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Abstract. This article concerns lengths of simple closed geodesics on hyperbolic Riemann
surfaces. In particular, for a surface with boundary, it is shown that boundary length can be
increased such that all simple closed geodesics are lengthened.

1. Introduction

Consider a Riemann surface S endowed with a hyperbolic metric. The sur-
face’s simple length spectrum ∆0(S) is the ordered set of lengths {l1 ≤ l2 ≤ · · ·}
of its (interior) simple closed geodesics. The length l1 is its systole length (the
shortest non-trivial closed curve) and l1 is known to be bounded for any given
genus if S is a closed surface (without boundary). Surfaces that satisfy this bound
have been a subject of active research (i.e. [6], [9]). This is perhaps the best known
example of the larger study of extremal surfaces for the length of a certain simple
closed geodesic. The idea of this article is to prove the following theorem, which
is a natural tool for describing extremal surfaces.

Theorem 1.1. Let S be a compact hyperbolic Riemann surface with non-
empty boundary and let ε > 0 . There exists a surface S̃ of same signature with
total boundary length ε greater than that of S with ∆0(S) < ∆0(S̃ ) .

In other words, boundary length can be increased so that a simple closed
geodesic on S is strictly shorter that its corresponding geodesic on S̃ . The sur-
faces S and S̃ are of same topological type endowed with two different hyperbolic
metrics. The reciprocal to the theorem, namely that boundary length can be de-
creased in order to decrease the length of all simple closed geodesics, is also true.
It must noted that a similar proposition limited to the case where S is of signature
(g, 1), was proved by Schmutz–Schaller in [9] and was used to find properties for
surfaces with maximum size systoles.

The theorem, along with the convexity of geodesic length functions along
earthquake paths, is used to prove the following corollaries.
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Corollary 1.2. Let S be a maximal surface of genus g for Bers’ con-
stant. Then all simple closed geodesics intersect at least two distinct simple closed
geodesics of length Lg that are the longest geodesics of distinct partitions.

Corollary 1.3. Let S be a surface of genus g with largest possible systole
among all surfaces of same genus. Let γ be a simple closed geodesic. Then γ
intersects two distinct systoles (and distinct from γ ).
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2. Preliminaries

Here a surface will always be a compact Riemann surface equipped with a
metric of constant curvature −1. Such a surface is always locally isometric to the
hyperbolic plane H . A surface will generally be represented by S and distance on
S (between points, curves or other subsets) by dS( · , · ). The signature of such a
surface will be denoted (g, n) (genus g with n boundary curves). All boundary
curves must be smooth closed geodesics. A surface of signature (0, 3) is called a
Y -piece or a pair of pants and will generally be represented by Y or Yi .

A curve, unless mentioned, will always be non-oriented and primitive. The
set of all free homotopy classes of closed curves of a surface S is denoted by π(S).
A non-trivial curve on S is a curve which is not freely homotopic to a point. A
closed curve on S is called simple if it has no self-intersections. Closed curves
(geodesic or not) will generally be represented by greek letters (α , β , γ and γi

etc.) whereas paths (geodesic or not) will generally be represented by lower case
letters (a , b etc). The intersection number between two distinct curves α and
β will be denoted int(α, β). Unless otherwise specified, a geodesic is a simple
closed geodesic curve. A non-separating closed curve is a closed curve γ such that
the set S \ γ is connected. Otherwise, a closed curve is called separating. The
function that associates to a finite path or curve its length will be represented
by l( · ), although generally a path or a curve’s name and its length will not be
distinguished.

The simple length spectrum of a surface S is the ordered set of lengths of
simple closed geodesics and will be denoted

∆0(S) = {l1 ≤ l2 ≤ · · ·}.

By convention, for S with boundary only interior the lengths of interior simple
closed geodesics will be allowed to appear in ∆0(S). Consider two surfaces S and

S̃ with simple length spectrums ∆0(S) = {l1 ≤ l2 ≤ · · ·} and ∆0(S̃ ) = {l̃1 ≤ l̃2 ≤

· · ·} . The notation ∆0(S) < ∆0(S̃ ) is an abbreviation for li < l̃i for all i ∈ N∗ .
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A geodesic length function is an application that associates length to geodesics
according to homotopy class under the action of a continuous transformation of a
surface. In [8], S. Kerckhoff proves the following theorem.

Theorem 2.1. The geodesic length function of a simple closed curve δ is
convex along earthquake paths. It is strictly convex if δ intersects γ , the simple
closed geodesic along which the earthquake was performed.

