shown in the following lemma to determine a
finite number of points in Teichmüller space.

Lemma A.6. Let T be the Teichmüller space of the four-holed sphere. Let M ∈
T . Then there are a finite many of Mk ∈ T such that ℓM (γ) = ℓMk

(γ) for all

γ ∈ {ξ, ξ̄, υ, ῡ, ζ, ζ̄}.
Proof. The idea is to show that the lengths of the six curves {ξ, ξ̄, υ, ῡ, ζ, ζ̄} deter-
mine a finite number of possibilities for the lengths of the four boundary curves α, β,
γ and δ. In the proof of the previous theorem, we have seen that the lengths of the
geodesic representatives of ξ, ξ̄, υ, ζ verify an interesting trace equation (equation
A.1) involving the boundary geodesics. The sets ξ, υ, ῡ, ζ and ξ, υ, ζ, ζ̄ verify similar
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equations (equations A.5, A.6 below). All these equations, along with an additional
trace equality which we shall detail later (equation A.3), have been proved in [13]
and are the basis of this proof. We shall use the following abbreviations for these

equations a = cosh ℓ(α)
2 etc. (In other words, the half-trace of a curve denoted

by a Greek letter is denoted by the lowercase corresponding roman letter.) The
additional trace equation mentioned earlier is the following:

a2 + b2 + c2 + d2 + x2 + y2 + z2 + 4abcd − 1

− 2xyz + 2x(ad + bc) + 2y(ab + cd) + 2z(ac + bd) = 0.
(A.3)

The full list of equalities that we shall use is:

ad + bc = yz − x + x̄

2
,(A.4)

ac + bd = xy − z + z̄

2
,(A.5)

ab + cd = xz − y + ȳ

2
,(A.6)

a2 + b2 + c2 + d2 + 4abcd = 1 − 4xyz + xx̄ + yȳ + zz̄.(A.7)

(The last equation is obtained from an obvious manipulation of A.3 and A.4,
A.5, A.6.) Notice that the right-hand side of each equation is determined by the
lengths of {ξ, ξ̄, υ, ῡ, ζ, ζ̄}. Denote by f1, . . . , f4 the right hand side of each each
equation, which we shall view as given constants. It now suffices to show that for
given f1, . . . , f4 ∈ R

+∗, there are a finite number of (a, b, c, d) ∈ (R+∗)4 solution to
the system of equations. There are five distinct situations to consider.

The first situation is when a = b = c = d, which implies f1 = f2 = f3 and

a = b = c = d =
√

f1

2 .

If a = b = c, then

a2 + ad = f1 = f2 = f3,

3a2 + d2 + 4a3d = f4.

From these equations, we can deduce a single polynomial equation in a with
a finite number of solutions. Working backwards, one obtains a finite number of
solutions (a = b = c, d) to equation A.4.

Now if a = b and c = d then

a + c =
√

f1 + f2,

ac =
f2

2
,

which trivially implies a finite (but not unique) set of solutions of type (a, a, c, c).

The two remaining cases (when a = b, a 6= c, d, c 6= d, and when all four
variables a, b, c, d are distinct) are similar in nature. We shall give the full solution
to the latter case which is the most complicated and leave the remaining case to
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the dedicated reader. Note that a, b, c, d distinct implies that the constants f1, f2

and f3 are also distinct. By manipulating the system of equations one obtains

a =
f2c − f1d

c2 − d2
,(A.8)

b =
f1c − f2d

c2 − d2
,(A.9)

(cd − f3)(c
2 − d2)2 + (f1c − f2d)(f2c − f1d) = 0,(A.10)

(f2c − f1d)2 + (f1c − f2d)2 + (d2 + c2)(c2 − d2)2

+ 4(f2c − f1d)(f1c − f2d)cd − f4(c
2 − d2)2 = 0.

