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Abstract. Assume that we have a (compact) Riemann surface S, of
genus greater than 2, with S = D/Γ, where D is the complex unit disc
and Γ is a surface Fuchsian group. Let us further consider that S has an
automorphism group G in such a way that the orbifold S/G is isomorphic to
D/Γ′ where Γ′ is a Fuchsian group such that Γ C Γ′ and Γ′ has signature σ
appearing in the list of non-finitely maximal signatures of Fuchsian groups
of Theorems 1 and 2 in [S]. We establish an algebraic condition for G such
that if G satisfies such a condition then the group of automorphisms of S
is strictly greater than G, i. e., the surface S is more symmetric that we
are supposing. In these cases, we establish analytic information on S from
topological and algebraic conditions.

1 Introduction

Let D be the complex unit disc and G be the group of analytic automor-
phisms of D. A Fuchsian group is a discrete subgroup Γ of G with compact
quotient space. If Γ is such a group then its algebraic structure and the
geometric structure of the quotient analytical orbifold D/Γ is given by the
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signature (g; [m1, ...,mr]).

The orbit space D/Γ is an orbifold with underlying surface of genus g
with r cone points, i.e., there are r orbits containing the fixed points of
transformations of Γ and the orbifold charts on such points are branched
coverings. The integers mi are called the proper periods of Γ. They are the
orders of the cone points of D/Γ and correspond to the maximal order of
the elliptic elements with a fixed point in such an orbit (the orbifold charts
on such a point are branched coverings with branched index mi on the cone
point). We shall call type of the orbifold D/Γ the signature of the group Γ.

Let σ = (g; [m1, ...,mr]) be a given signature and Tσ be the Teichmüller
space of Fuchsian groups with signature σ (see [MS]). The space Tσ is ana-
lytically equivalent to a complex ball of dimension 3g + r − 3.

Given two signatures σ, σ′ we shall denote σ ⊆ σ′ if there exists a Fuch-
sian group Γ, with signature σ, and another Γ′ with signature σ′, such
that Γ ≤ Γ′. If σ ⊆ σ′, then there is a natural emdedding Tσ′ → Tσ and
dimTσ′ ≤ dimTσ.

In 1971, D. Singerman obtains in [S] the complete list of pairs of signa-
tures σ ⊆ σ′ with dimTσ = dimTσ′ . We shall refer to this list of signatures
as the list of Singerman’s Theorem. Note that if σ ⊆ σ′ is a pair of signa-
tures that is not in the list, then there are Fuchsian groups with signature
σ that are finitely maximal, i. e., Fuchsian groups that are not finite index
subgroups of other Fuchsian groups (see [G]). This was the original motiva-
tion for Singerman’s work.

The results of [S] have been extensively used since their publication. One
of the main applications is to establish if a finite group of homeomorphisms
of a surface can be represented as the full group of automorphisms of a
Riemann surface. The method is as follows: the orbit space of the surface
by the action of a given finite group of homeomorphisms has an orbifold
structure determining a Fuchsian group signature. If such a signature does
not appear in the list of [S] then there is a Riemann surface with its full
group of automorphisms acting topologically as the given group. For this
application of the result, the important point is to not be in the list. In the
present work, we shall consider an application of the results in [S] extracting
information from the signature pairs σ′ ⊆ σ that do appear in the list.

For instance the first appearing pair of signatures is (0; [2, 2, 2, 2, 2, 2]) ⊆
(2; [−]) which says that every Riemann surface of genus 2 is hyperelliptic.
Note that, in this example, a topological condition, the genus of the surface,
gives information of analytic nature: the existence of the hyperelliptic invo-
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lution. We shall obtain similar results to the above example for all signature
pairs σ′ ⊆ σ in the list of Theorem 1 from [S]. More concretely, assume that
we have a Riemann surface S admitting an automorphism group G in such a
way that the orbifold type of S/G is given by a signature σ such that σ′ ⊆ σ
is in the list. There is an algebraic condition for G such that if G satisfies
this condition then the group of automorphisms of S is strictly greater than
G, i. e., the surface S is more symmetric that we are supposing (Theorem
3.1). Theorem 3.4 offers an example of how to use the list of signatures cor-
responding to non-normal subgroups (Theorem 2 of [S]) in order to obtain
similar results to Theorem 3.1.