A surface of genus g can always be cut along 3g − 3 disjoint simple closed
geodesics {γ1, . . . , γ3g−3} which separate S into 2g − 2 Y -pieces. The reunion
of these geodesics P = {γ1, . . . , γ3g−3} is called a partition. (If S is of signature
(g, n) then a partition contains 3g−3+n simple closed geodesics.) If P is chosen
such that max3g−3

i=1
l(γi) = l(P) is minimal among all possible partitions of S ,

then l(P) ≤ Lg , where Lg is constant depending uniquely on the genus ([1], [2]).
The optimal constant Lg is often called the Bers’ partition constant and the best
known bound is Lg ≤ 21(g − 1) ([3, Remark 5.2.5, p. 129]). A surface of genus
g will be called maximal for Bers’ partition constant if it is a surface on which a
minimal partition P satisfies l(P) = Lg .

A Y -piece can be separated into two symmetric isometric right angled hyper-
bolic hexagons. To do this, one can cut along the three disjoint simple geodesic
paths that go between the boundary geodesics. The following list of well-known
propositions concerning hyperbolic polygons (polygons in the hyperbolic plane H)
are of particular use in the proofs, and are included for sake of completeness. They
can be found in either [3] or [5]. All polygons, unless specially mentioned, are con-
sidered right-angled.

Proposition 2.2 ([3, Theorem 2.4.1, p. 40]). Let H be a hexagon with a , b
and c non-adjacent sides. Let α be the remaining edge adjacent to b and c , β
the remaining edge adjacent to a and c , and γ the remaining edge adjacent to a
and b . Then

cosh c = sinh a sinh b cosh γ − cosh a cosh b.

Proposition 2.3 ([3, Theorem 2.4.4, p. 42]). Let H be a non-convex hexagon
with a , b and c non-adjacent sides. Let α be the remaining edge adjacent to b
and c , β the remaining edge adjacent to a and c , and γ the remaining edge
adjacent to a and b . Let H be such that γ and c intersect. Then

cosh c = sinh a sinh b cosh γ + cosh a cosh b.

A trirectangle is a quadrilateral with three right angles.

Proposition 2.4 ([3, Theorem 2.3.1, p. 37]). Let R be a trirectangle with
interior angle ϕ being the only non-right angle situated between sides α and β .
Let a and b be the remaining sides with a adjacent to β and b adjacent to α .
Then the following formulas hold:

cos ϕ = sinh a sinh b and sinh α = sinh a cosh β.

The following proposition deals with quadrilaterals with only two right angles.
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Proposition 2.5 ([3, Theorem 2.3.1, p. 38]). Let R be a convex quadrilateral
with two right interior angles. Let γ be the side of R between the two right angles.
Let c be the side opposite γ and a and b the remaining sides. Then

cosh c = cosh a cosh b cosh γ − sinh a sinh b.

And in the non-convex case the following proposition holds.

Proposition 2.6 ([3, Theorem 2.3.1, p. 38]). Let R be a non-convex quadri-
lateral with two right interior angles. Let γ be the side of R between the two
right angles and c be the side that intersects γ . Let a and b be the remaining
sides. Then

cosh c = cosh a cosh b cosh γ + sinh a sinh b.

Finally:

Proposition 2.7 ( [3, Example 2.2.7, p. 36]). Let P be a pentagon with four
right angles. Let ϕ be the (only non-right) interior angle between two sides, a
and b . Let α be the other side adjacent to b and β the other side adjacent to a .
Let c be the remaining edge. Then the following formulas hold:

cosh c = − cosh a cosh b cosϕ + sinh a sinh b and
cosh a

cosh α
=

cosh b

cosh β
=

cosh c

cosh ϕ
.

3. Main theorem and corollaries

The proof of the main theorem is primarily based on the following technical
lemma. The lemma essentially states that by decreasing a boundary length on a
Y -piece, one decreases the length of all simple geodesic paths between the other
boundary geodesics.

Lemma 3.1. Let Y = (α, β, γ) be a Y -piece. Let dαβ , dαγ and dβγ be
Y ’s three perpendiculars. Let c be a border to border simple geodesic path from
α to β (from α to α , respectively). Let p and q be the initial and end points
of c . For a positive ε < l(γ) let Y ′ = (α, β, γ′) with l(γ′) = l(γ) − ε . Let p′ be
the point on α ⊂ Y ′ corresponding to p (such that dY ′(p′, dαγ′) = dY (p, dαγ)
and dY ′(p′, dαβ) = dY (p, dαβ)) and q′ the point on β ⊂ Y ′ corresponding to q .
Let c′ be the simple geodesic path on Y ′ from p′ to q′ . Then c′ < c .

Proof. The three arcs dαβ , dαγ and dβγ separate Y into two right-angled
hexagons. The geodesic path c can either cross one or both hexagons. This
explains the different configurations of c in what follows. For what follows also
notice that if the length of γ decreases, then so does dαβ (Proposition 2.2).