(A.11)

Equations A.10 and A.11 determine two real planar curves. There are a finite
number of pairs (c, d) solution to both equations if and only if their underlying
polynomials are coprime in R[c, d]. In order to determine whether or not they poly-
nomials are coprime, we shall consider the polynomials as polynomials in variable c,
resp. in variable d. Note that if the two polynomials, say P and Q, are not coprime
in R[c, d], then they are not coprime in either R[c] or R[d]. We shall then calculate
the resultant of the two polynomials in c, resp. in d, which gives a polynomial Rc(d)
in variable d, resp. Rd(c) in variable c. We shall see that neither of the polynomials
Rc(d) and Rd(c) are identically zero. This implies that P and Q are coprime in
both R[c] and R[d], which in turn implies that they are coprime in R[c, d]. We have

(A.12) P = (cd − f3)(c
2 − d2)2 + (f1c − f2d)(f2c − f1d),

Q =(f2c − f1d)2 + (f1c − f2d)2 + (d2 + c2)(c2 − d2)2

+ 4(f2c − f1d)(f1c − f2d)cd − f4(c
2 − d2)2.

(A.13)

The resultants are calculated by calculating the determinants of the associated
Sylvester matrixes of the two polynomials. In our case, by computation, the resul-
tant Rc(d) =

∑28
k=1 αkdk is a degree 28 polynomial with many terms, but luckily,

the leading coefficient is simple and equal to

α28 = 256(f1 − f2)
4(f1 + f2)

4.

Similarly (and by symmetry), Rd(c) =
∑28

k=1 βkdk, and

β28 = 256(f1 − f2)
4(f1 + f2)

4.

As f1 6= f2 and both f1 and f2 are strictly positive, this proves the result. The
remaining case can be solved using the same method. �

Remark A.1. One might hope for unicity in the previous lemma (as in the case of
the one-holed torus, lemma A.4), i.e., that the lengths of our well chosen six inte-
rior simple closed curves determine uniquely the lengths of the boundary geodesics
and thus a unique point in Teichmüller space. A first remark is that, by using the
trace equalities used above, the length of the six curves {ξ, ξ̄, υ, ῡ, ζ, ζ̄} determine
the lengths of all interior simple closed geodesics of a given surface (see [13] for
a full proof). In spite of this, it is easy to construct examples of pairs of marked
surfaces where the lengths of {ξ, ξ̄, υ, ῡ, ζ, ζ̄} are equal but the surfaces represent
different points in T . To do this consider a surface M1 with marked boundary
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lengths ℓM1
(α) = ℓM1

(β) = ℓ1, and ℓM1
(γ) = ℓM1

(δ) = ℓ2. Further consider that
the marked surface M1 has twist parameter equal to 0 along υ. Now consider a sur-
face M2 with boundary lengths ℓM2

(α) = ℓM2
(β) = ℓ2 and ℓM2

(γ) = ℓM2
(δ) = ℓ1,

satisfying ℓM2
(υ) = ℓM1

(υ), also with twist parameter 0 along υ. It is not too
difficult to see that the lengths of ῡ, ξ, ξ̄, ζ and ζ̄ are the same for both M1 and
M2, but yet M1 and M2 are clearly distinct points in T . These examples, however,
are examples of the same surface up to isometry. What is more surprising is that
one can find examples of surfaces that are not isometric, but have the same interior
length spectrum.

Consider a surface M̃1 whose marked boundary lengths are ℓM̃1
(α) = ℓM̃1

(β) =

ℓM̃1
(γ) = 2arccosh2, and ℓM̃1

(δ) = 2arccosh3. Now set our marked interior geodesic
lengths to

ℓM̃1
(υ) = ℓM̃1

(ξ) = ℓM̃1
(ζ) = q,

where

q = 2arccosh(1 + (293 − 92
√

2)
1

3 + (293 + 92
√

2)
1

3 ).

This surface has the same interior length spectrum as the surface M2 with

ℓM̃2
(υ) = ℓM̃2

(ξ) = ℓM̃2
(ζ) = x,

but with ℓM̃2
(α) = ℓM̃2

(β) = ℓM̃2
(γ) = r, and ℓM̃2

(δ) = s where

r =

√

7

2
−

√
6,

and

s =

√

79

2
+ 15

√
6.