The article is organized as follows. In Section 2, we reproduce Theorem
1 and consequences of Theorem 2 from [S] which we shall need in the sequel.
Section 3 is dedicated to proving Theorems 3.1 and 3.4, as well as examples
of applications.

Acknowledgments. We are grateful to Van Quach and Marston Conder
for many stimulating conversations and helpful suggestions. We also thank
the referee for his suggestions, and in particular for pointing out an impor-
tant flaw in an earlier version of this paper.

2 Interpretation of Singerman’s theorem using orb-
ifolds

If the signature pair σ ⊆ σ′ satisfies dimTσ = dimTσ′ , then the embedding
Tσ′ → Tσ is onto and every Fuchsian group Γ with signature σ is contained
in a Fuchsian group Γ′ with signature σ′. In other words there is an orbifold
covering D/Γ → D/Γ′. Furthermore if Γ C Γ′ then the covering D/Γ →
D/Γ′ is regular and there is a group of automorphisms F of D/Γ such that
D/Γ/F = D/Γ′. Hence Theorem 1 of [S] tells us which types of analytic
orbifolds automatically have non-trivial automorphism groups.

Theorem 2.1 (Theorem 1 of [S])

Let O be an analytic orbifold. Assume that the orbifold type σ of O is
in the first column of the Table 2.1. Then the orbifold O has a group of
automorphisms F as shown in the second column in the row corresponding
to σ and the orbifold type of O/F is in the third column.

Note that, for example, the possibility F = C2 for the orbifold type (0, [t, t, t])
is not listed separately as it is a special case of (0, [t, t, u]). The same remark
will also apply to Tables 3.1 and 3.2 in the following Section.
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Orbifold type of O The group F Orbifold type of O/F
(2, [−]) C2 (0, [2, 2, 2, 2, 2, 2])
(1, [t, t]) C2 (0, [2, 2, 2, 2, t])
(1, [t]) C2 (0, [2, 2, 2, 2t])
(0, [t, t, u, u]) C2 (0, [2, 2, t, u])
(0, [t, t, u]) C2 (0, [2, t, 2u])
(0, [t, t, t, t]) D2 (0, [2, 2, 2, t]
(0, [t, t, t]) C3 (0, [3, 3, t])
(0, [t, t, t]) D3 (0, [2, 3, 2t])

Table 2.1

In a similar way, Theorem 2 of [S] tell us which types of analytic orb-
ifolds are automatically irregular coverings of another orbifold. For instance,
Theorem 2 implies the following result which we shall use explicitly in the
sequel:

Proposition 2.2

Every analytic orbifold O of type (0; [n, 2n, 2n]) is an index 4 irregular cov-
ering of an analytic orbifold of signature (0; [2, 4, 2n]).

3 Application: Groups of automorphisms of Rie-
mann surfaces automatically extendable

We want to present surfaces having a group of automorphisms G in such
a way that, if G satisfies an algebraic condition and the action of G on S
satisfies a topological condition, then “automatically” the surface has more
symmetry (a geometric property), i. e., the surface has a group of automor-
phisms H 	 G.

Theorem 3.1

Let S be a Riemann surface and G a group of automorphisms of S. Assume
that the orbifold S/G has a signature σi, i = 1, ..., 8, appearing in column 1
of the Table 3.1. Then the following holds.
1. The group G has a presentation having as generators the elements in
the entry (i, 2) of the Table 3.1 and the set of relations contains the ones
appearing in the entry (i, 3).
2. If the group G admits the action αi of a group Fi as described in the
entry (i, 2) of Table 3.2 then the group of automorphisms of the surface S
has a subgroup isomorphic to Goαi Fi.