Let c be a simple arc on Y from α to β . Then one the two following figures
hold.
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α

c
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Figure 1. A Y -piece with a geodesic arc from α to β .
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Figure 2. Possibility 1 for the path c .

Consider the quadrilaterals containing c and dαβ (convex in Figure 2 and
non-convex in Figure 3). The paths (and their lengths) dp and dq are defined
as the two remaining sides of these quadrilaterals, as in the figures. (The path
dp is between p and dαβ , and the path dq is between q and dαβ .) Notice that
according to the hypotheses these lengths do not change under the influence of
the modification to Y . Using the formula for quadrilaterals (Proposition 2.5), in
Figure 2 we have the following expression for the length of c :

cosh c = cosh dp cosh dq cosh dαβ − sinh dp sinh dq.

In Figure 3, the quadrilateral with sides dp , dq , c and dαβ is the situation
described in Proposition 2.6. Thus:

cosh c = cosh dp cosh dq cosh dαβ + sinh dp sinh dq.
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Figure 3. Possibility 2 for the path c .

α

c

γ

β

Figure 4. A Y -piece with a geodesic arc from α to α .

In both cases it is easy to see that the length of c is strictly reduced by a
reduction of length γ .

Let c be a simple arc on Y from α to α . The paths dp and dq are defined
as previously and verify the configuration of either Figures 5 or 6. In both cases
we can extract the hexagon depicted in Figure 7.

Notice that h , the common perpendicular between c and β is contained in
the hexagon as in Figure 7. β1 and β2 are defined as the two parts of β separated
by h . Notice that the pentagons (Q1∪Q2) and (Q1∪Q2) are right-angled, except
in q and p , respectively. Thus, using Proposition 2.7 the following formulas hold:

cosh c1

sinh dαβ

=
cosh dq

sinh h
and

cosh c2

sinh dαβ

=
cosh dp

sinh h
.
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Figure 5. Possibility 1 for the path c .
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Figure 6. Possibility 2 for the path c .
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Figure 7. Hexagon used to calculate the variation of c .

Thus

(1) cosh c1 =
cosh dq

cosh dq

cosh c2.

From this formula, and because c = c1 + c2 , if either c1 or c2 decreases then so
does c .

When there is a variation of γ then, because β is constant, either β1 or β2

is reduced (or stays constant). The situation being symmetric, suppose that β1 is
reduced or left constant.

We can now use the trirectangle Q1 and Proposition 2.4. In Figure 7 the
following geodesic paths need to be defined: hq is the minimal path from q to β ,
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hp is the minimal path from p to β , and β11 and β12 are the two parts of β1

separated by hq . The following formula holds:

sinh hq = sinh dαβ cosh dq.

Thus hq is reduced by a reduction of γ . In the same trirectangle we can see that

sinh β11 =
sinh dq

cosh hq

.

This proves that β11 increases, and this implies that β12 = β1−β11 decreases.
Now in the trirectangle Q2 the following formula holds:

sinh c1 = sinh β12 cosh hq.

Both β11 and hq decrease and this implies that c1 decreases as well. We can now
conclude that c decreases as well.

Theorem 3.2. Let S be a surface of signature (g, n) with n > 0 . Let
γ1, . . . , γn be the boundary geodesics of S . For (ε1, . . . , εn) ∈ (R+)n with at

least one εi 6= 0 , there exists a surface S̃ with boundary geodesics of length
γ1 + ε1, . . . , γn + εn such that all corresponding simple closed geodesics in S̃ are
of length strictly greater than those of S (∆0(S) < ∆0(S̃ )) .

Proof. For a given partition of S , a simple closed geodesic is either an element
of the partition, or transversally intersects the partition. In the latter case, it can
be seen as the union of simple geodesic arcs, each arc joining geodesics in the
partition. The previous lemma will thus be our main tool for comparing lengths
of simple geodesics between surfaces.

Let P be a partition of S . We shall replace S by the following surface S̃ .
Let γi be a boundary geodesic and Yγi

(α, β, γi) be the element of P with γi

a boundary geodesic. For ε > 0, replace Yγi
with Y = (α, β, γi + ε) without

modifying the twist parameters.
Let us denote P̃ the partition on S̃ corresponding to P . Now let δ̃ be a

simple closed geodesic on S̃ . We shall now find a corresponding geodesic δ on S .
To find δ , proceed as follows. The geodesic δ̃ is either an element of P̃ , or
intersects the partition. If we are in the latter case, then δ̃ =

⋃m
i=1

c̃i where each

c̃i is a simple geodesic path from an element of P̃ to another. To each c̃i one can
find a corresponding ci on S as in the previous lemma. Now let δ = G

(⋃m
i=1

ci

)
.