To see that these two surfaces have the interior simple length spectrum, by the
above it suffices to check that the left-hand sides of equations A.8, A.9, and A.10
are the same, and they are by calculation. This example is in no way isolated, and
the trick to finding it was to search for two surfaces with distinct boundary lengths,
but each with three equal boundary lengths. With this method you get at least a
real dimension 1 family of such surfaces.

We are now ready to prove Theorem 2.2.

Theorem A.7. Let T be the Teichmüller space of given signature. Then, there is a

set Γ := {γ1, . . . , γn} of interior simple closed curves such that for any given point

in M1 ∈ T , there are a finite number of M2 ∈ T such that λ(ℓM1
(γ1), ..., ℓM1

(γn) =
(ℓM2

(γ1), ..., ℓM2
(γn)) for some λ ∈ R.

Proof. This is obviously true by Theorem 2.1 for closed surfaces and by lemma
A.4 for the one-holed torus. In the remaining cases, consider the set of geodesics
Γ′ := {γ1, . . . , γm} constructed for the proof of Theorem 2.1. Each boundary curve
(of the base surface) in the set Γ′ is a boundary curve of a four-holed sphere formed
by elements of Γ′. To Γ′, we need to add auxiliary curves to obtain a set Γ′′ such
that every boundary curve of Γ′ is the boundary curve of a four-holed sphere whose
interior curves {ξ, ξ̄, υ, ῡ, ζ, ζ̄} are elements of Γ′′. Now consider the set Γ′′′ is ob-
tained by removing the boundary curves from Γ′′. By the previous lemma and the
initial considerations in the proof of Theorem 2.1, the lengths of the elements of
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Γ′′′ determine a finite number of marked surfaces in T .

We now need to show that the equality

λ(ℓM1
(γ1), ..., ℓM1

(γn)) = ((ℓM2
(γ1), ..., ℓM2

(γn))

can only be true for a finite number of λ for some choice of Γ := {γ1, . . . , γn}. If
the genus of the underlying surface is not 0, and as we have mimicked the set of
geodesics in Theorem 2.1, by lemma A.4 it follows that λ = 1. Otherwise, let us
consider one of the four-holed spheres whose interior curves {ξ, ξ̄, υ, ῡ, ζ, ζ̄} are in
Γ′′′. Consider the further set of interior curves obtained by a single right Dehn twist
around ζ of the curves ξ, ξ̄, υ and ζ. Notice the curve obtained from ζ this way is
of course itself, and the curve obtained by ξ is ξ̄. Denote by ξ̄′ and υ′ the images of
ξ̄ and υ. We can now fix Γ := Γ′′′ ∪{ξ̄′, υ′}. Recall that the lengths of ξ, ξ̄, υ and ζ
verify equality A.2. As a Dehn twist along ζ does not change the equality satisfied
by the set of curves, this gives a second equality which, with equation A.2, gives:

cosh ℓ(ξ)
2 + cosh ℓ(υ′)+ℓ(ζ)

2 + cosh ℓ(υ′)−ℓ(ζ)
2

= cosh ℓ(ξ̄′)
2 + cosh ℓ(υ)+ℓ(ζ)

2 + cosh ℓ(υ)−ℓ(ζ)
2 .

Now suppose ℓM1
(Γ) = λℓM2

(Γ). This implies that f(1) = 0 and f(λ) = 0 for

f(t) :=
3
∑

k=1

cosh(akt) −
3
∑

k=1

cosh(bkt),

with

a1 =
ℓM1

(ξ)

2
,

a2 =
ℓM1

(υ′) + ℓM1
(ζ)

2
,

a3 =
ℓM1

(υ′) − ℓM1
(ζ)

2
,

b1 =
ℓM1

(ξ̄′)

2
,

b2 =
ℓM1

(υ) + ℓM1
(ζ)

2
,

b3 =
ℓM1

(υ) − ℓM1
(ζ)

2
.

Unlike in corollary A.3, the function f may have more than one positive zero,
but the number of zeros is clearly finite, which implies a finite number of possible
λ. This completes the proof. �
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Section de Mathématiques, Université de Genève, Genève, Switzerland

E-mail address: greg.mcshane@gmail.com

E-mail address: hugo.parlier@math.unige.ch