Notation: In column three of Table 3.1, we use the notation [a, b] = aba−1b−1.
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Orbifold type of S/G Generators of G Some of the relations of G
(2, [−]) a1, b1, a2, b2 [a1, b1][a2, b2] = 1
(1, [t, t]) a, b, x1, x2 [a, b]x1x2 = 1; xt1 = 1; xt2 = 1
(1, [t]) a, b, x [a, b]x = 1; xt = 1

(0, [t, t, u, u]) x1, x2, x3, x4
x1x2x3x4 = 1
xt1 = 1, xt2 = 1, xu3 = 1; xu4 = 1

(0, [t, t, u]) x1, x2, x3
x1x2x3 = 1
xt1 = 1, xt2 = 1, xu3 = 1

(0, [t, t, t, t]) x1, x2, x3, x4
x1x2x3x4 = 1
xt1 = 1, xt2 = 1, xt3 = 1; xt4 = 1

(0, [t, t, t]) x1, x2, x3
x1x2x3 = 1
xt1 = 1, xt2 = 1, xt3 = 1

(0, [t, t, t]) x1, x2, x3
x1x2x3 = 1
xt1 = 1, xt2 = 1, xt3 = 1

Table 3.1

Orbifold type of S/G Group Fi and action αiof Fion G

(2, [−])
F1 = C2 =

〈
g : g2 = 1

〉
α1(g)(a1) = a−1

1 ; α1(g)(b1) = b−1
1

α1(g)(a2) = b−1
1 a−1

1 a−1
2 b1a1; α1(g)(b2) = a−1

1 b−1
1 b−1

2 a1b1

(1, [t, t])
F2 = C2 =

〈
g : g2 = 1

〉
α2(g)(a) = a−1; α2(g)(b) = b−1

α2(g)(x1) = b−1a−1x2ab; α1(g)(x2) = a−1b−1x1ba

(1, [t])
F3 = C2 =

〈
g : g2 = 1

〉
α3(g)(a) = a−1; α3(g)(b) = b−1

α3(g)(x) = b−1a−1xab

(0, [t, t, u, u])
F4 = C2 =

〈
g : g2 = 1

〉
α4(g)(x1) = x2; α4(g)(x2) = x1

α4(g)(x3) = x1x4x
−1
1 ; α4(g)(x4) = x2x3x

−1
2

(0, [t, t, u])
F5 = C2 =

〈
g : g2 = 1

〉
α5(g)(x1) = x2; α5(g)(x2) = x1; α5(g)(x3) = x2x3x

−1
2

(0, [t, t, t, t])

F6 = C2 ⊕ C2 =
〈
g1 : g2

1 = 1
〉
⊕
〈
g2 : g2

2 = 1
〉

α6(g1)(x1) = x2; α6(g1)(x2) = x1;
α6(g1)(x3) = x1x4x

−1
1 ; α6(g1)(x4) = x2x3x

−1
2

α6(g2)(x1) = x3; α6(g2)(x2) = x4;
α6(g2)(x3) = x1; α6(g2)(x4) = x2

(0, [t, t, t])
F7 = C3 =

〈
g : g3 = 1

〉
α7(g)(x1) = x2; α7(g)(x2) = x3; α7(g)(x3) = x1

(0, [t, t, t])
F8 = D3 =

〈
g1, g2 : g3

1 = 1; g2
2 = 1; g2g1g2 = g−1

1

〉
α8(g1)(x1) = x2; α8(g1)(x2) = x3; α8(g1)(x3) = x1

α8(g2)(x1) = x2; α8(g2)(x2) = x1; α8(g2)(x3) = x2x3x
−1
2

Table 3.2
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Proof. Let S be a Riemann surface and G a group of automorphisms of S.
Then we have a covering S → S/G having as monodromy epimorphism:

ω : π1O(S/G)→ G.

We shall prove the theorem in the case that S/G has type (1, [t, t]), we
can deal with the other cases in a similar way.