Clearly, by the previous lemma, if δ intersects Yγi
, then l(δ) < l(δ̃).

The same process can be performed by increasing the length of multiple
boundary geodesics simultaneously. Notice that all simple closed geodesics on
S are in one-to-one correspondence with those of S̃ . For a given partition P on
S , all simple closed geodesics that have a transversal intersection with a Y -piece
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whose boundary length has been increased correspond to a simple closed geodesic
on S̃ whose length is strictly greater. Conversely, all other simple closed geodesics
on S correspond to simple closed geodesics on S̃ with identical length.

To construct S̃ , proceed as follows. Let
(
ε̃1, . . . , ε̃1)

)
= (ε1/k, . . . , εn/k) where

k is a positive integer to be determined. Take a partition P on S , and construct a
surface S1 as described above with boundary geodesics of lengths γ1+ ε̃1, . . . , γn+
ε̃n . On S1 , choose a different partition P1 and repeat the process to obtain a
surface S2 etc. For each step, as the correspondence between geodesics is one-to-
one, there continues to be a one-to-one correspondence between geodesics on S
and geodesics on, say, Sm . Clearly, by choosing the partitions Pm correctly, it
takes a finite number of steps N so that the length of all simple closed geodesics
on S are strictly inferior to their corresponding geodesics on SN . The number N
depends on the genus and the number of boundary geodesics γi whose length is
increased in the process. Now replace k by N and the corresponding construction
proves the theorem.

Notice that it suffices to have one boundary geodesic whose length increases.

The idea of studying maximal surfaces has induced us to focus on how to
increase the length of simple closed geodesics. However, the above proof also
applies to the reduction of lengths, and the following theorem holds as well.

Theorem 3.3. Let S be a surface of signature (g, n) with n > 0 . Let
γ1, . . . , γn be the boundary geodesics of S . For (ε1, . . . , εn) ∈ (R−)n with at

least one εi 6= 0 , there exists a surface S̃ with boundary geodesics of length
γ1 + ε1, . . . , γn + εn such that all corresponding simple closed geodesics in S̃ are
of length strictly less than those of S

(
∆0(S) > ∆0(S̃ )

)
.

As a first corollary to Theorem 3.2, let us first look at properties of maximal
surfaces for Bers’ partition constant.

Corollary 3.4. Let S be a maximal surface of genus g for Bers’ con-
stant. Then all simple closed geodesics intersect at least two distinct simple closed
geodesics of length Lg that are the longest geodesics of distinct partitions.

Proof. Let γ be a non-separating simple closed geodesic on S . Open S along
γ to obtain a surface S̃ of signature (g− 1, 2). By the previous proposition, S̃ can
be replaced by a new surface S ′ with all lengths of simple closed geodesics longer,
including γ . If S was maximal for genus g , then the surface obtained by gluing
S′ back together again along the image of γ must have a shorter partition. The
only geodesics that could have been shortened by this operation were those that
intersected γ , thus γ must have intersected a geodesic δ that was of length Lg

and that completed a partition as the longest geodesic. Now twist γ to obtain
a new surface S′′ such that the image of δ is longer. Re-perform the operation
described above and S can only have been maximal if there was a second distinct
geodesic like δ , which proves the result.
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Remark 3.5. An upper bound on Lg is known ([4], [3]). On a maximal
surface the shortest simple closed geodesic σ intersects a geodesic of length Lg .
With this in mind, using the collar theorem [7], we can give a lower bound on σ
(which is not sharp) for a maximal surface in the following manner. The collar
theorem states that there is a lower bound 2 arcsinh(2/σ) for the length of any
closed geodesic that intersects σ . Thus for σ too small, we have

2 arcsinh(2/σ) > Lg,

and thus the surface in question cannot be maximal. Applied differently, the same
argument shows that surfaces with small systoles admit a partition containing the
systoles and with all geodesics of length inferior to Lg .

A second corollary, similar to the first one, concerns surfaces with maximum
size systoles. The problem of maximum size systoles is exposed in [9], and a sharp
bound is known for surfaces of genus 2 ([6]). The proof of this corollary is almost
identical to the previous corollary and is left to the reader.

Corollary 3.6. Let S be a surface of genus g with largest possible systole
among all surfaces of same genus. Let γ be a simple closed geodesic. Then γ
intersects two distinct systoles (and distinct from γ ).
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[2] Buser, P.: Riemannsche Flächen und Längenspektrum vom trigonometrischen Stand-
punkt. - Habilitation Thesis, University of Bonn, 1981.

[3] Buser, P.: Geometry and Spectra of Compact Riemann Surfaces. - Progr. Math. 106,
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