Since the orbifold type of S/G is (1, [t, t]), then the group π1O(S/G)
is isomorphic to a Fuchsian group with signature (1, [t, t]). So the group
π1O(S/G) has a canonical presentation as follows:〈

a, b, x1, x2 : [a, b]x1x2 = 1;xt1 = 1;xt2 = 1
〉
.

The monodromy map ω ensures a presentation of G with generators
ω(a), ω(b), ω(x1), ω(x2) which contains the relations (as in column 2 and 3
of Table 3.1):

[ω(a), ω(b)]ω(x1)ω(x2) = 1, ω(x1)t = 1, ω(x2)t = 1.

As there is no danger of confusion, we shall denote ω(y) = y in the sequel.

By [S] or Theorem 2.1 the orbifold S/G admits a C2 =
〈
g : g2 = 1

〉
ac-

tion and (S/G)/C2 has type (0, [2, 2, 2, 2, t]). In [CT] conditions are given
on G to ensure that the automorphism g lifts to an automorphism g̃ of S.
The conditions are exactly the automorphisms described in column two of
the Table 3.2. Hence the group 〈G, g̃〉 ⊂ Aut(S) is the subgroup that we are
looking for. In order to be as self-contained as possible, we shall give the
sketch of a complete proof:

Let θ : π1O((S/G)/C2)→ C2 be the monodromy of the covering S/G→
(S/G)/C2, so ker θ = π1O(S/G).

The group π1O((S/G)/C2) has a canonical presentation:〈
y1, y2, y3, y4, y5 : y1y2y3y4y5 = 1, y2

1 = y2
2 = y2

3 = y2
4 = yt5 = 1

〉
,

and θ(y1) = θ(y2) = θ(y3) = g, θ(y4) = g, θ(y5) = 1. Remark that since
ker θ = π1O(S/G) is an index two subgroup of π1O((S/G)/C2), we have

π1O((S/G)/C2) = 〈y1, ker θ〉 .

Assuming that the group G admits the action α2 of the group C2 as
described in Table 3.2, we can define G oα2 C2. We want to construct
$ : π1O((S/G)/C2)→ Goα2 C2, such that ker$ = π1(S), because in that
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case we have the action of Goα2 C2 on S which implies the result.

We set $(y1) = (1, g) and $(k) = (ω(k), 1) if k ∈ ker θ. The above
equalities define an epimorphism $ : π1O((S/G)/C2) → G oα2 C2 if the
action by conjugation of 〈y1〉 on ker θ is compatible with $. To show this,
we express the canonical generators of π1O(S/G) in function of the canonical
generators of π1O((S/G)/C2):

a = y3y1, b = y1y4, x1 = bay5a
−1b−1, x2 = y1y5y1.

Then the action by conjugation of y1 becomes

y1ay1 = a−1, y1by1 = b−1,
y1x1y1 = b−1a−1x2ab, y1x2y1 = a−1b−1x1ba.

The above action is compatible with $ by definition of Goα2 C2.

�

As an example of an application of the above result we have the following
Corollary.

Corollary 3.2

Let S be a cyclic n−fold covering of an elliptic surface having exactly two
branched points. Then the group of automorphisms of S contains the group
Dn.
Proof. We can consider G = Cn and then S/Cn has type (1, [t, t]). In this
case the automorphism given by Table 3.2 is x → x−1, hence the group of
automorphisms of S contains Cn ox→x−1 C2 = Dn.

�

To ensure that the theorem is not indeed void of content, one must show
that the conditions of Table 3.2 are not always satisfied.

Example 3.3.

We consider the finite group P with presentation:〈
x, y : x4 = y4 = 1, y−1xy = x−1

〉
(= C4 ox→x−1 C4),

and let G be the direct product P ×C3 = P ×〈z〉. Remark that G has order
4× 4× 3 = 48.

We consider an orbifold S2
3,3,4 of type (0, [12, 12, 4]) and we define the

epimorphism:
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ω : π1O(S2
3,3,4)→ G, given by x1 → (x, z) and x2 → (y, z−1).

Now S = D/ kerω is a Riemann surface on which G acts, but G has no
order two automorphisms such that:

(x, z)→ (y, z−1) and (y, z−1)→ (x, z−1),

since x generates a normal subgroup of P but y does not. Hence we can not
apply the theorem.

An application of the list of non-normal inclusions

Theorem 2 of [S] provides a complete list of non-normal inclusions be-
tween Fuchsian groups. As a consequence, one can obtain a similar result
to Theorem 3.1, this time using this other list. However, the conditions be-
ing much more involved, the list would be of considerable length and thus,
instead of a a complete list, we give only one example.

Theorem 3.4.

Let S be a Riemann surface and G be a group of automorphisms of S such
that the orbifold S/G has type (0; [n, 2n, 2n]). Then the following holds.
1. The group G has a presentation〈

x1, x2, x3 : x1x2x3 = 1, x2n
1 = x2n

2 = xn3 = 1, ...
〉
.

2. If H =
〈
x2

1, x2x3x
−1
2 , x2

2, x3

〉
is an index two subgroup of G having the

automorphisms:

x2
1 → x2x3x

−1
2 , x2x3x

−1
2 → x2

2, x
2
2 → x3, x3 → x2

1,
x2

1 → x3, x3 → x2
1,x2x3x

−1
2 → x−1

3 x2
2x3, x2

2 → x2
1x2x3x

−1
2 x−2

1 ,

then Aut(S) contains HoαD4, and G is an index four subgroup of HoαD4.

Proof. Let S be a Riemann surface and G a group of automorphisms of S.
Then we have a covering S → S/G having as monodromy epimorphism:

ω : π1O(S/G)→ G.

Assume that S/G has type (0; [n, 2n, 2n]). The group π1O(S/G) is iso-
morphic to the triangular Fuchsian group (0; [n, 2n, 2n]). So the group
π1O(S/G) has a canonical presentation as follows:〈

x1, x2, x3 : x1x2x3 = 1, x2n
1 = x2n

2 = xn3 = 1
〉
.

8



The monodromy map ω ensures a presentation of G with generators
ω(x1), ω(x2), ω(x3) and containing the relations

ω(x1)ω(x2)ω(x3) = 1, ω(x1)2n = 1, ω(x2)2n = 1, ω(x3)n = 1.

In the sequel we denote ω(xi) = xi, i = 1, 2, 3.

Now by Theorem 2 of [S], there is an orbifold covering S/G → S2
2,4,2n,

where S2
2,4,2n is an orbifold of type (0, [2, 4, 2n]).

Since H =
〈
x2

1, x2x3x
−1
2 , x2

2, x3

〉
is an index two subgroup of G, we have

the following diagram of orbifold coverings:

S/H
↙

S/G = S/H/C2 ↓
↘

S2
2,4,2n = (S/H)/D4

The orbifold covering S/H → (S/H)/D4 = S2
2,4,2n is given by an action

of the group D4. In order to ensure that the composition S → S/H → S2
2,4,2n

is a regular covering, we need to construct the product HoαD4. In a similar
way as in the proof of Theorem 3.1, it is possible to show that the action of
D4 =

〈
r, s : s2 = r4 = 1; srs = r−1

〉
on H =

〈
x2

1, x2x3x
−1
2 , x2

2, x3

〉
must be

given by the automorphisms of point 2 in the hypothesis.

�

Example 3.5
Consider a surface S such that there is the cyclic group C2n = 〈g〉 of order
2n acting on S such that S/C2n is an orbifold of type (0; [n, 2n, 2n]) and the
orbifold covering S → S/C2n has the monodromy epimorphism

π1O(S/G) =
〈
x1, x2, x3 : x1x2x3 = 1, x2n

1 = x2n
2 = xn3 = 1

〉
→ C2n : x1 →

g, x2 → g, x3 → g−2.

In this case, the subgroup H in condition 2 of the Theorem is Cn and the
two automorphisms are equal to z → z−1, so the group of automorphisms
of S is strictly bigger than C2n.

Remark 3.6.
A similar study can be made for group of automorphisms containing anti-
conformal transformations using the results in [B] and [EI].
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